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Abstract—The control flow of a program can often be observed
through side-channel attacks. Hence, when control flow de-
pends on secrets, attackers can learn information about these
secrets. Widely used software-based countermeasures ensure
that attacker-observable aspects of the control flow do not
depend on secrets, relying on techniques like dummy execution
(for balancing code) or conditional execution (for linearizing
code). In the current state-of-practice, the primitives to imple-
ment these techniques have to be found in an existing instruc-
tion set architecture (ISA) that was not designed a priori to
provide them, leading to performance, security, and portability
issues. To counter these issues, this paper proposes lightweight
hardware extensions for supporting these techniques in a
principled way. We propose (1) a novel hardware mecha-
nism (mimic execution), that executes an instruction stream
only for its attacker-observable effects, and suppresses (most)
architectural effects, and (2) ISA support (called AMi, for
Architectural Mimicry) and programming models to effectively
use mimic execution to balance or linearize code. We show
the feasibility and benefits of our proposal by implementing
mimic execution and AMi for a 32-bit out-of-order RISC-V
core that leaks control flow in multiple ways (via e.g., the
branch predictor, instruction timings, and the data cache). Our
experimental evaluation shows that the hardware cost is low
(most importantly, no impact on the processor’s critical path),
and that AMi enables significant performance improvements.
In particular, AMi reduces the overhead of state-of-the-art
linearized code by 60% in our benchmarks.

1. Introduction

Control flow that depends on confidential information
discloses (parts of) this information to an adversary that can
observe the control flow via side channels. For instance, the
outcome of a conditional branch might be inferred by mea-
suring the execution time, one of many (micro)architectural
timing measurements that expose control flow [1]. Counter-
ing this leakage in software typically relies on two classes
of countermeasures. First, code balancing balances the two
sides of a secret-dependent branch to equalize their observ-
able behavior [2]–[6]. If the two different execution paths of
a conditional branch exhibit the same observable behavior,
an attacker can no longer distinguish them. Unfortunately,
for most types of computing platforms this approach is
insecure, but, when applicable, it can have performance

benefits compared to other approaches [5], [6]. Second,
linearization [7]–[10] ensures that control flow does not
depend on program secrets at all.

Balancing and linearization are important ingredients in
state-of-practice software-based countermeasures (such as
constant-time programming [11]), as well as in recent re-
search prototypes [5]–[7], [10], [12]. They are based on tech-
niques like dummy execution (i.e., using architectural no-ops
with an appropriate side-channel footprint) and conditional
execution (e.g., conditional moves). In the current state-of-
practice, the primitives to implement these techniques have
to be found in an existing instruction set architecture (ISA)
that was not designed a priori to provide them, leading to
performance, security, and portability issues.

Our proposal. In contrast to the above, this paper inves-
tigates how to offer hardware support and a small ISA
extension to support control-flow balancing and linearization
in a principled way instead. We propose a novel hardware
mechanism, called mimic execution. Mimic execution can
be thought of as a mode in which the processor executes
instructions only for their attacker-observable effects, and
suppresses (most) architectural effects: every instruction be-
comes a no-op, but a side-channel attacker cannot see the
difference with a normal execution of the instruction.

Mimic execution is a powerful primitive, but using it
correctly in software to obtain secure and correct code is
non-trivial. We design and formally specify suitable ISA
support (called AMi, for Architectural Mimicry) to activate
and deactivate mimic execution, and we show how to use it
to develop efficient and portable side-channel resistant code.
We provide two implementations; for a pipelined in-order,
and an out-of-order 32-bit RISC-V processor. We show
that AMi enables significant performance improvements for
hardened code, while only incurring low hardware costs.

Contributions. In summary, we contribute the following:
• Mimic execution, a novel and lightweight hardware

primitive for imitating computational behavior.
• Architectural Mimicry (AMi), a set of innovative in-

structions to control mimic execution in an efficient
and portable way.

• Programming models showing how to balance and
linearize control flow correctly and securely with AMi.

• A simple formal ISA model of AMi and a formal
characterization of AMi programming models.



• An implementation of AMi for RISC-V.
• An experimental evaluation showing that the hardware

cost is low, and that AMi enables significant perfor-
mance improvements for hardened code.

We evaluate the benefits of AMi when manually writ-
ing hardened code, in line with the state-of-practice for
writing constant-time cryptographic code. But we see very
interesting avenues for future work to build compilers or
binary rewriters that automatically (and provably) harden
code against side channels by relying on AMi. To support
and enable such future work, and to improve reproducibility
of our results, our RISC-V implementation of AMi, as well
as the full set of benchmarks and experiments are open
sourced at https://gitlab.com/hanswinderix/ami.

2. Problem Statement

Prior work addressing the problem of control-flow leak-
age via software-based side channels can broadly be cat-
egorized into two classes with the common goal that the
trace of observable side effects produced by a program’s
execution does not depend on secrets. The first approach is
based on the insight that if the code is carefully balanced in
such a way that all possible targets of a single control-flow
transfer induce exactly the same observable behavior, then
executing the code does not reveal via side-effect observa-
tions which target has been executed [2]–[6]. Unfortunately,
this balanced form does not prevent control-flow leakage
in general as it is not possible on all platforms to balance
out all side effects of a control-flow transfer. For instance,
to predict the most likely target of a control flow transfer,
modern CPUs are equipped with a branch predictor unit,
which maintains a history of recent transfers. The predictor
state encodes in a direct manner which target has been
selected, and consequently, balanced control flow cannot
prevent this shared microarchitectural state from being ex-
posed. For this reason, the second approach avoids secret-
dependent control flow altogether and linearizes the control
flow using different techniques [7]–[10], [12]–[14]. Control
flow in linearized form always executes the instructions
from all possible targets in a fixed order, but makes sure
that architectural state is only modified by the instructions
whose associated path condition holds. The linearized form
has been adopted by both the security and the architecture
community as the de facto standard to prevent applications
from leaking confidential data via the control flow. Avoiding
secret-dependent branches is a key principle of the constant-
time programming discipline [11], which is broadly adhered
to for writing security-critical code.

Performance. Both the balanced and the linearized form
have in common that they rely on clever software tricks to
achieve some form of dummy execution. The balanced form
relies on the availability of dummy instructions (i.e., no-ops)
to compensate for side-effects induced by instructions in
alternate execution paths. The linearized form relies on the
ability to neutralize the architectural effects of instructions
that should not be executed according to program semantics.

Implementing these forms of dummy execution incurs a
significant performance overhead due to the use of extra
instructions and additional registers.

Security. More than 25 years after Kocher introduced the
concept of timing attacks [15], it is well understood how to
systematically harden applications to prevent control flow
from exposing secrets: the timing behavior and the hardware
resource utilization due to a control-flow transfer must not
depend on confidential data. Unfortunately, despite this fun-
damental understanding, vulnerabilities of this kind are be-
ing found on a regular basis, even in high-profile code [16]–
[18]. This is partially due to the common practice of hard-
ening applications at the level of the source code [19], which
is typically written in a high-level programming language.
This enables so-called cross-layer vulnerabilities [20], [21],
when lower layers such as the compiler or the underlying
hardware are not made aware of the security semantics of
the application.

Portability. It is determined by the underlying hardware
implementation what observable side effects are exposed.
Since application hardening is typically done at high ab-
straction levels [19], a comprehensive defense is needed that
is effective for all target platforms, ranging from low-cost
microcontrollers to high-end servers. Current practice adopts
a worst-case adversary model and assumes that the control
flow leaks in all situations and on all hardware. This is a se-
cure assumption, but overly conservative. More importantly,
it tightly couples the security policy to the source code and
leaves no room to adopt more relaxed policies on simpler
architectures that leak less information, which could have
performance benefits. Furthermore, decoupling the security
policy from the source code also improves other software
qualities such as readability and maintainability.

3. Scope

We argue that there are critical concerns with current
countermeasures against control-flow leakage that rely on
primitives not designed to solve this problem. We propose
a novel approach and, additionally, we show that significant
performance improvements for constant-time code are pos-
sible (with stronger and future-proof security guarantees).

The purpose of this work is to furnish developers with
a new, efficient enforcement mechanism to prevent the dis-
closure of sensitive information through a program’s control
flow. A developer or a secure compiler [22], [23], such as
CompCert [24], FaCT [25], or Jasmin [26], can leverage
this mechanism to efficiently balance or linearize secret-
dependent control flow in a principled way (i.e., based on
a hardware-software contract for security). Our work can
be seen as complementary to OISA [27], which offers a
security contract in the ISA expressing information leakage
through unsafe instructions, but it does not directly address
the control-flow leakage problem.

It is not the purpose of this work to propose new tech-
niques that deal with other sources of information leakage
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than a program’s control flow. To close these other microar-
chitectural leaks, a developer should use countermeasures
described in the rich side-channel attack literature [1], [28].
For instance, to counter cache-based side-channel attacks, a
developer can avoid secret-dependent memory accesses (as
dictated by the constant-time programming discipline) or
rely on Oblivious RAM [29], [30] (and thus hide memory
access patterns). Similarly, to mitigate transient execution
attacks, a developer can leverage software-based solutions
such as fences [31], speculative load hardening [31], [32],
and retpolines [33] or hardware-based mechanisms like
ProSpeCT [34] and SPT [35]. Furthermore, in this paper
we focus on manually hardening ISA-level code. How to
automatically balance or linearize vulnerable source code
is the subject of orthogonal research, which has become
practical due to a large body of work [2]–[5], [7]–[10], [12].
Extending these well-documented techniques to automati-
cally harden assembly code that leverages our mechanism,
or to support it in a compiler (benefiting from features such
as taint analysis) is left for future work (cf. Section 7).

4. Assumptions and Security Objectives

System model. Our goal is to develop an extension for
widely used ISAs, such as the RISC-V RV32IM ISA used
by our implementation (cf. Section 6). In our formalization,
however, we use a simplified ISA called AMiL. Base AMiL
(i.e., without the AMi extensions) is defined in Fig. 1. We
assume a set of registers Regs, a set of values V (includ-
ing memory addresses), and a set of program locations
Loc ⊆ N. We let Inst be the set of instructions. A program
P : Loc→ Inst is a mapping from locations to instructions
and P [`] denotes the instruction at location `.

(Expr) e := v | x
(Inst) i := add x,e1,e2 | mul x,e1,e2 | beqz e,` |

call ` | jmp e | load x,e | store e1,e2

Figure 1: Syntax of base instructions where x ranges over
Regs, v ranges over V and ` ranges over Loc.

An architectural configuration is a tuple 〈m, r,pc〉 ∈ A
where m : V → V is a memory, which maps addresses to
values; r : Regs→ V is a register file, which maps registers
to values; and pc is the program counter, a special register
pointing to the next instruction to execute. The semantics of
base AMiL can be defined straightforwardly as a transition
system over configurations.

