

Funded by the European Union under grant agreement no. 101070008. Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority can be held responsible for them.

D2.1
Report about trusted life cycle design

methodology for OSH

Project number 101070008

Project acronym ORSHIN

Project title
Open source ReSilient Hardware and software for

Internet of thiNgs

Start date of the project 1st October, 2022

Duration 36 months

Call HORIZON-CL3-2021-CS-01

Deliverable type Report

Deliverable reference number CL3-2021-CS-01/ D2.1/ 1.0

Work package contributing to the

deliverable
WP2

Due date JUN 2023 – M09

Actual submission date 28th June 2023

Responsible organisation SEC

Editor Stefano Cristalli

Dissemination level PU

Revision 1.0

Abstract

This document lays the foundation for defining and
modelling the concept of Trusted Life Cycle (TLC)
for secure, open source hardware components.
Specifically, a starting set of requirements for the
TLC is provided.
It also contains a novel definition of open source
hardware, for evaluating it qualitatively and also
quantitatively.
Another contribution is represented by the
evaluation of current methodologies for component
and vulnerability tracking, and a proposition for a
modern approach aimed at improving the current
situation.

Keywords

Trusted Life Cycle, Secure development, Open
source, Hardware, Process requirements, Secure
processes, Secure procedures, Component
tracking, Bill Of Materials, Vulnerability tracking

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page I

Editor

Stefano Cristalli (SEC)

Contributors (ordered according to beneficiary numbers)

Volodymyr Bezsmertnyi (NXP)

Guido Bertoni, Filippo Melzani, Massimo Ratti, Stefano Cristalli, Maria Chiara Molteni, Marta
Fornasier, Lorenzo Nava, Arianna Gringiani (SEC)

Clarisse Ginet, Olivier Thomas (TXP)

Jan Pleskac (TRPC)

Reviewers

Barbara Gaggl, Michael Käfinger (TEC)

Daniele Antonioli (ECM)

Jan Pleskac (TRPC)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page II

Executive Summary

This document lays the foundation for defining and modelling the concept of Trusted Life Cycle
(TLC) for secure, open source hardware components.

The first challenge that we encountered was providing a definition of open source hardware.
Although there is extensive literature for both the worlds of “open source” and “hardware” (e.g., [Kelty
2016] [Free Software Foundation 2017], [Baker 2011]), their intersection brings new valuable
context, with associated initial challenges, specific concepts, and open problems. There is enough
separation within these concepts from existing literature to create a new domain of knowledge. One
of such challenges, for example, is agreeing on a clear definition of what open source hardware
means. To the best of our knowledge, this is the first work that tries to define a systematic approach
for such a definition.

After a preliminary reasoning on the semantics that a definition of open source hardware should
capture, and comparing it with previous attempts ([OSHWA 2023]), we present a new definition that
permits the evaluation of open source hardware, both qualitatively and, for the first time, also
quantitatively.

Our model distinguishes between different types of hardware views, based on the abstraction level
of the development. Our idea is that, although grouped under the umbrella term “hardware”, different
developments may have different properties, and therefore deserve separate categorizations (e.g.,
a technology library vs. a PCB).

With a sound definition of open source hardware, we then proceed listing the requirements for the
Trusted Life Cycle. These are “process” requirements about the phases which compose the
development of secure open source hardware components.

For this definition task, we cannot ignore the vast literature that exists on the topic of Secure
Development Life Cycles (SDLCs). Although focused more on the software domain, and usually
lacking any reference to open source topics, existing models for SDLCs contain valuable and
reusable knowledge also for ORSHIN’s TLC.

Most of this previous knowledge on SDLCs is consolidated in IT and industry standards; therefore,
we present the main relevant works, and try to summarise the commonalities.

Afterwards, starting from a baseline work from ENISA regarding good practices for security in IoT,
we draft the requirements for the ORSHIN’s TLC. In particular, we adapt the existing requirements
to the new context of open source hardware, and we also draft new requirements that are specific
for such domain. We align the definition of TLC requirements with the framework previously defined
for the definition of open source hardware, in order to keep a coherent approach that has the
possibility of adapting to our previously-defined hardware views.

We also consider a novel approach regarding the definition of process requirements, that is the
possibility of adapting the development process according to a threat model. This allows the
adaptation of a common set of requirements to specific industry use cases, possibly with dedicated
personalization and extensions. Our work is harmonised with ORSHIN's Task 2.2. The content of
this deliverable has been employed as a reference for developing the AttackDefense Framework
(ADF) proposed by Deliverable 2.2. Specifically, the TLC was used as a reference life cycle and
evaluated within the ADF case studies. Moreover, our TLC methodology is the concept at the base
of the work produced in WP3, WP4, and WP5.