Attacker model. We consider software that manipulates
secrets such as cryptographic keys and that aims to protect
these secrets against attackers who can observe microarchi-
tectural timing side-channels [1], revealing access to shared
resources such as the instruction cache, data cache, branch
predictor and TLB. Physical side-channel attacks [36], and
other software-based side-channel attacks, such as fault at-
tacks [37] and power attacks [38], are out of scope for this
paper and subject of orthogonal mitigations.

Leakage model. We model the observational power of an
attacker by defining a leakage model, which we integrate
in the AMiL semantics. The semantics of base instructions
is given by the relation a o−−→

inst
a′. It denotes the evaluation

of a base instruction inst in an architectural configuration
a resulting in configuration a′. Additionally, it produces an
observation o ∈ O defining the architectural information
that leaks through microarchitectural side channels (which
we abstract from) during the evaluation of the instruction.
This is similar to existing work [22]. We parameterize the
semantics by a set of leakage functions λinst : A → O,
which define for each instruction inst what parts of the
architectural configuration leak. The observation trace of an
n-step execution, written a o−−→

inst

na′, is the concatenation of
observations produced by individual execution steps.

In this paper, we consider two countermeasures to pre-
vent control-flow leakage: control-flow balancing and lin-
earization. To study these two techniques, we reduce the
leakage space to two leakage models by defining two ver-
sions of the leakage functions in Fig. 2. For both leakage
models, the λadd and λmul leakage functions return a fixed
(i.e., configuration-independent) observation, such as the
instruction latency. The functions λload and λstore model the
exposure of the accessed memory address (e.g., through the
data cache) when executing a load and a store instruc-
tion. Finally, λcall, λjmp and λbeqz model the observations
produced by call, jmp and beqz instructions, which are
instantiated differently for the two leakage models:
• In the first leakage model, it is possible to avoid expo-

sure of the program counter. An attacker can only infer
the value of the program counter when the targets of
a control-flow transfer produce different observations.
In this model, it is secure to balance secret-dependent
branches, i.e., to make sure that the different execution
paths produce the same observation trace and thus
remain indistinguishable by an attacker. Hence, a de-
veloper can choose between balancing and linearizing
based on a profitability analysis. This model represents
the leakage of low-end microcontrollers, typically not
equipped with performance-enhancing hardware.

• In the second leakage model, the program counter is
inevitably exposed to an attacker. In this model, it is not
secure to balance secret-dependent branches. Branch
elimination (by linearizing the branch) is the only
secure hardening option. This model corresponds to
the constant-time leakage model [11], commonly em-
ployed in security analyses. It represents the leakage of
high-end processors that typically feature performance-
enhancing hardware such as a branch predictor and an
instruction cache.

Security objectives. The developer identifies what parts of
the program state should remain secret, and the security
objective of the developer is to avoid that these secrets leak
to the attacker. We model this in the classic way, using
a lattice with two security levels: public (low) and secret
(high). A security policy P is a mapping from registers



Common leakage

λadd(〈m, r,pc〉) = add if P [pc] = add x, e1, e2
λmul(〈m, r,pc〉) = mul if P [pc] = mul x, e1, e2
λload(〈m, r,pc〉) = load a if P [pc] = load x, e

and a = JeKr
λstore(〈m, r,pc〉) = store a if P [pc] = store e1, e2

and a = Je2Kr

Leakage model 1 (Control flow exposure can be avoided)

λcall(〈m, r,pc〉) = call if P [pc] = call `

λjmp(〈m, r,pc〉) = jmp if P [pc] = jmp e

λbeqz(〈m, r,pc〉) = br if P [pc] = beqz e, `

Leakage model 2 (Control flow is inevitably exposed)

λcall(〈m, r,pc〉) = call ` if P [pc] = call `

λjmp(〈m, r,pc〉) = jmp ` if P [pc] = jmp e and ` = JeKr
λbeqz(〈m, r,pc〉) = br `′ if P [pc] = beqz e, ` and

`′ =

{
` JeKr = 0

pc+ 1 JeKr 6= 0

Figure 2: Leakage functions for AMiL where add , mul ,
load , store , call , jmp , br are (fixed) observations. Notice
that in leakage model 1 the locations ` are absent (i.e., only
the fixed cost leaks). The expression evaluation function JeKr
evaluates expression e using register file r.

and memory locations to security levels, identifying them
as secret or public. Two configurations σ and σ′ are low-
equivalent with respect to a policy P , written σ=Pσ′, if they
agree on the public part of their register file and memory as
defined by P . A program is secure if two executions starting
from low-equivalent initial configurations produce the same
observation trace.

Definition 1 (Secure program). A program P is secure w.r.t.
a security policy P if for all initial configurations σ0 and
σ′0, and for all n such that σ0 =P σ′0, σ0

o−→nσn, and
σ′0

o′−→nσ′n, then we have o = o′.

5. Architectural Mimicry

We now present Architectural Mimicry (AMi). Recall
that on the hardware side, we propose a new primitive, called
mimic execution. Mimic execution imitates instructions in
terms of their timing and microarchitectural behavior, but
suppresses (most of) their architectural effects. It is left to
the hardware designer how to mimic an instruction since
this heavily depends on the implementation.

To control mimic execution in software, AMi extends
the base ISA from Section 4 with qualifiers q ∈ Q =
{s,m,a,g,p} that can be associated with base instructions,
denoted q.i. At the assembly level, each instruction has
an instruction-dependent default qualifier (discussed in de-
tail later), which can be omitted. For instance, the add

instruction has the standard qualifier (s) by default. In
machine code, the qualifier is always present. Additionally,
we propose a number of programming models that rely on
AMi to balance and linearize control-flow in a correct and
secure way.

First, we informally introduce the basics of AMi and
the programming models by example in Section 5.1. Then
we discuss more advanced features, such as how to handle
intricate control flow, in Section 5.2. We end this section
with a formalization of AMi in Section 5.3 and 5.4.

5.1. Basic AMi Features

Balancing branches. We assume leakage model 1, where
we can securely balance secret-dependent control flow. Con-
sider the insecure program in Listing 1b. This produces an
observation trace that depends on the secret condition. When
the branch is not taken (lines 2-4), the observation trace is
[br · add · add · jmp]. When the branch is taken (line 5), the
observation trace is [br ·add]. As a consequence, an attacker
is able to infer the outcome of the secret-dependent branch.

A solution to harden this program is to insert instructions
to balance the two sides of the branch so that they produce
the same observation trace. AMi provides hardware support
to do so using mimic instructions, which are prefixed with
the mimic qualifier m. A mimic instruction m.inst produces
the same observations as the instruction inst but does not
update the architectural state. Therefore, mimic instructions
can be used to securely balance branches (with hardware
guarantees), instead of relying on ad-hoc techniques using
existing instructions.

The program in Listing 1c illustrates how AMi can be
used to build a (secure) balanced version of the code in
Listing 1b. First, notice that instructions on lines 2 and 5
are already balanced as they produce the same observation.
Second, the add instruction on line 3 is balanced with a
mimic add on line 6: it produces the observation add but
does not change the value of v. Finally, the jmp instruction
on line 4 is also balanced with a jump on line 7. In this ver-
sion, both sides of the branch produce the same observation
trace [br · add · add · jmp], while the functional behavior of
the program is equivalent to the one in Listing 1b.

Linearizing branches. We now assume leakage model 2.
Under this leakage model, the balanced program in List-
ing 1c is insecure because the conditional jump on line 1
leaks its target, resulting in an observation trace starting
with [br 2] if c 6= 0, and [br 5] otherwise. This way, an
attacker can gain information on the secret c. Linearizing
the secret-dependent region by eliminating the branch on
line 1 makes the program secure. AMi provides hardware
support for linearization through activating branches. An
activating branch is a branch instruction prefixed with the
activating qualifier a. An activating branch always falls
through to the next instruction, but if the branch condition
evaluates to true (i.e., the branch should be taken), the
processor enables mimicry mode for the duration of the
branch (i.e., until the branch target is reached). When in



if (c != 0)
{
v = 2 * a + 7

}
else
{
v = a

}

.

(a) C code

1: beqz c, 5
; c != 0

2: add v, a, a
3: add v, v, 7
4: jmp 6

; c == 0
5: add v, a, 0
6: ...

.

(b) Vulnerable code

1: beqz c, 5
; c != 0

2: add v, a, a
3: add v, v, 7
4: jmp 8

; c == 0
5: add v, a, 0
6: m.add v, v, 7
7: jmp 8
8: ...

(c) Balanced form

1: a.beqz c, 4
; Start activating region c == 0

2: add v, a, a
3: add v, v, 7

; End activating region c == 0
4: a.bnez c, 6

; Start activating region c != 0
5: add v, a, 0

; End activating region c != 0
6: ...

(d) Linearized form

Listing 1: Balancing and linearizing a secret-dependent region with AMi instructions.

mimicry mode, the CPU mimics standard instructions. It
is important to understand that the activating branch is not
a branch per se but an instruction to efficiently linearize
secret-dependent control flow, which, just like any other
linearization technique, turns (insecure) control dependen-
cies into (secure) data dependencies. Importantly, the acti-
vating branch instruction does not introduce extra sources
of overhead compared to other linearization techniques. In
particular, because activating branches deterministically fall
through to the next instruction, there is no uncertainty about
what instructions to fetch after an activating branch and the
CPU can fetch and issue subsequent instructions without
any delay (the code is effectively linear). Hence, it is not
necessary for security reasons to delay the fetch (and stall
the pipeline) until the outcome of the activating branch
condition is known.

The program in Listing 1d illustrates how to eliminate a
branch leveraging AMi. If c = 0, mimicry mode is enabled
on line 1, the instructions on line 2 and 3 are mimicked,
and line 5 is executed normally. If c 6= 0, lines 2 and 3
are executed normally, but the activating branch on line 4
activates mimicry mode and line 5 is mimicked. In both
cases, the observation trace produced by the execution of
the program is [br 2 · add · add · br 5 · add], thus no secret
information is leaked.

5.2. Advanced AMi Features

Mimic functions. It is sometimes necessary to mimic the
execution of an entire function. For instance, consider the
program in Listing 2a where function foo is called only
when c 6= 0. Balancing this branch requires mimicking the
execution of foo. While this could be done by duplicating
the function and prefixing all its instructions with m, AMi
actually provides a more efficient way to do this using
activating calls (a.call), as shown in Listing 2b. The
activating call on line 4 activates mimicry mode for the
duration of the call. If the callee satisfies conditions that
we formalize in Section 5.4, the a.call produces the
same observation trace as the regular call on line 2, without
affecting the architectural state. Therefore, the two sides of
the branch in Listing 2b are balanced.

Persistent instructions. The same code can sometimes
be executed in standard mode, and sometimes in mimicry
mode. For instance, the same function can be invoked

1: beqz c, 3
2: call foo
3: ...

.

(a) Vulnerable code

1: beqz c, 4
2: call foo
3: jmp 6
4: a.call foo
5: jmp 6
6: ...

(b) Balanced form

Listing 2: Example of an activating call.

through a standard call or through an activating call. Simi-
larly, the outcome of an activating branch determines if the
instructions in the branch shadow are executed or mimicked.
Mimicry mode is designed with security and correctness
in mind. To be secure, the observation trace of such code
must be independent of the processor mode. To be correct,
such code cannot have an effect on the program result in
mimicry mode (i.e., it must effectively behave as a no-op).
Hence, (most) architectural effects must be suppressed in
mimicry mode. However, some architectural effects may
not be suppressed. For example, architectural updates that
influence the control flow within an activating region may
not be ignored. Otherwise the control flow would depend on
the processor mode, which would be insecure. Likewise,
instructions that compute the address of a later memory
access may not be suppressed. More generally, if a value
can leak to the microarchitectural state, any architectural
update that this value depends on should always be exe-
cuted, regardless of the processor mode. AMi deals with this
architectural/microarchitectural entanglement in two ways.

void foo()
{
for (int i=0; i<10; i++)
{
...

}
}

(a) Function with loop

1: p.add i, 10, 0 ; Initialize i
2: p.beqz i, 6 ; Compare i
3: ... ; Loop body
4: p.add i, i, 1 ; Update i
5: p.jmp 2
6: p.jmp ra
.

(b) Persistent loop using AMi

Listing 3: Example of an activating function with a loop.

First, an instruction can be made persistent by associat-
ing it with the p qualifier. Persistent instructions are always
executed, even in mimicry mode. For instance, consider an
activating call to function foo in Listing 3a. This function
contains a loop. To be secure, the loop trip count must
be independent of the processor mode. To be correct (and
secure), the loop induction variable must be updated to avoid
mimic execution getting stuck in an infinite loop. Listing 3b



illustrates how to lower function foo with persistent instruc-
tions. The instructions that operate on the loop induction
variable i are associated with the p qualifier, as is the
instruction that jumps to the return address on line 6. (In fact,
jmp and beqz have p as default qualifier, so it would be
fine to omit it.) As another example, consider the activating
branch in Listing 4a. To be secure, the load address at
line 3 must be independent of the processor mode. Because
a is assigned a value by a standard instruction at line 2,
the program leaks 0x200 in standard mode and 0x100 in
mimicry mode (loads always fetch from memory, regardless
of the mode), making the code insecure. Listing 4b illus-
trates how to make use of persistent instructions to make
this region secure. Maintaining the stack pointer is another
use case for persistent instructions. Indeed, the stack pointer
is typically used to access memory and therefore it will be
attacker observable. Consequently, the value of the stack
pointer should be independent of the processor mode.

; a = 0x100
1: a.beqz c, 4
2: add a, 0x200, 0
3: load b, a ; leak 0x100 or 0x200
4: ; a is not live here

(a) Insecure activating branch.

; a = 0x100
1: a.beqz c, 4
2: p.add a, 0x200, 0
3: load b, a ; leak 0x200
4: ; a is not live here

(b) Secure activating branch.

Listing 4: Example of a load where x and y are public.

Second, an ISA designer can decide not to suppress
some of the architectural effects in mimicry mode. For
instance, it is reasonable for a call instruction to always store
the return address, so that the control flow always returns to
the correct program location after a function invocation. As
for AMiL, to ensure that control-flow instructions always
have the desired architectural effects, a jmp can only be
associated with the p qualifier and a beqz and call can
only be associated with the a and p qualifiers.

Nested and recursive activators. Recall that activating
instructions (e.g., a.call or a.beqz) (un)conditionally
activate mimicry mode. Such activations can be nested or
recursive. To correctly maintain the mimicry context, AMi
introduces three registers. First, the processor keeps track of
the depth of recursive activations in the activation counter
register (AC). The processor is in standard mode if AC = 0,
otherwise the processor is in mimicry mode. Second, the
mimicry entry address register (En) holds the address of
the entry instruction (i.e., the instruction responsible for the
current activation). Third, the mimicry exit address regis-
ter (Ex) holds the address where mimicry mode must be
disabled. A pair [En,Ex] corresponds to what we call an
activating region. For an activating call a.call `, the
corresponding activating region is [pc,pc + 1] and for a
branch a.beqz e, ` it is [pc, `]. Recursive activations are
illustrated in Listing 5a, with an activating branch inside
a recursive function. When the processor first executes the
activating instruction on line 3, it sets AC to 1, En to 3
and Ex to 6. For each recursive call, AC is incremented on
line 3, and decremented at the start of line 6.

In case of nested activations, as illustrated in Listing 5b,
the inner activating branch does not update AC, En, or Ex,
if the outer one activates mimicry mode.

In Section 5.4 we state conditions how to write secure
activating regions and prove that, if these conditions hold,
1) mimicry mode is not deactivated prematurely and 2) AC
is restored at the end of the activating region.

1: p.beqz n, 7
2: p.add n, n, -1
3: a.beqz c, 6
4: ...
5: p.call foo
6: ...
7: jmp ra

(a) Recursive activation

1: a.beqz c1, 6
2: ...
3: a.beqz c2, 5
4: ...
5: ...
6: ...
.

(b) Nested activating branches

Listing 5: Example of recursive and nested activations.

Non-mimicable instructions. Some instructions cannot be
mimicked. For instance, unless the memory subsystem is
mimicry-aware (something we discuss in Section 7) it is
not possible to mimic store instructions. Table 1 classifies
AMiL instructions into mimicable, activating, and always-
persistent instructions. The default qualifier for each in-
struction class is listed first in the list of qualifiers (col-
umn 3). Always-persistent instructions can be a problem
when present in activating regions. To illustrate this, the
program in Listing 6a contains an always-persistent store
in the branch shadow of the activating branch. In mimicry
mode, the memory will be modified, violating program
correctness since mimic execution should not affect the
program result.

TABLE 1: AMiL classes of qualified instructions.

Class Instructions Qualifiers

Mimicable add, mul, load s, g, m, p
Activating call, beqz p, a
Always persistent jmp, store p

Disallowing non-mimicable instructions in activating re-
gions is an acceptable approach for some non-mimicable
instructions (e.g., some system calls), but it is too restrictive
for other instructions, such as stores. AMi introduces ghost
instructions (prefixed with the ghost qualifier g) to deal with
this situation. Ghost instructions are only executed when
the processor is in mimicry mode. They are mimicked in
standard mode. In this sense, they are the dual of standard
instructions. For instance, a ghost load can be used to nullify
an always-persistent store, as illustrated in Listing 6b. When
the processor is in mimicry mode, the value at address v
is loaded in the register x on line 3, before being stored
again on line 4, which is functionally equivalent to a no-
op, Conversely, when the processor is in standard mode, x
is set to 42 on line 2, the load on line 3 is mimicked
(but necessary actions such as touching cache lines and
producing events on the memory bus still happen), and the
store on line 4 writes 42 at address v.



1: a.beqz c, 4
2: add x, 42, 0
3: p.store x, v
4: ...
.

(a) Store in mimicry mode

1: a.beqz c, 5
2: add x, 42, 0
3: g.load x, v
4: p.store x, v
5: ...

(b) Ghost load nullifying the store

Listing 6: Example using a ghost instruction.

Exceptions. We distinguish between terminating and non-
terminating exceptions. Terminating exceptions indicate a
program error, such as a memory protection violation, and
cause program termination. They should not occur in correct
programs. Non-terminating exceptions can be handled and
normally resumed, such as a page fault. To be secure, non-
terminating exceptions must be accepted and processed in-
dependent of the processor mode. To be correct and secure,
terminating exceptions must be ignored in mimicry mode.

The exception handler must use persistent instructions
and save AC, En, and Ex before clearing AC to disable
mimicry mode. Once the AC is cleared, the exception
handler can use standard instructions, and even activate
mimicry mode. Finally, the exception handler must restore
the values of AC, En, and Ex before resuming execution of
the interrupted task.

5.3. Formal Semantics

Now that all AMi features have been introduced in-
formally, we can define the semantics of the AMiL
ISA formally. An AMi configuration σ is a tuple
〈m, r, pc,AC,En,Ex〉 where 〈m, r,pc〉 is an architectural
configuration (cf. Section 4), AC is the activation counter,
En is the mimicry entry address, and Ex is the mimicry exit
address. In the following, we refer to AMi configurations
simply as configurations. The semantics of AMi, given by
the relation σ o

==⇒σ′, defines how qualified instructions are
evaluated in a configuration σ. More precisely, it defines
when instructions are executed or mimicked, and how the
activation counter is updated.

Non-activating instructions. The semantics of non-
activating instructions (i.e., qualified instructions with q ∈
{s,m,p,g}) is given in Fig. 3 (the decrAC function can
be ignored for now). The EXECUTE rule executes the cor-
responding base instruction (〈m, r,pc〉 o−−→

inst
〈m′, r′,pc′〉),

produces an observation o, and updates the AMi configura-
tion with the new architectural configuration 〈m′, r′,pc′〉.
The MIMIC rule mimics the execution of the base instruction:
it executes the instruction but does not commit architectural
changes to the AMi configuration (〈m, r,pc〉 o−−→

inst
·). How-

ever, it produces the corresponding observation o, and incre-
ments the program counter. Which rule is applied depends
on the value of the qualifier q and the activation counter AC.
The EXECUTE rule applies when the instruction is persistent
(p), the instruction is standard (s) and the processor is
in standard mode, or the instruction is ghost (g) and the
processor is in mimicry mode. Conversely, the MIMIC rule

applies when the instruction is mimic (m), the instruction
is standard (s) and the processor is in mimicry mode, or
the instruction is ghost (g) and the processor is in standard
mode. Keep in mind when reading the semantics that not
all qualifiers are allowed for all instructions (Table 1). For
instance, jmp instructions are always persistent and hence
always handled by the EXECUTE rule.

EXECUTE
P [pc] = q.inst AC′ = decrAC(AC,Ex,pc)
execute(q,AC′) 〈m, r,pc〉 o−−→

inst
〈m′, r′,pc′〉

〈m, r,pc,AC,En,Ex〉 o
==⇒〈m′, r′,pc′,AC′,En,Ex〉

MIMIC
P [pc] = q.inst AC′ = decrAC(AC,Ex,pc)

mimic(q,AC′) 〈m, r,pc〉 o−−→
inst

· pc′ , pc+ 1

〈m, r,pc,AC,En,Ex〉 o
==⇒〈m, r,pc′,AC′,En,Ex〉

where

execute(q,AC) , q = p ∨ (q = s ∧ AC = 0)

∨ (q = g ∧ AC > 0)

mimic(q,AC) , q = m ∨ (q = s ∧ AC > 0)

∨ (q = g ∧ AC = 0)

Figure 3: Evaluation rules for non-activating instructions.