Finally, after having established a methodology for defining the requirements of the ORSHIN TLC,
we tackle important themes related to the development of open source hardware. Specifically, we
work on the definition of Hardware Bills Of Materials (HBOMs), as the focal point that has to function
properly in order to allow efficient categorization of both hardware components, and of associated
information that is relevant for security, such as known vulnerabilities that affect hardware
components. We review existing approaches for the definition of Bills Of Materials (BOMs) in
general, including relevant work done for Software Bills Of Materials (SBOMs). We challenge the
Common Platform Enumeration (CPE), the industry standard for categorising hardware and software
components, highlighting some problems that don’t make it suitable, in our opinion, to the context of

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page III

secure open source hardware. We make a proposition for a more flexible system, starting from an
extension of the Open Worldwide Application Security Project (OWASP) CycloneDX format.

We conclude the document by summarising our contribution, highlighting open problems and listing
promising directions for future work.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page IV

Table of Content

Chapter 1 Introduction ... 1

1.1 Definition of Open source Hardware ... 1

1.2 Definition of the Trusted Life Cycle ... 1

1.3 Component and Vulnerability Tracking ... 2

1.4 Conclusion and Next Steps ... 3

Chapter 2 Definition of Open source Hardware .. 4

2.1 Overview ... 4

2.2 State-of-the-art.. 5

2.2.1 Licence for an Open Source Project .. 5

2.3 Views .. 6

2.4 Properties ... 8

2.4.1 Applicability of Properties to Views .. 10

2.4.2 Categorization of Properties in Sets ... 11

2.5 How to Score Hardware Open sourceness ... 12

2.5.1 Properties Score .. 12

2.5.2 Final Score .. 14

2.6 How to Apply our Open source Definition: Case Studies ... 16

2.6.1 V0 - Technology Library ... 17

2.6.2 V1 – CPU / IP .. 18

2.6.3 V2 - Chip / SoM ... 19

2.6.4 V3 - Device .. 20

2.7 How to Score Hardware with Subcomponents .. 21

2.7.1 Numeric Subcomponent Scoring Example ... 22

2.7.2 Case Study: Raspberry Pi 4 ... 24

2.8 Considerations about this Scoring System .. 28

Chapter 3 Definition of the Trusted Life Cycle .. 30

3.1 Overview ... 30

3.2 State-of-the-art.. 31

3.3 Review of Main Cybersecurity Standards for Process Requirements 32

3.3.1 ENISA Good Practices for Security of IoT .. 32

3.3.2 ISA/IEC 62443 ... 34

3.3.3 NIST SP 800-53... 36

3.3.4 ISO 27001 ... 37

3.3.5 CSA Security IoT Controls Framework .. 39

3.3.6 ETSI EN 303 645 ... 40

3.4 Definition of the Trusted Life Cycle Phases ... 41

3.4.1 Threat Modelling and Risk Assessment ... 42

3.4.2 Design ... 43

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page V

3.4.3 Implementation .. 43

3.4.4 Evaluation .. 43

3.4.5 Installation ... 45

3.4.6 Maintenance .. 45

3.4.7 Retirement ... 46

3.5 Process Requirements for the ORSHIN Trusted Life Cycle... 46

3.5.1 Selecting the Requirements ... 46

3.5.2 Adapting the Requirements to ORSHIN ... 48

3.5.3 Hardware-specific topics .. 48

3.5.4 Open source-Specific Topics ... 50

3.5.5 A Proposal for the ORSHIN TLC Requirement List .. 51

3.5.6 Applying the TLC Requirements .. 52

Chapter 4 Component and Vulnerability Tracking .. 56

4.1 Overview ... 56

4.2 Vulnerability Management Methodology ... 56

4.3 State-of-the-art: Component Inventory .. 57

4.3.1 Common Platform Enumeration (CPE) .. 57

4.4 State-of-the-art: Vulnerability Tracking .. 60

4.4.1 Common Vulnerabilities and Exposures (CVE) .. 60

4.4.2 Common Weaknesses Enumeration (CWE) .. 61

4.4.3 Common Attack Pattern Enumeration and Classification (CAPEC) 62

4.5 Modern Approach for Component and Vulnerability Tracking ... 63

4.5.1 Model for Component Tracking Definition .. 65

4.5.2 Practical Example .. 68

Chapter 5 Conclusion and Next Steps ... 74

List of Abbreviations .. 76

Bibliography .. 79

Appendix A - List of process requirements for the TLC ... 83

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page VI

List of Figures

Figure 1:An example of the hierarchical dependency among the hardware views. V0: Technology
Libraries, V1: CPU / IP, V2: Chip / SoM, V3: Device. .. 6

Figure 2:The three sets in which the properties are grouped. .. 11

Figure 3: Example: computation of the final score as mean of scores in the vector. 14

Figure 4: Example: computation of the final score as mean of means of scores in the groups. 15

Figure 5: Tables for the final score computation in sheet Evaluation view 0. 16

Figure 6: TROPIC01 schematic. ... 19

Figure 7: Tables for the computation of the score of a component considering also the score of
subcomponents; one Table is for method 1 and one is for method 2... 23

Figure 8: Raspberry Pi 4 [Raspberry Products]. .. 24

Figure 9: Scoring Raspberry Pi4 considering the subcomponent BCM2711.................................. 25

Figure 10: Apalis IMX6 [Toradex Apalis]. .. 26

Figure 11: Scoring Toradex Apalis considering the subcomponent IMX6. 27

Figure 12: USB Armory Mk II [USB Armory Mk II]. .. 27

Figure 13: Scoring USB Armory considering the subcomponent IMX6. ... 28

Figure 14: SDLC phases defined in ENISA Good Practices for Security of IoT. 33

Figure 15: An example of process security requirement defined in ENISA Good Practices for Security
of IoT. ... 34

Figure 16: The document structure of ISA/IEC 62443. .. 35

Figure 17: NIST SP 800-53 security and privacy control families. ... 37

Figure 18: Seven phases of the Trusted Life Cycle. .. 42

Figure 19: Comparison of CVE, CWE and CAPEC. Copyright © The MITRE Corporation. 63

Figure 20: NXP MIMXRT685, source [NXP RT600 Datasheet]. .. 69

Figure 21: U-blox LARA-R6001 simplified block diagram, source [U-blox LARA-R6 Datasheet]. .. 69

Figure 22: The BOM of the ORSHIN device example. .. 70

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page VII

List of Tables

Table 1: Hardware views. .. 8

Table 2: View properties. .. 9

Table 3: Descriptions of the scores for each property. .. 12

Table 4: Scoring for the Technology Library UMC with the second method. 17

Table 5: Scoring for Open Titan with the second method. ... 18

Table 6: Scoring for TROPIC01 with second method. ... 20

Table 7: Scoring for Trezor with the second method. .. 21

Table 8: Numerical example of how to score a component taking into account its subcomponents.
 ... 23

Table 9: Analysis of the Raspberry PI4. .. 24

Table 10: Analysis of the Broadcom BCM2711. .. 25

Table 11: Analysis of the Toradex Apalis IMX6. .. 26

Table 12: Analysis of the NXP IMX6. .. 27

Table 13: Analysis of the USB Armory Mk II. ... 28

Table 14: ISA/IEC 62443-4-2 Security Levels. .. 36

Table 15: The 7 clauses from ISO 27001. ... 38

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 1

Chapter 1 Introduction

In this document we report part of the research of WP2, particularly focusing on the work related to
the ORSHIN Trusted Life Cycle methodology (Task 2.1). In this project we discuss electronic
hardware, and then all the reasoning and examples in this document are focused on that area.

The concept of Secure Development Life Cycle (SDLC) is consolidated and extensively applied in
the IT world, with recent applications also touching the Internet of Things (IoT) and Industrial
Automation Control Systems (IACS) contexts. However, even the most recent embedded-oriented
SDLC variations are heavily lacking when considering the topics of hardware development, and open
source.

These topics, central to the ORSHIN project, guide the definition of the Trusted Life Cycle (TLC).
TLC is a methodology which aims at providing developers and maintainers of the open source
community with practical help for exploring and expanding the cybersecurity dimension of their
projects. This methodology focuses mainly on the embedded/IoT/IIoT projects which make partial or
total use of open source hardware.

This document is divided into the chapters described in the following Sections.

1.1 Definition of Open source Hardware

Chapter 2 is dedicated to the definition of "open source hardware". Despite being extensively used,
this terminology does not yet have a universally accepted definition, so we tackle the challenge of
formalising a possible one.

We explore the context of hardware, differentiating developments into views based on their level of
abstraction.

First, we study properties of hardware developments that influence their effective open source status.

Second, we provide qualitative definitions for different levels of open source hardware based on such
properties, and we also study the application of properties to the different hardware views.
Then, we define a score to compare open source hardware products, aiming at capturing relevant
detail while maintaining simplicity of use.

We start by defining our scoring system for components based on the evaluation of single properties,
and afterwards we provide a way for calculating the composite score of a device, taking into account
the score of its subcomponents.

Finally, we evaluate our novel approach on real-world examples of both open source and non-open
source hardware, such as Raspberry Pi4, USB Armory and more.

1.2 Definition of the Trusted Life Cycle

Chapter 3 provides a definition of the Trusted Life Cycle phases, and its requirements, which are the
central contributions of this deliverable.

We start by reviewing previous work, which is represented by the different frameworks in the
literature for the definition and application of Secure Development Life Cycles (SDLCs). In particular,
we focused on sets of practices and requirements that allow developers and system integrators to
build secure products and systems in a reliable and repeatable fashion. The beginning of the work
on such methodologies dates back to the early 2000s, and it has a good level of maturity in its
primary field of application, i.e. software development with IT infrastructure; on the other hand, newer
context such as Internet of Things and Industrial Automation and Control Systems have only seen
recent effort for porting the practices of SDLCs, and have therefore a lower level of maturity.
In particular, hardware development is typically faced by SDLC at a high level of abstraction, without

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 2

considering the peculiarities of the hardware industry (e.g., differences while building an IT and IoT
processors).
Similarly, open source is seldom mentioned by SDLC methodologies, if at all. Concerns in this
direction primarily focus on the security of 3rd-party software libraries, and not much more.