Activating instructions. The semantics of activating in-
structions (i.e., in our small language a.call and
a.beqz) is given in Fig. 4. The rules use the func-
tions incrAC and decrAC respectively to activate and de-
activate mimicry mode. The function decrAC(AC,Ex,pc),
used during the evaluation of every instruction, decre-
ments the activation counter AC whenever the pro-
gram counter reaches the exit address Ex. The function
incrAC(AC,En,Ex,pc,Ex′, c) is only used during the eval-
uation of activating instructions. This function takes as
parameters the previous activation configuration AC,En,Ex,
the address of the current activating instruction pc, the
corresponding exit address Ex′, and a condition c to con-
ditionally activate mimicry mode. If mimicry mode is not
enabled and c is true, the function enables mimicry mode
and returns the new activation counter, together with the
corresponding entry and exit addresses (i.e., pc and Ex′).
If mimicry mode is already enabled and in case of recursive
activation (pc = En), the activation counter is incremented.
In other cases, incrAC simply returns the old configuration.

The rule ACTIVATING-CALL unconditionally activates
mimicry mode for the duration of the call, updates the return
address, and jumps to the call target. The rule ACTIVATING-
BRANCH activates mimicry mode for the duration of the
branch, only if the branch condition is true; and increments
the program counter, regardless of the value of the condition.
Consequently, if the branch condition is true, the following



code is mimicked, but if the condition is false, the following
code is actually executed.

ACTIVATING-CALL
P [pc] = a.call ` AC′ = decrAC(AC,Ex,pc)
AC′′,En′,Ex = incrAC(AC′,En,Ex,pc,pc+ 1, true)

r′ = r[ra 7→ pc+ 1] pc′ = `

〈m, r,pc,AC,En,Ex〉 ε
==⇒〈m, r′,pc′,AC′′,En′,Ex′〉

ACTIVATING-BRANCH
P [pc] = a.beqz e, ` AC′ = decrAC(AC,Ex,pc)

c = (JeKr = 0) pc′ = pc+ 1
AC′′,En′,Ex = incrAC(AC′,En,Ex,pc, `, c)

〈m, r,pc,AC,En,Ex〉 ε
==⇒〈m, r,pc′,AC′′,En′,Ex′〉

where

decrAC(AC,Ex,pc) ,

{
AC− 1 if AC > 0 ∧ pc = Ex

AC otherwise

incrAC(AC,En,Ex,pc,Ex′, c) ,
AC+ 1,pc,Ex′ if AC = 0 ∧ c = true

AC+ 1,En,Ex if AC > 0 ∧ pc = En

AC,En,Ex otherwise

Figure 4: Evaluation rules for activating instructions.

5.4. Formalizing the Programming Models

AMi is a hardware/software co-design, intended to be
used for linearization and balancing in the way we in-
formally described in Section 5.1. We now formalize the
conditions under which the use of AMi is sound. There are
three important properties: well-behavedness ensures that
nested and recursive activation work as intended, security
defines conditions under which the programming models for
linearization and balancing lead to secure programs, and cor-
rectness defines conditions under which code has no effect
on the program result when running in mimicry mode. We
let [`, `′]σ ⇓o σ′ denote the big-step evaluation of a program
region [`, `′]. Intuitively, it executes the program from ` to
`′ (included), and includes all recursive function calls. The
definition is given in Appendix A. In an initial configuration,
denoted σ0, pc evaluates to the entry point of the program,
and AC = 0. We say that a configuration is valid if it can
be reached via ==⇒ from an initial configuration.

Well-behaved activating regions. An activating region is a
pair [`, `′] where ` is the address of an activating instruction
and `′ is the corresponding exit address. In the remainder
of this section, we give sufficient conditions to build well-
behaved activating regions. More specifically, an activating
region is well-behaved if mimicry mode is not deactivated
prematurely and the activation counter is eventually restored
to its initial value when reaching the end of the activating

region. We assume that the program P can be partitioned
into a set of functions f1 . . . fn : Loc ⇀ Inst defined on
disjoint subsets of Loc. We also assume that the control flow
cannot be redirected arbitrarily between these functions:

Hypothesis 1 (Control flow integrity). A function cannot
directly jump to another function (a function can only enter
another function via a call to its entry point). Additionally,
a function call at address ` always returns to its return
address `+ 1 or does not terminate.

Additionally, we define the control-flow graph (CFG)
of a function, the concept of (post-)dominance relations be-
tween labels, and ultimately, single-entry single-exit (SESE)
regions [39], on which we rely to implement well-behaved
activating regions:

Definition 2 (Intra-procedural CFG). The CFG of a func-
tion f , denoted cfg(f), is a tuple (`en, `ex, L,E) where
`en ∈ L is the entry point of the function, `ex ∈ L is the exit
point of the function1, vertexes in L are program locations
defined by the function, and edges in E link locations
together such that there is an edge from ` to `′ if and only
if one of the three conditions hold: 1) ` can immediately
follow `′ in program execution, 2) there is a call at address
` with return address set to `′, or 3) there is an activating
branch at address ` with target `′.

Definition 3 ((Post-)domination). In a CFG (`en, `ex, L,E),
a label ` dominates a label `′ if every path from the
entry node `en to `′ includes `. Conversely, a node `
post-dominates a node `′ if every path from `′ to the exit
node `ex includes `. By convention, a node dominates and
postdominates itself.

Definition 4 (SESE region). In a CFG, a SESE region
is a pair of labels [`, `′] where: 1) ` dominates `′, 2) `′
post-dominates `, 3) every cycle containing ` also contains
`′ and vice versa.

Intuitively, the two first conditions guarantee that an
SESE region [`, `′] cannot be entered without executing the
instruction at label ` and cannot be exited without executing
the instruction at label `′. The last condition guarantees that
when the SESE region is executed it only goes through `
and `′ once.

Hypothesis 2. All activating regions of the program are
SESE regions.

Notice that this hypothesis usually holds for function calls
and for branches that are compiled from high-level if state-
ments, which are typically the target of mimic execution.

Finally, the following proposition expresses that under
Hypothesis 1 and 2, activating regions are well-behaved:

Proposition 1 (Well-behaved activating regions). For any
activating region [`, `′] and valid configuration σ such that
[`, `′]σ ⇓o σ′, if AC is set after executing the instruction at
location `:

1. Any function can trivially be converted to a function with a single
exit point.



1) it remains set during the execution of [`, `′] (including
recursive function calls but excluding `′), and

2) if AC is incremented at location `, it is restored to its
initial value right before the evaluation of the instruc-
tion at location `′.

A sketch of proof is given in Appendix C.

Secure activating regions. We now formalize the conditions
under which our programming models for linearization are
secure. A security criterion for balancing is given in Ap-
pendix B. We focus on the linearization pattern in Listing 7.
Other patterns are similar (but differ in the details). We
assume [`0, `n] to be a well-behaved and terminating SESE
region, and we assume a fixed security policy P .

`0 : beqz c `n
`1 : B
`n :

(a) Before linearization

`0 : a.beqz c `n
`1 : B
`n :

(b) After linearization

Listing 7: Linearization programming model

B could be a complex region, with e.g., loops and
function calls. What are the conditions on B for the pattern
to work securely? Informally, we want B to (1) be secure
itself (if B already leaks secrets, then this pattern will not
eliminate that leakage), and (2) have the same attacker-
observable behavior in mimicry mode and standard mode
(then the attacker cannot determine what the branch condi-
tion was). This is formalized in the definition below.

Definition 5. A terminating SESE region B = [`1, `n]
is secure for the linearization pattern in Listing 7 if the
following holds for any low-equivalent (m, r)'P(m′, r′),
and configurations σ0 = 〈m, r, `1, 0,−,−〉, σ′0 =
〈m′, r′, `1, 0,−,−〉, σ′′0 = 〈m′, r′, `1, 1, `0, `n〉:

1) if [`1, `n]σ0 ⇓o σ1 and [`1, `n]σ
′
0 ⇓o′ σ′1 then o = o′

and σ1'Pσ′1
2) if [`1, `n]σ0 ⇓o σ1 and [`1, `n]σ

′′
0 ⇓o′′ σ′′1 then o = o′′

and σ1'Pσ′′1
Note that in the definition above, σ0 and σ′0 are two low-

equivalent configurations that will execute B in standard
mode. So the first condition says that B is secure itself: it
does not leak secrets into observations or into the public
part of the end configuration. σ′′0 is like σ′0 except that it
will execute in mimicry mode. So the second condition
formalizes that B has the same observable behavior in
standard mode and in mimicry mode. For this paper, we
assume that it is up to the developer to make sure that B
complies with this property, but building tool support for
this is an obvious area for future work (Section 7). The first
condition is a classic non-interference property. The second
condition should guide the developer on when to insert
persistent and/or ghost instructions. For example, forgetting
persistent qualifiers on loops with a public iteration count or
when computing load addresses (cf. Listing 3 and Listing 4)
would lead to a violation of the second condition. However,
note that mimic execution is designed to make the second

condition easy to achieve. For instance, a linear region of
mimicable instructions satisfies the condition by design.

Correct activating regions. We now formalize the condi-
tions under which our programming models for linearization
are correct. A correctness criterion for balancing is given in
Appendix B.

To define correctness, we assume a partition of the
architectural state into live and dead state. Intuitively, the
live part of the state can influence the result of the program,
whereas the dead part of the state cannot. For instance, in a
program compiled from a C-like language which does not
use a heap, the live state can be the global variables and
anything between the base of the stack and the stack pointer.
For programs that additionally use the heap, the live state
also includes reachable objects on the heap.

Given such a liveness partition, we define a notion of
live-equivalence of states where two configurations are live-
equivalent, written σ=Lσ′ if they agree on the value of the
live part of their register file and memory as defined by L.

Informally, correctness says that B should have no effect
on the live state if executed in mimicry mode. This is
formalized in the definition below.

Definition 6. A terminating SESE region B = [`1, `n]
is correct for the linearization pattern in Listing 7 if the
following holds for any (m, r):

[`1, `n] 〈m, r, `1, 1, `0, `n〉 ⇓o 〈m′, r′,−,−,−,−〉 =⇒
(m, r)=L(m

′, r′)

Correctness, like security, can guide the developer on
when to insert persistent/ghost instructions. For instance,
without the ghost load, Listing 6 would not be correct.

Again, the hardware is designed to help achieve correct-
ness: linear regions of mimicable instructions are correct by
the design of mimic execution.

Discussion. For now, the formalizations of our programming
models are just precise guidance for the developer. But we
believe they can be the basis for a formal theory to compo-
sitionally compile source code to AMiL. We conjecture that
our programming models make it possible to build bigger
correct and secure regions from smaller ones. For instance,
if B is correct and secure, then (under some conditions) the
code (including the activating branch) in Listing 7b will also
be correct and secure. Or, if B1 and B2 are both correct
and secure, then (under some conditions) their sequential
composition is also correct and secure.

6. Implementation and Evaluation

To evaluate the costs and benefits of our proposal, we
instantiate AMi for RISC-V and develop a hardware proto-
type. We perform an empirical security and performance
evaluation on a set of benchmark programs taken from
related work.



6.1. AMi for RISC-V

In this subsection, we propose a RISC-V extension for
AMi. We limit ourselves to the RV32IM instruction set and
to RISC-V machine-mode but it should be straightforward
to extend this to other instructions and to other privilege
levels.

AMi extension. Table 2 contains an overview of the valid
associations for the AMi qualifiers. Mimic stores are not
supported. Conditional branches and unconditional jumps
are the only activating instructions. Memory ordering in-
structions, environment calls and breakpoints are always
executed. To encode the AMi instruction qualifiers, several
alternative encoding schemes are possible. In our proposal,
we repurpose the two prefix bits in the fixed-width 32-bit
encoding, giving us the ability to associate each instruction
with up to four instruction qualifiers. We propose three
CSRs to store the activation counter, the address of the entry
instruction, and the exit address of the current activation.

TABLE 2: RV32IM instruction qualifiers (default first).

Instruction type Supported instruction qualifiers

integer computational / load standard, persistent, mimic, ghost
store persistent
control transfer persistent, activating
ecall / ordering / breakpoints persistent

Toolchain. Adding full compiler support for AMi is consid-
ered future work. However, to make it possible to manually
harden applications at assembly level, we do implement an
assembler and a disassembler. To this end, we add the file
RISCVInstrInfoXAMi.td to the RISC-V backend of
the LLVM compiler framework [40]. This file contains the
description of the AMi instructions that we present in this
paper. Based on this description, the TableGen program [41]
generates C++ code to (dis)assemble the new instructions.

6.2. Hardware Prototype

Our implementation is based on Proteus [42], a research
CPU designed for extensibility. Proteus comes with two
separate pipeline implementations; a classic 5-stage in-order,
and an out-of-order pipeline with parallel execution units.
Both pipelines can be configured with a branch predictor and
a data cache. For our evaluation, we extend both pipelines
to support AMi. These baseline implementations leak infor-
mation via timing in multiple ways. For instance, it takes 32
cycles to perform a multiplication (other instructions take a
single cycle), data hazards slow down certain instructions
while others can continue without stalling due to forward
logic. The data cache is also a source of timing leaks. Since
we configure Proteus with a branch predictor, the execution
time of a conditional branch instruction varies (making the
balanced hardened form insecure). All other instructions
behave in a data-oblivious fashion i.e., their execution time
and resource usage do not depend on the value of their

operands. The memory subsystem is not mimicry-aware
(i.e., stores cannot be mimicked) so a store must be preceded
by a (mimic) load in the balanced form and by a ghost load
in the linearized form.

In-order pipeline. We implement mimic execution on the
in-order pipeline by having a mimicked instruction visit the
pipeline stages in the same way as its standard counterpart
would do, except that the register file is not updated in
the writeback stage. To prevent leaking information via a
pipeline channel, we implement mode-independent stalling
(i.e., pipeline stalls are independent of the processor mode)
but values are not forwarded between an instruction that is
mimicked and one that is normally executed. On the in-
order pipeline, we want to support both the balanced and
the linearized hardened forms. However, we also want to
configure Proteus with a simple (stateless) always-predict-
not-taken branch predictor in order not to negatively impact
the performance of code that is not security critical. To
reconcile these two conflicting requirements, we introduce
a new instruction, the data-oblivious conditional branch
(i.e., ct.beq). A data-oblivious branch disables the branch
predictor and stalls until the branch outcome is known for
the branch latency to become independent of the branch
condition. It can thus be securely used to balance secret-
dependent branches.

Out-of-order pipeline. We implement mimic execution on
the out-of-order pipeline in a similar fashion as on the in-
order pipeline, except that more microarchitectural struc-
tures, such as the reorder buffer (ROB), have to be visited
by the mimicked instructions. Analogously to the in-order
pipeline, the register file is not updated in the retirement
stage for instructions that are being mimicked. For the out-
of-order pipeline, there are three additional tasks to perform.
First, to be able to track mimic dependencies (instruc-
tions are mimic-dependent on activating instructions whose
shadow they reside in), we introduce a new microarchitec-
tural structure, a double-ended queue, for the bookkeeping
of in-flight activating instructions. Second, to be secure and
correct, we need to broadcast the outcome of activating
branches on the common data bus (CDB), which connects
the parallel execution units. Finally, we need to track write-
after-write (WAW) dependencies between instructions that
are mimic-dependent on different activating branches. Mak-
ing sure that this information is always correctly calculated
and propagated required minor changes to the ROB, the
execution units, and some of the internal data buses.

Hardware cost. We measure the hardware overhead of
our implementation by synthesizing to a Xilinx XC7A35TI-
CSG324 FPGA using Xilinx Vivado 2022.2. Table 3 lists
the hardware measurements for both the in-order and the
out-of-order implementation, showing that the hardware
overhead is reasonable. Importantly, the critical path did not
increase due to our modifications, which shows the practi-
cality of our proposal on low-end and high-end processors.



TABLE 3: Hardware overhead factors.

Pipeline LUTs FFs CP (ns) LUTs ∆ FFs ∆ CP ∆

In-order 2621 1411 17.0 + 512 (19.5%) + 313 (22.2%) +0.1 (0.6%)
Out-of-order 16185 11943 29.2 +4264 (26.3%) +1102 ( 9.2%) -0.3 (1.0%)

6.3. Experimental Evaluation

Methodology. To establish a vulnerable baseline, we start
from third-party benchmark programs (written in C) that
all contain annotated secret-dependent control flow. Each
benchmark is placed in a dedicated function which is in-
voked several times with different but carefully chosen input
parameters to execute all the secret-dependent execution
paths. We compile (-O3) these benchmarks to RISC-V
assembly code and then manually balance and linearize the
secret-dependent control flow at assembly level with and
without leveraging the new instructions for mimic execution
(i.e., we create four hardened versions for each benchmark).
We balance the code using dummy instructions [5] and we
linearize the code based on a state-of-practice technique
that was first proposed by Molnar et al. [9]. We then
compile and link the different versions of the programs.
We further perform and automate the following steps. First,
to guarantee that the manually hardened programs preserve
program semantics, we perform a correctness evaluation.
Second, we perform a security evaluation to confirm that
1) all benchmark programs leak secret information in their
control flow and that 2) the hardened versions effectively
close these leaks. Finally, we compare the performance of
the hardened forms with the vulnerable baseline. To obtain
cycle-accurate measurements, we execute the programs in
a simulator that produces a waveform file which represents
the complete state of the CPU during simulation. Since this
file contains the values of all the signals exactly as on real
hardware, our automated evaluations can rely on it for the
data they need about the executions.

Benchmark suite. To the best of our knowledge, there
is no established benchmark suite of vulnerable (i.e., non
constant-time) programs to evaluate our defense. In our
evaluation, we use the benchmark suite from [5] as it is
specifically created for evaluating an algorithm to balance
secret-dependent control flow. It consists of 1) synthetic pro-
grams that push the limits of code-transformation techniques
(it features a wide range of control-flow patterns such as
nested conditionals and loops), and of 2) realistic programs
that have been used before in the evaluation of other related
work [2], [43], [44]. Having no compiler support, hardening
vulnerable programs is a manual effort. For this reason we
make a (random) selection of the benchmark programs from
[5] for our evaluation.

Experimental setup. We conduct our experiments on an off-
the-shelf laptop running Ubuntu 22.04. We compile and as-
semble the benchmarks with LLVM 15.0.0 with our changes
to the assembler incorporated. We link the programs with
version 11.1.0 of the GCC toolchain. The Verilog code of

TABLE 4: Binary size overhead factors.

Benchmark Baseline Balanced Linearized
Size (bytes) No-AMi AMi Molnar AMi

bsl 336 1.04x 1.04x 1.08x 1.00x
kruskal 452 1.05x 1.05x 1.16x 1.02x
keypad 460 1.07x 1.07x 1.11x 1.02x
modexp2 324 1.02x 1.02x 1.09x 1.00x
mulmod16 276 1.01x 1.01x 1.16x 0.97x
sharevalue 500 1.02x 1.02x 1.15x 1.01x
triangle 132 1.06x 1.06x 1.15x 1.00x
fork 136 1.00x 1.00x 1.12x 0.97x
switch 500 1.41x 1.41x 1.92x 1.02x
diamond 212 1.00x 1.00x 1.11x 0.94x
ifthenloop 200 1.20x 1.10x 1.20x 1.00x

mean 1.08x 1.07x 1.19x 1.00x

Proteus is generated with version 1.6.4 of SpinalHDL. We
use Verilator 4.028 to simulate the hardware.

Security evaluation. We empirically evaluate at gate level
the timing and resource usage behavior of the benchmark
programs with respect to our hardware implementation (in-
stead of relying on a hardware model). To obtain cycle-
accurate measurements, we use a hardware simulator that
makes the complete cycle-level behavior visible (in the
waveform file), which we use to detect attacker-visible
secret-dependent behavior. With our automated approach,
we exercise all possible secret-dependent execution paths on
the hardware simulator and verify that attacker-observable
signals behave identically for identical public, but different
secret inputs. By configuring our approach with the set of
attacker-observable signals, we use it to validate the control-
flow security properties of our AMi implementation under
two attacker models (materialized by our in-order and our
out-of-order pipeline implementations).

Our security evaluation confirms that all the benchmark
programs leak secret information in their control flow and
that the hardened versions effectively close these leaks.

Binary size. Table 4 presents the binary size overhead. We
discuss the balanced form first. According to these results,
it seems that AMi only minimally reduces the overhead of
the balanced form. There are three reasons for this.

First, the leakage behavior of our RISC-V core makes
it possible for each instruction to craft a no-op that leaks
information in exactly the same way. This makes it possible
to balance secret-dependent control flow without having to
blacklist instructions. Therefore, no expensive rewrites in
terms of non-blacklisted instructions are necessary. In other
words, on our core it is possible to compensate the leakage
of every instruction with a suitable no-op. Note that this is
most likely going to be the case with AMi because most
instructions can be turned into mimic instructions.

Second, although balancing control flow without AMi
instructions increases register pressure in general (in contrast
to our approach), for the benchmark programs that we
use in our experiments it does not lead to additional (and
expensive) spill and reload operations. Consider for instance



the program with a secret-dependent branch in Figure 8a.
Assume that the code is compiled for a platform that
provides eight general purpose registers which are all live
during the execution of the code of the example. Figure 8b
contains the balanced form without AMi instructions. Due
to the high register pressure, registers need to be spilled
to the stack first (line 2 and line 7) before using them in
the no-op instructions (line 3 and line 8). Afterwards, they
have to be loaded from the stack again (line 5 and line 10).
Figure 8c contains the balanced form that leverages the
AMi instructions which does not need to spill any registers.
Note that a high register pressure might also prevent other
optimizations such as function inlining.