Within the ORSHIN project, both hardware development and open source are central topics, and we
propose a methodology that adequately addresses the definition of security requirements for them.
We review the most relevant international standards and guidance documents which provide
process-oriented security requirements, showing different perspectives to the definition of
requirements and best practices.

We select a source that in our opinion represents the best starting point for defining a development
life cycle oriented to hardware and open source, due to its starting focus on the IoT world.
We perform a selection of requirements, filtering out ones that are not suitable for the properties we
want for the ORSHIN Trusted Life Cycle, then we adapt their content to fully adhere to the ORSHIN
context.
We draft new requirements specifically for the topics of hardware design and open source, then we
provide our finalised proposal with the full list of requirements for the ORSHIN Trusted Life Cycle.
Finally, we discuss methodology for the application of requirements.

1.3 Component and Vulnerability Tracking

Chapter 4 faces the important topic of component and vulnerability tracking, which is a fundamental
part of the maintenance phase of the ORSHIN Trusted Life Cycle.

In order to perform an effective monitoring of the security of developments, it is essential that their
composition is known in detail.

This necessity is met by compiling the Bill Of Materials (BOM) for a component, be it software
(Software Bill Of Materials - SBOM), hardware (Hardware Bill Of Materials - HBOM) or a combination
of the two.

The associated requirement for effective vulnerability management is the ability to gain knowledge
about recent vulnerabilities that get published in global databases about products that one wishes to
monitor, or about any of their subcomponents.

For this reason, there is a rich vulnerability tracking ecosystem, including:

● Identified instances of vulnerabilities (with the Common Vulnerabilities and Exposures
framework - CVE);

● Common weakness that affect various aspects of the design and implementation of systems
(with the Common Weakness Enumeration framework - CWE);

● Attack patterns that allow attackers to discover vulnerabilities starting from common
weaknesses (with the Common Attack Pattern Enumeration and Classification framework -
CAPEC).

We review the state-of-the-art for both this vulnerability-tracking ecosystem, and for its component-
tracking framework counterpart, that is Common Platform Enumeration - CPE, which is currently
predominantly used for referring to components and products that have been associated with some
vulnerability.
We explain how the current limitations of the above systems fail at providing a lightweight and open
approach for everyone to use to compile efficient BOMs with rich public information about
components, and how the situation could significantly improve by leveraging a related framework
from OWASP called CycloneDX.

After declaring the properties that we envision for a modern component and vulnerability tracking
system, we see with a practical example how CycloneDX allows to meet most of them.
We provide an extension to the format allowing modelling additional details that are relevant for the
context of ORSHIN as a consequence of our research (for example, the score for open source
hardware). Then, we outline the next steps that would be necessary for global adoption of our
framework for satisfying the remaining requirements, which are not format-dependent. For instance,
we state that a global public database would be necessary for actual adoption of a new component-

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 3

tracking system, and that participation from the community would be required at multiple levels, from
manufacturers to individual researchers and enthusiasts.

1.4 Conclusion and Next Steps

We review the conclusions of our research in Chapter 5, and outline the next steps to continue
research in promising directions.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 4

Chapter 2 Definition of Open source Hardware

2.1 Overview

The object of our work is the so-called open source hardware. The initial question we need to answer
is: which are the guidelines to define when a hardware device is open source. For example, how can
we define an open source product using a closed-design microcontroller or an open source HDL
distributed with proprietary toolchain? Is it open source or not?

A starting point for giving a complete definition is the description given by the Open Source Hardware
Association (OSHWA) website [OSHWA 2023]. In the introduction it is stated the following:

“Open Source Hardware (OSHW) is a term for tangible artifacts — machines, devices, or other
physical things — whose design has been released to the public in such a way that anyone can
make, modify, distribute, and use those things.”

OSHWA considers a hardware device to be open source if it complies with the following criteria:

● The documentation must be provided with the device, and it must be in an open format. In
particular, the documentation must include design files, and must allow their modification and
distribution.

● The software necessary for the hardware under investigation has to be released under an
open source licence. It is also desirable to have well documented interfaces, such that it will
be easy to write an open source software that allows the device to operate properly and fulfil
its functions.

● Modifications and derived works must be allowed, and they have to be distributed under the
same term as the licence of the original work.

● The redistribution of the hardware needs to be for free, and it should be possible to sell or
give away the project documentation.

● The Licence must not be specific to a product and it must not restrict other hardware or
software. If a part of the product is used or distributed, it has to follow the term of the licence
granted for the original work.

● The Licence must not discriminate against persons or groups, and it must not restrict anyone
from making use of the work in a specific field of endeavour.