Third, the benchmark programs typically feature short
branches without function calls. While AMi provides the
a.call instruction to invoke a function and execute
it in mimicry mode, balancing without AMi must invoke
a dummy function. Constructing such a dummy function
considerably increases code size. The ifthenloop benchmark
demonstrates this. It is the only program in the benchmark
suite that contains a function call in one of its secret-
dependent regions,

1: beq x1, x2, 5
2: mul x3, x4, x5
3: jmp 5
4: add x6, x7, x8
5: ...

; x1-x8 are live here

.

(a) Vulnerable

1: beq x1, x2, 12
2: store x6, sp
3: mul x3, x4, x5
4: add x6, x7, x8
5: load x6, sp
6: jmp 12
7: store x3, sp
8: mul x3, x4, x5
9: add x6, x7, x8
10: load x3, sp
11: jmp 12
12: ...

(b) Balanced

1: beq x1, x2, 8
2: mul x3, x4, x5
3: m.add x6, x7, x8
4: jmp 8
5: m.mul x3, x4, x5
6: add x6, x7, x8
7: jmp 8
8: ...

.

(c) Balanced AMi

Listing 8: Balancing branches under high register pressure.

For the linearized form, the positive impact of AMi is
very significant. On average, the state-of-the-art Molnar-
based technique increases the binary size by 19%. With AMi
the average increase is zero. In other words, the overhead
is reduced by 100%. In our implementation, only stores
contribute to a code size increase. Regions without stores
that are linearized with AMi do not increase the size of the
binary at all, and manual optimizations can even lead to
decreases in the binary size.

Execution time. Tables 5 and 6 present the execution time
overhead for the in-order and out-of-order pipelines. For the
same reasons as for the binary size, AMi does not reduce
the execution time overhead for the balanced form. Also in
line with the binary size results, the impact of AMi on the
execution time is very significant for the linearized form.
On average, AMi reduces the overhead in our benchmarks
compared to the state-of-the-art by 58% on the in-order
pipeline and by 60% on the out-of-order pipeline. It is
important to note that linearized code inherently introduces
an overhead that cannot be avoided. Indeed, to make sure
that different executions cannot be distinguished, at the very
least, all instructions of all possible targets of a control-flow

TABLE 5: Execution time overhead factors (in order).

Benchmark Baseline Balanced Linearized
Time (cycles) No-AMi AMi Molnar AMi

bsl 1678 1.51x 1.51x 1.31x 0.95x
kruskal 1280 1.12x 1.12x 1.28x 1.08x
keypad 3672 2.43x 2.43x 1.99x 1.47x
modexp2 12773 1.71x 1.71x 1.79x 1.69x
mulmod16 295 1.37x 1.37x 1.59x 1.41x
sharevalue 1472 1.79x 1.79x 1.94x 1.64x
triangle 80 1.23x 1.23x 1.11x 0.99x
fork 80 1.06x 1.06x 1.11x 0.99x
switch 863 4.73x 4.73x 3.75x 1.54x
diamond 174 1.07x 1.07x 1.09x 0.89x
ifthenloop 186 1.48x 1.48x 1.49x 1.36x

mean 1.59x 1.59x 1.57x 1.24x

TABLE 6: Execution time overhead factors (out of order).

Benchmark Baseline Balanced Linearized
Time (cycles) No-AMi AMi Molnar AMi

bsl 1655 - - 1.27x 0.92x
kruskal 1291 - - 1.26x 1.06x
keypad 3414 - - 2.06x 1.77x
modexp2 12196 - - 1.79x 1.69x
mulmod16 323 - - 1.48x 1.30x
sharevalue 1250 - - 1.83x 1.59x
triangle 97 - - 0.99x 0.89x
fork 94 - - 1.02x 0.89x
switch 992 - - 3.33x 1.41x
diamond 210 - - 0.95x 0.78x
ifthenloop 192 - - 1.45x 1.28x

mean 1.48x 1.19x

transfer must always be executed while the corresponding
vulnerable code only needs to execute a single target. AMi,
however, makes it possible to limit the cost of linearization
to this unavoidable overhead and is thus optimal in this
sense.

Also notice that AMi sometimes performs better than
the vulnerable baseline. The vulnerable baseline can induce
pipeline flushes as a result of mispredicted sensitive control-
flow instructions. In the linearized form, however, activating
branches always fall through to the next instruction, and as
a result are never mispredicted. This avoids the performance
penalty of pipeline flushes, sometimes resulting in signifi-
cant performance gains in our small benchmark programs.
Thus, it is important to compare the execution times of AMi
to that of the linearized form that we created by applying
Molnar’s method, which also experiences no branch penalty.

7. Discussion and Future Work

We have shown in this paper that the idea of mimic
execution and Architectural Mimicry is feasible and useful
for improving the code size and execution time of software
hardened against control-flow leaks. But we believe there is
very rich potential for further exploration of the idea.

First, it would clearly be beneficial to take the concern
of side-channel protection out of the hands of the developer.
Rather than manually writing low-level code and painstak-



ingly taking care that it complies with the programming
models we defined, this should be handled by tools like
compilers, binary rewriters or verifiers. Researchers have al-
ready developed impressive tool support to develop, compile
and verify data-oblivious code [19]. Tools for compliance
with our programming models could be developed along
the same lines. The most interesting area to explore is
compilation towards platforms that support AMi. AMi is a
security-aware ISA-extension specifying indistinguishability
between real execution and mimic execution in current and
future microarchitectures. Following the idea of hardware-
software security contracts [45], the leakage model can
also be considered to be part of the ISA specification,
and hence compilers can generate code that relies on these
contracts for security, following the recent idea of Contract-
Aware Secure Compilation (CASCO) [23]. For instance, an
architecture that complies with our Version 1 leakage model
can then securely rely on balancing for security, potentially
leading to substantial performance benefits over constant-
time code [5]. The long-term goal should be to give the
compiler: (1) source code with security annotations (what
is secret?), and (2) a security contract for the ISA. The
compiler can then generate the best possible secure code
for that ISA, possibly relying on advanced code analysis
and heuristics. We believe that AMi can be an important
enabler for the development of CASCO compilers, and that
the further development of these ideas is a very fertile area
for future work.

Second, it would be interesting to generalize our design.
There are different dimensions to explore. On the one hand,
more hardware components can be made mimicry-aware.
An obvious candidate is the memory subsystem: in mimicry
mode, the memory subsystem should suppress actual storing
of values, but should mimic all buffering/caching side-
effects. This would, for instance, make the store instruction
mimicable too. On the other hand, generalization towards
other kinds of microarchitectural features with correspond-
ing side-channel attacks should be investigated. An interest-
ing direction is to consider transient execution attacks [28].

Finally, we believe the formal model and the formal-
izations of the AMi programming models deserve further
exploration. For instance, we believe it should be feasi-
ble to develop provably correct compositional compilation
schemes from high-level structured control flow to correct
and secure assembly code in an AMi-supporting ISA.

8. Related Work

Control-flow leakage. To the best of our knowledge, hard-
ware mechanisms specifically designed to prevent control-
flow leakage have not been proposed before. Some coun-
termeasures do leverage hardware primitives designed with
performance in mind (e.g., predicated execution [7], [8],
[10], [12] and Intel TSX [46]). Using these primitives to
harden applications provides brittle security guarantees as it
relies on behavior not guaranteed in future hardware.

Software-only countermeasures to prevent leaking
secret-dependent control flow have been the subject of re-

search by a large body of work since Kocher’s seminal work
on timing attacks [15]. Transforming out timing leaks by
balancing conditional branches was first proposed by Agat
in [2], where he describes a transformational security type
system based on cross-copying skip instructions. Köpf and
Mantel [47] propose a unification-based improvement to this
approach. Dewald et al. [3] apply these ideas in practice
with a (non-transformational) security type system to detect
unbalanced branches on the AVR platform. Pouyanrad et
al. [4] implement this approach for the MSP430 architecture.
Winderix et al. [5] present, implement and evaluate an
algorithm to balance secret-dependent control flow during
compilation for lightweight embedded platforms.

Balancing secret-dependent control flow does not offer
strong security guarantees on high-end computing platforms.
Molnar et al. [9] propose an improvement in the form of
the program counter security model. Under this model, the
trace of executed instructions is independent of confidential
information. Additionally, the authors propose a bit-masking
based scheme to linearize secret-dependent control flow.
This scheme is still representative as it is being incorporated
in more recent work, for instance to lower language abstrac-
tions to platforms that do not have conditional execution [7],
[10]. Coppens et al. [8] were the first to present a lin-
earization technique for the x86 architecture that leverages
predicated execution (cmov instructions).

Linearizing branches has been adopted as the de facto
standard technique to solve the control-flow leakage problem
as it is an essential part of the widespread constant-time
programming policy [11], [22], [25], [48], [49]. Recently, it
has been shown that in the context of speculative execution
the classic notion of constant-time is not secure [50], and the
notion of speculative constant-time appeared [51]. Spectre
mitigations are covered in complementary work [28].

ISA support. There is some related work that is situated at
the level of the hardware-software interface to support some
aspects of the classic constant-time programming model.
For instance, many processors nowadays have constant-time
support for the Advanced Encryption Standard (AES) to
improve the speed and security of applications that rely
on AES (e.g., AES-NI [52]). As an another example, CPU
manufacturers such as Arm and Intel have extended their
ISAs to make the execution time of instructions independent
of the values of their operands [53], [54].

Yu et al. [27], propose ISA design principles for Data-
oblivious ISAs (OISAs) to perform side-channel resistant
and high-performance computations. Their work is comple-
mentary to ours as it focuses on leakage through unsafe
instructions (whose execution induces operand-dependent
timing or hardware resource usage). It does not propose new
techniques to deal with the control-flow leakage problem.

Contract-aware secure compilation. To improve source
code portability, with this work we encourage decoupling
the security policy from the source code. This idea is related
to recent work on hardware-software contracts for secu-
rity [45], [55]–[58], where the ISA specifies how hardware



leaks information. This information can then be leveraged
by a contract-aware secure compiler [23] to decide if it is
secure (and profitable) to balance a secret-dependent branch
instead of eliminating it. Dinesh et al. [59] advocate a similar
direction for other data-oblivious aspects by synthesizing
translations for unsafe instructions using only instructions
from a safe set (specified in a security contract in the ISA).