In our opinion, this description and other state-of-the-art notions and definitions (see Section 2.2 -
State-of-the-art) in this context are not sufficient to provide a thorough vision. We believe that for the
aim of the ORSHIN project and for practical applicability in industry, they can be a good starting
point, but they also need to be extended. In this direction, we invested our first efforts in trying to
provide an exhaustive and deep definition that we present in the following Sections.

To reach the goal of a complete definition, we propose a categorization of hardware components in
sets that we call views (Section 2.3 Views). Once placed in a view, each component is evaluated
according to different properties (Section 2.4 - Properties) which express its open sourceness under
different perspectives. For any hardware, this evaluation produces a vector of scores (Section 2.5 -
How to Score Hardware Open sourceness) which is then combined to reveal how much the hardware
component is open source. Some examples of these evaluations are in Section 2.6 - How to Apply
our Open source Definition: Case Studies, and the evaluation computed considering also the
subcomponents is presented in Section 2.7 - How to Score Hardware with Subcomponents.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 5

2.2 State-of-the-art

The definition of open source was born in the software context. The term open source does not
simply mean that the source code is freely accessible, but also that it should follow some criteria
[Open Source Initiative][Debian Social Contract 2023]. The highlighted criteria are very similar to
those reported in the OSHWA website; this is because OSWHA selected the criteria for defining
open source hardware by retracing and elaborating on the steps established in previous years for
software.

On the Debian Organization website [Available: https://opensource.org/osd/.], the Debian Free
Software Guidelines (DFSG) are listed in the following points.

1. Free Redistribution. The licence of a Debian component may not restrict any party from
selling or giving away the software. The licence may not require a royalty or other fee for
such sale.

2. Source Code. The program must include the source code, and the distribution of the source
code as well as the compiled form must be allowed.

3. Derived Works. The licence must allow modifications and derived works, at which are applied
the same terms as the original software.

4. Integrity of The Author’s Source Code. This point is a compromise in the context of
modification of the files. Indeed, the licence may require derived works to carry a different
name or version number from the original software, in such a way to preserve the integrity of
the original source code.

5. No Discrimination Against Persons or Groups.

6. No Discrimination Against Fields of Endeavour.

7. Distribution of Licence. The rights attached to the program must apply to all to whom the
program is redistributed.

8. Licence Must Not Be Specific to Debian. The rights attached to the program must not depend
on the fact that the program is part of a Debian system.

9. Licence Must Not Contaminate Other Software. The licence must not place restrictions on
other software that is distributed along with the licensed software.

One of the first software open source projects is the GNU Operating System, supported by the Free
Software Foundation [GNU 2021]. It was launched by Richard Stallman in 1983, with the goal of
offering a Unix-compatible system that would provide completely free software. GNU packages
include user-oriented applications, utilities, tools, libraries, as well as games, namely all the programs
that an operating system can offer to the users.

After a first spread in the context of software, the definition of open source took hold also for
hardware. In this scenario, the Open Source Hardware Association [OSHWA 2023] was born, with
the aim of fostering technological knowledge and encouraging research that is accessible,
collaborative and respectful of user freedom. OSHWA organises the annual Open Hardware Summit
and maintains the Open Source Hardware certification [OSHWA CERT], which allows the community
to quickly identify and represent hardware that complies with the community definition of open source
hardware.

2.2.1 Licence for an Open Source Project

In choosing a licence, one should first decide whether or not he wants to require people to keep the
derivatives of his designs open source. If so, he should use a copyleft licence; if not, he could choose
a permissive licence [OSHWA 2023]. Copyleft (or viral) licences require derivatives to be licensed

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 6

under the same terms; on the other hand, permissive licences allow other people to make
modifications without needing to release the derivative product as open source hardware. A
designer of open source software/hardware must allow modification and commercial re-use of a
design, so he should not use licences with a no-derivatives or non-commercial clause.

Some examples of licences used for open source projects are listed below.

● CERN OSH [CERN OSH 2023]: the current version of this licence is version 2, that comes
with three variants, CERN-OHL-S (strongly reciprocal), CERN-OHL-W (weakly copyleft) and
CERN-OHL-P (permissive). For a deeper understanding, see the document [CERN OHL
2020].

● MIT [MIT LICENCE].
● Apache2.0 [APACHE LICENCE 2023].
● GNU General Public Licence [GPL 2022].
● Creative Commons Licences [CCLICENCES].

2.3 Views

In this Section, we propose a categorization of hardware based on views.

In the ORSHIN project we discuss electronic hardware, and then all the reasoning and examples in
this document are focused on that area. When talking about hardware, we can refer to many different
layers, from the technology libraries used for the synthesis of circuits, to the final device, which can
include multiple chips. In particular, each hardware component has a specific purpose and
contributes to the overall functioning of the device.