9. Conclusions

We propose and evaluate a new hardware-software co-
design to support the development of efficient and portable
side-channel resistant code. On the hardware side, we intro-
duce mimic execution, and an ISA design (AMi) to work
with it. On the software side, we propose and formalize
programming models that use AMi to perform correct and
secure control-flow balancing and linearization. Our imple-
mentation and experiments show substantial performance
benefits at low hardware cost, and hence we believe it
would be very interesting to explore in future work how
AMi can be leveraged in compilers and binary verification
tools. We believe AMi can be an important enabler for the
idea of contract-aware secure compilation, where a compiler
produces efficient and secure code for a platform for which
it has not only the functional ISA specification, but also a
security specification.
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Appendix A.
Big-step Evaluation of a Region

We define the big-step evaluation of a program region
[l, l′], denoted [l, l′]σ ⇓o σ′, in Fig. 5. Intuitively, it executes
the program from a configuration σ, starting at location l and
until the execution reaches location l′ (included). Notice that
if a function is called, rule CALL ensures that the function
returns before the big-step evaluation is terminated in order
to avoid early termination due to recursive function calls.

INST
l = l′

σ.pc = l P [l] 6= q.call f σ
o

==⇒σ′

[l, l′]σ ⇓o σ′

CALL
l = l′ σ.pc = l P [l] = q.call f

σ
oc==⇒σf [entry(f), exit(f)]σf ⇓of σ

′ o = oc · of
[l, l′]σ ⇓o σ′

STEP
l 6= l′ σ.pc = l [l, l]σ ⇓o′′ σ′′

l′′ = σ′′.pc [l′′, l′]σ ⇓o′ σ′ o = o′′ · o′

[l, l′]σ ⇓o σ′

Figure 5: Big step evaluation of a region [l, l′] where
entry(f) (resp. exit(f)) denotes the entrypoint (resp. exit-
point) of the function f and σ.pc denotes the value of the
program counter in the configuration σ.

Appendix B.
Secure and Correct Balanced Regions

We focus on the balancing pattern in Listing 9. Other
patterns are similar (but differ in the details). We assume
B1 and B2 to be disjoint terminating SESE regions such
that the only successor of their exit node is `n. We assume
a fixed security policy P and liveness partition L.

B.1. Secure Balanced Regions

Analogous to the linearization pattern defined in Sec-
tion 5.4, we need two conditions for the balancing pattern
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`0 : beqz c `3
`1 : B1

`3 : B3

`n :

(a) Before balancing

`′0 : beqz c `′3
`′1 : B′1
`′3 : B′3
`′n :

(b) After balancing

Listing 9: Balancing programming model

to work securely. First, we want B′1 and B′3 to be secure by
themselves, i.e., they should not leak secrets. Second, B′1
and B′3 should have the same attacker-observable behavior
(then the attacker cannot determine whether B′1 or B′3 was
executed). This is formalized in the definition below.

Definition 7. Terminating SESE regions B′1 = [`′1, `
′
2]

and B′3 = [`′3, `
′
4] are secure for the balancing pattern

in Listing 9 if the following holds for any configura-
tions σ0, σ′0 with low-equivalent architectural configurations
(m, r)'P(m′, r′):

1) if [`′1, `
′
2]σ0 ⇓o σ1 and [`′1, `

′
2]σ
′
0 ⇓o′ σ′1 then o = o′

and σ1'Pσ′1
2) if [`′3, `

′
4]σ0 ⇓o σ2 and [`′3, `

′
4]σ
′
0 ⇓o′ σ′2 then o = o′

and σ2'Pσ′2
3) if [`′1, `

′
2]σ0 ⇓o σ1 and [`′3, `

′
4]σ
′
0 ⇓o′ σ′2 then o = o′

and σ1'Pσ′2
In the definition above, the first (resp. second) condition

says that B′1 (resp. B′3) is secure itself: it does not leak
secrets into observations or into the public part of the end
configuration. The third condition formalizes that B′1 and
B′3 have the same observable behavior.

B.2. Correct Balanced Regions

We now formalize the conditions under which our pro-
gramming models for balancing are correct. Informally,
correctness says that B′1 (resp. B′3) should behave like B1

(resp. B3). This is formalized in the definition below.

Definition 8. A terminating SESE region B′1 = [`′1, `
′
2] is a

correct balanced version of B1 = [`1, `2] for the balancing
pattern in Listing 9 if the following holds for any live-
equivalent AMi configurations σ0=Lσ′0:

if [`1, `2]σ0 ⇓ σ1 and [`′1, `
′
2]σ
′
0 ⇓ σ′1 then σ1=Lσ′1

where two AMi configurations σ, σ′ are live-equivalent (i.e.,
σ=Lσ

′) if and only if their architectural configurations are
live-equivalent.

Appendix C.
Proof of Proposition 2

In this section, we provide a sketch of proof that acti-
vating regions are well-behaved in the sense that they are
not deactivated prematurely and the activation counter is
restored to its initial value when reaching the end of the
region:

Proposition 2 (Well-behaved activating regions). For any
activating region [`, `′] and valid configuration σ such that
[`, `′]σ ⇓o σ′, if AC is set after executing the instruction at
location `:

1) it remains set during the execution of [`, `′] (including
recursive function calls but excluding `′), and

2) if AC is incremented at location `, it is restored to its
initial value right before the evaluation of the instruc-
tion at location `′.

We let σ.f denote the field f in the configuration σ and
use the term activation configuration to refer to the triplet
AC,En,Ex in a configuration. Before proving Proposition 2
in Appendix C.2, we show intermediate lemmas about the
structure of activating regions in Appendix C.1.

C.1. Control-flow Graphs and Activating Regions

Lemma 1. Given an activating region [l, l′] in a function
f , there is always an edge between l and l′ in cfg(f).

Proof. For an activating call, l: a.call f the corre-
sponding activating region is [l, l + 1]. From Hypothesis 1,
the function call returns to l + 1, hence from Definition 2
there is an edge between l and l+1. For an activating branch
l: a.beqz c l′ the corresponding activating region is
[l, l′]. It directly follows from Definition 2 that there is an
edge between l and l′.

Definition 9. A label l is contained in a SESE region [l1, l
′
1]

if l1 dominates l and l′1 postdominates l.

Intuitively, the location l is on a path from l1 to l′1. We
say that an SESE region [l1, l

′
1] is contained in another

SESE region [l2, l
′
2] if l1 and l′1 are contained in [l2, l

′
2].

Additionally, [l1, l′1] is adjacent to [l2, l
′
2] if and only if both

regions are disjoint except from l′1 = l2 or l′2 = l1.
The following lemma expresses that activating regions

are properly nested. In particular, it means that activating
regions cannot partially overlap.

Lemma 2 (Properly nested activating regions). For all
disjoint activating regions [l1, l

′
1], [l2, l

′
2] that belong to the

same function, either
1) [l1, l

′
1] and [l2, l

′
2] are disjoint or adjacent, or

2) [l1, l
′
1] is contained in [l2, l

′
2] or vice versa.

Proof. The proof is an adaptation of a proof from [39]
(simplified to fit our case). Suppose two distinct activating
regions [l1, l

′
1] and [l2, l

′
2] that are not disjoint nor adjacent

(they contain a shared instruction l that is not l1 nor l2).
First, we have from Hypothesis 2 that [l1, l′1] and [l2, l

′
2] are

SESE regions. Since l1 and l2 both dominate l (cf. Defini-
tion 9), we have either l1 dominates l2 or vice versa. Without
loss of generality, suppose l1 dominates l2. Similarly, l′1 and
l′2 both postdominate l. If l′1 postdominates l′2 then [l2, l

′
2] is

contained in [l1, l
′
1]. Otherwise l′2 postdominates l′1. There

are two cases to consider, which both lead to a contradiction.
• l2 dominates l′1. Note that from Lemma 1 there is

an edge l1 → l′1 so, we have that l2 must dominate



l1 to dominate l′1. Because l1 dominates l2 this can
only happen if l1 = l2. However, from the evaluation
rules of activating instructions (Fig. 4), there cannot be
two distinct activating regions starting with the same
instruction, meaning that [l1, l

′
1] = [l2, l

′
2], which is a

contradiction.
• l2 does not dominate l′1. In this case, we either have:

1) there exists a path from the beginning of the function
to l′1, which does not contain l2 or, 2) l′1 = l2. In
the first case, because l′2 postdominates l′1, this path
also goes through l′2. Hence, because l2 dominates l′2,
this path must also go through l2, meaning that l2
must postdominate l′1. In the second case, we have
l2 postdominates l′1 by definition. Finally, because l′1
postdominates l, we have that l2 also postdominates l.
However, because l2 also dominates l, this can only
happen if l = l2 (both regions are adjacent), which is
a contradiction.

C.2. Well-behavedness of Activating Regions

It follows from the evaluation rules of AMi in Figs. 3
and 4 that:

Proposition 3. A step from a configuration where AC > 0
decrements AC only if pc = Ex and increments AC only if
pc = En. Additionally, En and Ex are only modified if AC
is set to 0.

Remember that a configuration is valid if it can be
reached from an initial configuration. It follows from the
evaluation rules that:

Proposition 4. For any valid configuration σ, if σ.AC > 0,
then [σ.En, σ.Ex] is an activating region.

We first show a base case stating that nested SESE
regions behave as intended assuming function calls preserve
activation configurations:

Lemma 3. During the evaluation of an SESE region [l1, l
′
1]

in a configuration σ that has mimicry mode activated for
[l2, l

′
2] and where [l2, l

′
2] is contained in [l1, l

′
1], assuming

function calls in [l1, l
′
1] preserve the activation configura-

tion and do not deactivate mimicry mode, we have that if
[l1, l

′
1]σ ⇓o σ′, then σ.〈AC,En,Ex〉 = σ′.〈AC,En,Ex〉 and

mimicry mode is not deactivated during the evaluation of
[l1, l

′
1].

Proof sketch. Assume two SESE regions [l1, l
′
1] and [l2, l

′
2]

that belong to a function f , such that [l2, l
′
2] is contained

in [l1, l
′
1], and a configuration σ that has mimicry mode

activated for [l2, l′2].
Assuming the following hypothesis,

Function calls in [l1, l
′
1] preserve the activating

configuration and do not deactivate mimicry mode (H)

we want to show that the big-step evaluation of [l1, l
′
1]

preserve the activation configuration and does not deactivate

mimicry mode. From Proposition 3, En and Ex can only be
modified when AC = 0 meaning that is sufficient to show
that the big-step evaluation of [l1, l

′
1] restores AC and that

AC does not reach 0.
Because of (H), we can ignore the evaluation of func-

tions and, because we assume a sound CFG (cf. Defini-
tion 2), we can reason about the big-step evaluation of
[l1, l

′
1], as a sequence of small steps following a path in

cfg(f). From Proposition 3, we have that AC can only be
incremented when the evaluation reaches l2 or decremented
when it reaches l′2. Hence we have to show that every path
from l1 to l′1 in cfg(f):

1) must contain l′2 if it contains l2,
2) must go through l2 before going through l′2,
3) cannot have any cycle containing l2 that does not

contain l′2 and vice versa.
These three points ensure that the activation counter is
decremented exactly the same number of time it is incre-
mented (hence the value of AC is restored) and is always
incremented before it is incremented (hence AC is never
reset). We show each point separately:

1) We show by contradiction that every path that contains
l2 in [l1, l

′
1], also contains l′2. Assume that there is a

path from l1 to l′1 that contains l2 but does not contain
l′2, which means l′1 6= l′2. Because l′2 postdominates
l2 we must have l′2 postdominates l′1, but because
l′2 is contained in [l1, l

′
1] we also have that l′1 post-

dominates l′2. This can only happen if l′1 = l′2 which is
a contradiction;

2) We show by contradiction that every path from l1 to
l′2 in [l1, l

′
1] also goes through l2. Assume that there

is a path from l1 to l′2 in [l1, l
′
1] that does not contain

l2, which means l1 6= l2. Because l2 dominates l′2 we
must have l2 dominates l1, but because l2 is contained
in [l1, l

′
1], we also have that l1 dominates l2. This can

only happen if l1 = l2 which is a contradiction;
3) Finally, there cannot be any cycle in [l1, l

′
1] containing

l2 that does not contain l′2 (and vice versa) because
[l2, l

′
2] is an SESE region, and therefore any cycle

containing l2 also contains l′2 (and vice versa).