The first step toward our definition of open source hardware is the description of these different
hardware layers, which we call views (Figure 1). Views define different types of hardware
components and we identified four of them; the most basic one is the lowest view (V0), i.e. the
technology library, which is necessary for the synthesis of any hardware component. Starting from
that, we have identified other three views, until reaching the most complex hardware level, i.e., the
complete device (V3).

Figure 1:An example of the hierarchical dependency among the hardware views. V0: Technology Libraries,
V1: CPU / IP, V2: Chip / SoM, V3: Device.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 7

Each view is described hereafter in detail.

● A technology library, also known as a tech library, is a collection of resources, materials,
and information related to the building of hardware components. It serves as a repository of
knowledge, providing access to a wide range of technological resources. The silicon
manufacturers can benefit from technology libraries by accessing resources created by
others, keep them updated, and provide insights into best practices and methodologies.

● A CPU (Central Processing Unit) is the component of a device responsible for executing
instructions and performing calculations. It includes the control unit, arithmetic logic unit,
registers, and cache. With the term IP (Intellectual Property, i.e., memories, reusable unit of
logic, cryptographic accelerator, cell, or integrated circuit layout design) we denote all the
other components that are not the CPU and collaborate to the functioning of the final device.

● A chip is a physical integrated circuit that is used in electronic devices. It is responsible for
the processing, storage, and control of electrical signals within a device. Chip is a hardware
component that can be buyed on the market. A System on Module (SoM), is a small, self-
contained computing module that integrates essential components of a system onto a single
board. It is designed to provide a ready-made solution for embedded system development,
reducing the time, cost, and complexity of designing a custom hardware solution. A typical
System on Module can consist of the following components: processor, memory, I/O
interfaces, power management, and connectors.

● A device is a physical object that is designed and used to perform specific functions or tasks,
and often requires power or energy input to operate. Devices rely on electronic circuits and
components to function. For example, they contribute to communication (e.g., smartphones),
productivity (e.g., laptops), entertainment (e.g., smart TV), and healthcare (e.g. wearable
fitness tracker).

In Table 1 we report the identified views; each view can be linked to one or more referents, i.e. who
works and deals with hardware in the correspondent view. This means that, for example, a silicon
manufacturer will be interested in components that are grouped in views 0 and 1, while view 2 is
related to component integrators. We identify four possible referents:

● Silicon manufacturer: company that produces silicon chips. In some cases the chip maker
is an Integrated Design Manufacturer (IDM) in other cases is a pure foundry. In the latter
case the foundry is producing chips for customers, a typical example is TSMC, while in the
case of IDM the company design the chip itself (decide which type of CPUs, interconnection
and IPs are integrated in the silicon chip)

● Chip designer: It can be a company, an IDM or a fabless (a company without a silicon fab)
or an individual that wants to design a chip. The designer decides what should be integrated
in the chip and interacts with foundry in order to deliver a set of files for the production.

● Component integrator: company or entity that specialises in integrating different electronic
components and subsystems into a cohesive and functional system. They play a crucial role
in the development and manufacturing of complex electronic products by assembling and
integrating various components sourced from different manufacturers. The roles of a
component integrator involve: component selection, system design and layout, component
procurement, assembly and integration, testing and quality assurance, and documentation
and support. We include in the category of component integrator the case of companies or
individuals that delivers a final product.

● Final user: person or company that is placed at the end of the production-distribution-usage
chain. In other words, the final recipient of the object or service that is produced which
benefits from its usage.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 8

Table 1: Hardware views.

View Referent Description

V0 - Technology Library Silicon manufacturer Libraries containing the blocks to
build the fundamental bases for a
hardware component.

V1 - CPU / IP Silicon manufacturer or chip
designer

The central processing unit and all
the subcomponents (Intellectual
Property) that are used to build the
next view.

V2 - Chip / SoM Silicon manufacturer, Chip
designer or

Component integrator

Integrated circuit that combines
multiple electronic components and
functionalities into a single chip; the
subcomponents come from the
previous view. It is an item you can
buy ready made, directly from the
market.

V3 - Device Component integrator or

Final user

The hardware into the hands of the
final user, which is designed and
used to perform a specific function
or task, and which is the final
composition of parts from lower
views.

In order to model the interdependencies and connections among the components of each of the
views, the most straightforward approach is to use a hierarchical topology. Indeed, a device (V3) can
be composed of multiple chips and SoMs (V2), and the latter of multiple CPUs and IPs (V1), which
are, in turn, based on the technology libraries (V0). A representation of such dependencies is
illustrated in Figure 1. Nevertheless, in Chapter 4 - Component and Vulnerability Tracking we will
discuss that these dependencies are not always hierarchical, since there are hardware components
that are built with subcomponents belonging to the same view. This is, for example, the case of the
u-blox cellular module LARA-R6001, which is a view-2 chip containing view-2 subcomponents (see
Section 4.5.2 - Practical Example). Anyway, this interdependence of components inside the same
view does not affect the considerations made in this Chapter.

2.4 Properties

To understand if a hardware component is open source, we have identified a list of properties to be
analysed and scored. Not all of them can be applied to each view, but we tried to make them as
homogeneous as possible. Moreover, we tried to be exhaustive, listing all the properties that we
considered relevant in a hardware for the definition of how much it is open source.

For each component in the views, we propose the list of properties and descriptions that are in Table
2.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 9

Table 2: View properties.

Property Description

P0 – Source code and
design files

The source code and design files used for building the component.
The source code is a collection of instructions or statements written
in a programming language that make up the functionalities of the
component. Design files serve as a blueprint or reference for
implementing the intended design.

P1 - Licences Which kind of licence is provided. A licence, in the context of
software/hardware and IP, is a legal agreement that outlines the
terms and conditions under which a person or organisation is
permitted to use, distribute, modify, or sell a particular software or
intellectual property. Licences help protect the rights of the hardware
or intellectual property creators, while providing clear guidelines for
users regarding their rights and responsibilities.

P2 - Design tools Visual design tools (e.g., STM32CubeIDE IOC file), and other tools
to support design. Design tools are software applications or
platforms that assist designers in creating, editing, and managing the
design elements of the hardware.

P3 – Toolchain Any software tool that processes design files and/or source code and
produces artefacts that are necessary for production (e.g., compiler,
linker, synthesis tool). A toolchain refers to a set of software tools
that are used together in a specific sequence. It consists of various
tools that perform different tasks during the development process.
Each tool in the toolchain typically takes the output of the previous
tool as its input and produces output that can be used by the
subsequent tool.

P4 – Software ecosystem A software ecosystem refers to a collection of software applications,
tools, frameworks, libraries, Software Development Kits and
platforms that are interconnected and interact with each other to
support software development, deployment, and usage. It
represents the environment in which software operates and the
various components that enable its functioning. A software
ecosystem typically includes: operating systems, programming
languages, integrated development environments, libraries and
frameworks, cloud platforms, etc.

P5 - Firmware The firmware running on the component and distributed with the
product. Firmware refers to a type of software that is embedded
within electronic devices and provides low-level control and
functionality. It is a specific type of software that is stored in non-
volatile memory, such as ROM (Read-Only Memory) or flash
memory, and is responsible for controlling the hardware of a device.
Since it is strictly related to the hardware component, firmware has
to be considered in our scoring method.

P6 - Processes Any "DevSecOps"-related aspect for which the manufacturer
can/has to provide evidence of in order to guarantee environmental
security. Processes include all the activities during the hardware
development that integrate security practices and considerations into
every stage. Generally, the manufacturer emphasises collaboration
and shared responsibility among development, security, and
operations teams to ensure that security measures are implemented
from the beginning of the development process. Examples of

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 10

Property Description

processes are: security of the private key for signing update images
or assurance of having done security testing.

P7 - Replicability Whether the hardware can be easily/completely replicated starting
from the open source information or not. Some key aspects and
considerations related to replicability are: methodological
transparency, data availability, independent verification, sample size
and statistical power, replication studies, methodological rigour and
standardisation.

P8 - Documentation Documentation that describes the design, functionality,
specifications, assembly, operation, and maintenance of hardware
components or systems. Comprehensive and accurate
documentation is crucial to have for various reasons, including
facilitating effective communication, ensuring consistency, aiding
troubleshooting and repairs, supporting future development, and
complying with regulatory requirements.

P9 – Code examples Examples that can be found in the documentation and/or online.

The presented list of properties is extensible according to the hardware component under analysis.
More details on this argument can be found in Section 2.8 - Considerations about this Scoring
System.

2.4.1 Applicability of Properties to Views

Depending on the view that is taken into consideration, it may be not possible to apply a specific
property to the hardware component under analysis. For example, taking into consideration the low
level view, V0, it is clear that the firmware property cannot be applied. V0 represents the technology
libraries, which are used to build the CPUs and IPs (V1); the elements in V0 are not capable of
running firmwares. According to the design of the components included in the V0, the “firmware”
property is not significant and should not be included into the analysis.

Moreover, for some views, the meaning of the properties may vary with respect to the others. For
instance, the software ecosystem is completely different between V0 and V3. In general, the tools
and the programming languages required to design or use components from the two views are not
easily comparable in terms of functionalities, requirements, and licences. For instance, designing
and using components in V0 may involve working with specific EDA designer tools and focusing on
hardware-level implementation. In contrast, in V3, the focus shifts to higher-level software
development, where more programming languages and frameworks may be available and a different
approach is used overall (e.g.: Linux and its utilities).

Furthermore, functionalities and capabilities associated with components can differ significantly
across the different views. The components of V0 may be limited to specific and basic operations
(such as elementary arithmetic operations), while components of V3 may implement complex
functionality (such as structured communication protocols). Thus, applying the properties to these
different views is not a trivial task; and differences of a similar nature can be also observed between
intermediate views. To overcome this challenge, evaluators must carefully consider the specific
context, objectives, and requirements of each view when assessing the properties.