Now, we show that big-step evaluation of functions
preserve activation configurations:

Lemma 4. For any function f , activating region [l, l′], and
configuration σ that has mimicry mode enabled for [l, l′], if
[lf , l

′
f ]σ ⇓ σ′ then σ.〈AC,En,Ex〉 = σ′.〈AC,En,Ex〉 and

mimicry mode is not disabled during the evaluation of f .

Proof sketch. Let f be a function where lf = entry(f) and
l′f = exit(f), [l, l′] an activating region, and σ be a config-
uration such that AC > 0, En = l and Ex = l′. We show
that [lf , l′f ]σ ⇓ σ′ preserves the activation configuration and
does not reset AC. The proof goes by induction on the depth
of function calls.

Base case. First, consider the case where a function f
does not contain any function call (the call depth of f is



0). Notice that by Hypothesis 2, we have that [l, l′] is an
SESE region; which means that it is either contained in f
or belongs to another function.
• [l, l′] does not belong to f : from Hypothesis 1, we have

that [lf , l′f ]σ ⇓o σ′ does not reach l or l′. Hence, from
Proposition 3 we have that AC, En, and Ex are not
modified.

• [l, l′] is contained in f : in this case, Lemma 3 can
be applied because [lf , l

′
f ] in an SESE region that

does not contain function calls, and [l, l′] is contained
in [lf , l

′
f ]. Hence, it follows from the application of

Lemma 3 that if [lf , l′f ]σ ⇓o σ′, then σ.〈AC,En,Ex〉 =
σ′.〈AC,En,Ex〉 and mimicry mode is not disabled
during the evaluation of f .

To conclude, the activation configuration is restored to its
initial value after [lf , l′f ]σf ⇓o σ′ and mimicry mode is not
disabled.

Inductive case. Assume that functions with call depth
n− 1 or below preserve the activation configuration and do
not reset AC. We show that any function with call depth at
most n also preserve the activation configuration and do not
reset AC. Assume a function f with call depth at most n; it
means that the depth of function calls in f is at most n− 1
or below. It follows from the induction hypothesis that:

Function calls in f preserve the activation configuration
and do not disable mimicry mode. (IH)

The rest of the proof is similar to the base case: if f 6= g
then [lf , l

′
f ]σf ⇓o σ′ does not reach [l, l′] and the activation

configuration is not modified; otherwise, the proof follows
by application of Lemma 3 (which applies with (IH)).

Finally, we show Proposition 2:

Proposition 2 (Well-behaved activating regions). For any
activating region [`, `′] and valid configuration σ such that
[`, `′]σ ⇓o σ′, if AC is set after executing the instruction at
location `:

1) it remains set during the execution of [`, `′] (including
recursive function calls but excluding `′), and

2) if AC is incremented at location `, it is restored to its
initial value right before the evaluation of the instruc-
tion at location `′.

Proof sketch. Consider a valid configuration σ such that
[l, l′]σ ⇓o σ′ and mimicry mode is set after executing
the instruction at location l. Let 〈AC′,En′,Ex′〉 be the
corresponding activation configuration where AC′ > 0. From
Hypothesis 2, we have that [l, l′] is a SESE region; let f be
the function that contains [l, l′]. From Lemma 4, we know
that evaluation of nested functions during the evaluation of
[l, l′] (including recursive function calls) do not reset AC and
restore its value before returning. Therefore, we can ignore
the evaluation of nested functions and, because we assume
a sound CFG (cf. Definition 2), we can reason about the
big-step evaluation of [l, l′] as a sequence of small steps
following a path in cfg(f), starting at l and ending as soon
as l is reached. We need to show that: 1) AC is not reset

during the whole execution of [l, l′] (l′ excluded), 2) it is
restored to its previous value when executing the instructions
at location l′. Notice that, if we show that AC is not reset
during the whole execution of [l, l′], we can also consider
than En and Ex are not modified and remain set to En′ and
Ex′ (cf. Proposition 3). We first consider the case where
En′ = l and then the case where En′ 6= l.

Case En = l. Because σ is a valid configuration (and so
is its successor), we know from Proposition 4 that [En′,Ex′]
is an activating region and therefore [En′,Ex′] = [l, l′].
From AMi semantics (cf. Figs. 4 and 5), it follows that
AC′ = σ.AC+ 1. Thus, it suffices to show that:

1) there is no path in the region [l, l′] that goes through l
twice, hence AC is not incremented again,

2) the evaluation of the instruction at location l′ decre-
ments AC to its previous value, σ.AC.

The first point follows from the fact that [l, l′] is a SESE
region and thus the program has no cycle containing l which
does not also contains l′; hence the evaluation of [l, l′]
cannot go through l twice before ending in l′. The second
point follows from the fact that during the final step, (i.e., the
evaluation of the instruction at location l), because Ex′ = l′,
AC is decremented and therefore restored to its previous
value (cf. AMi evaluation rules in Figs. 4 and 5).

Case En′ 6= l. In this case, AC is already set before en-
tering [l, l′] then we have from Proposition 4 that [En′,Ex′]
corresponds to another (distinct) activating region. From
Lemma 2, we can consider the following cases:

1) They belong to distinct functions or are disjoint: in this
case, evaluating the region [l, l′] cannot go through En′
or Ex′, meaning AC is not modified (Proposition 3);

2) Regions are adjacent and l = Ex′: in this case, the
initial AC is decremented to AC′ > 0 during the evalu-
ation of the instruction at location l and we show that it
cannot be modified during the remaining execution of
[l, l′]. Indeed AC can only be modified when reaching
En′ or Ex′ (cf. Proposition 3) but En′ is not contained
in [l, l′] and, because [l, l′] is an SESE region and there
is no cycle containing l that does not contain l′, the
evaluation of [l, l′] cannot go through Ex′ twice;

3) Regions are adjacent and l′ = En′: AC cannot be mod-
ified until the evaluation of the instruction at location
l′. This follows from the fact that, because regions are
adjacent with l′ = En′, Ex′ is not contained in [l, l′].

4) [l, l′] is contained in [En′,Ex′] and l′ 6= Ex′: in this
case, [l, l′] does not contain En′ nor Ex′, meaning (cf.
Proposition 3) that AC is not modified;

5) [l, l′] is contained in [En′,Ex′] and l′ = Ex′: in this
case, the evaluation of [l, l′] does not contain En′ and
cannot modify AC before l′. Notice that at location
l′, AC is decremented but this does not violate our
definition of well-behavedness as this is also the end
of the activating region [l, l′];

6) [En′,Ex′] is contained in [l, l′]: this can happen in case
of a recursive call to f . The fact that AC is restored to
its previous value after [l, l′] follows from Lemma 3.



Appendix D.
Meta-Review

D.1. Summary

The paper proposes hardware support, an ISA extension,
and a programming model to achieve resilience to control-
flow based side-channels. The core novelty are so-called
mimic instructions, which have the same timing behaviour
as their standard counterparts but do not have any archi-
tectural effects. While different software-level side channel
mitigation methods are proposed, they were not extensively
adopted in reality; often, only patching some manually
discovered critical code components. This work, with its
software-hardware co-design approach, may establish new
and practical research directions in this field. The paper
provides a formalization of the core ideas for providing
resilience to control-flow side channel leakages and attacks.

D.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Establishes a New Research Direction
• Independent Confirmation of Important Results with

Limited Prior Research
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) The paper inches us forward on the problem of branch
balancing.

2) The paper fleshes out the entire design from idea to
semantics to implementation.

3) The paper describes how to handle a number of inter-
esting program constructs (e.g., function calls, recur-
sion).

4) The paper provides a basis to improve upon (and likely
composes with) state-of-the-art. For example, it may
enable Raccoon-style transactions [14] where only a
subset of transaction instructions need to have their
architectural state rolled back.

D.4. Noteworthy Concerns

1) There were some concerns around the performance
measurement numbers.

2) The security evaluation lacks details and has a lot of
scope for improvement.

3) The paper only deals with control-flow leakage. This is
on the narrow side. Further, the line between control-
flow leakage and other forms of leakage (e.g., see List-
ing 4) is subtle because microarchitectural state updates
and architectural state updates are often entangled.

4) Compiling code to use the proposed ISA extension
seems difficult to automate.

Appendix E.
Response to the Meta-Review

In this section, we address the concerns outlined in the
Meta-Review above.

Performance Evaluation (1). Because compiler support
for AMi is missing, the benchmark programs are manu-
ally hardened at assembly level, inherently restricting their
size. More extensive performance measurements should be
conducted once a compiler is available. Moreover, the size
of the benchmarks sometimes causes performance gains,
the reason for which we explain in the last paragraphs of
Section 6.3. To facilitate the reproduction and extension
of our performance evaluation, we open source both our
hardware implementation and the benchmarks used in the
paper.

Security Evaluation (2). Verifying hardware security is a
challenging problem and it is also an active area of research.
With this paper, it is not our goal to make a contribution to
this area. Our automated evaluation just provides evidence
that the benchmark programs secured with our hardware
implementation of AMi indeed close the vulnerabilities that
were present (as explained in 6.3). We also open source our
security evaluation.

Scope (3). We agree with the observation that the paper
only deals with control-flow leakage. We also acknowledge
that the architectural/microarchitectural entanglement issue
is indeed present. However, this is not only an issue for AMi
but for all competing control-flow linearization approaches.
It is something that the developer should address based
on an implementation-specific leakage specification. AMi,
however, makes it possible to efficiently deal with this
entanglement using the persistent instructions. We refer to
Section 5.2 for more details.

Compiler Support (4). We agree that automating compila-
tion to AMi is a very interesting challenge, and it will be
an exciting topic to explore in future work.
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