Because of the structure of View 0, our scoring template does not include the following three
properties for this view:

● Software ecosystem;
● Firmware;
● Processes.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 11

This choice derives from the previous observations and from the required level of expertise to
coherently apply the scoring of such properties in the said context.

2.4.2 Categorization of Properties in Sets

The properties listed in the previous Paragraph can be divided in sets, according to their sphere of
belonging. Indeed, we identify three sets (Figure 2), that we list below.

● Component: in this set are grouped the properties related to the hardware component itself.
The properties are:

○ P0 Source code and design files
○ P1 Licences

● Ecosystem: all the properties that are related to tools and software running on the hardware.
In this set, the grouped properties are:

○ P2 Design tools
○ P3 Toolchain
○ P4 Software ecosystem
○ P5 Firmware

● Infrastructure: those properties that are related to a particular aspect of the component, that
is not directly linked to the hardware or the running software. These properties are:

○ P6 Processes
○ P7 Replicability
○ P8 Documentation
○ P9 Code examples

Figure 2:The three sets in which the properties are grouped.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 12

As discussed for the list of properties, the list of sets can also be extended. Indeed, in case a new
property is considered in the list in Table 2, but it cannot be included in one of the three sets
presented in this Section, then a new set could be defined.

2.5 How to Score Hardware Open sourceness

Following the structure of views and properties described in the previous Sections, it is clear that it
is not possible to declare a hardware as entirely open source or closed-source. Therefore, our idea
is to associate to a hardware component a view, and then compile for it a vector of scores, one score
for each property. The property score ranges from 0 to 3, where 0 means that the property reflects
the behaviour and features of closed-source hardware, and 3 of open source hardware. Hence, the
higher the score the more open is the hardware component.

2.5.1 Properties Score

In Table 3 we report how we score the ten properties that we have defined in Section 2.4 - Properties;
for each property, we give a description of what it means scoring that property with levels from 0 to
3.

Table 3: Descriptions of the scores for each property.

Property Scores

P0 – Source code and
design files

0 – The source code and design files are closed-source, and not documented
at all.

1 – The source code is poorly documented and the design files are not open
source (or not completely).

2 – The source code is well documented, but not sufficiently complete to be
considered straightforward to write open source software that allows the
device to operate properly and fulfil its essential functions. The design files
are not completely open source.

3 – The source code is sufficiently documented such that it could reasonably
be considered straightforward to write open source software that allows the
device to operate properly and fulfil its essential functions. The design files
are completely open source.

P1 - Licences 0 – The licence does not allow any modification or derived work. The licence
restricts the parties from selling or giving away the project documentation.

1 – The licence imposes some important restrictions.

2 – The licence imposes few small and irrelevant restrictions.

3 – The licence shall allow modifications and derived works, without
commercial restriction. The licence shall not restrict any party from selling or
giving away the project documentation.

P2 - Design tools 0 – The most commonly used design tools are proprietary, and are not made
available to the public.

1 – The most commonly used design tools are proprietary, and available to
the public as paid software.

2 – The most commonly used design tools for the target platform are available
under NDA or, in general, with licences that regulate their use. They are not
open source.

3 – The most commonly used design tools for the target platform are available
online without restriction and are open source.

P3 - Toolchain 0 – The toolchain is proprietary, and it is not made available to the public.

1 – The toolchain is released only under NDA or in general with licences that
strictly regulate its use.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 13

Property Scores

2 – The toolchain is freely available online, however parts of it are not
released under an open source licence.

3 – The toolchain for the target platform is available online without restriction
and is completely open source.

P4 – Software ecosystem 0 – No additional libraries / SDK to interact with the product are provided, and
it is not possible to recover them.

1 – Additional libraries / SDK to interact with the product can be obtained by
paying or signing an NDA.

2 – Additional libraries / SDK to interact with the product are available with
minor restrictions.

3 – Additional libraries / SDK to interact with the product are provided together
with the product or are available online without restrictions, and they are open
source.

P5 – Firmware 0 – The provided firmware is completely closed-source, and not documented
at all.

1 – The provided firmware is poorly documented, possibly not completely
closed-source.

2 – The interfaces are well documented, but they are not sufficiently complete
to be considered straightforward to write open source software that allows
the device to operate properly and fulfil its essential functions.

3 – The interfaces are sufficiently documented such that it could reasonably
be considered straightforward to write open source software that allows the
device to operate properly and fulfil its essential functions. The necessary
software is released under an OSI-approved open source licence.

P6 - Processes 0 – The manufacturer is not able to provide any evidence of following
industry-standard best practice methodology for security-related aspects in
their infrastructure, even on explicit request.

1 – The manufacturer does not provide any formal public evidence of
following industry-standard best practice methodology for security-related
aspects in their infrastructures; however, they do satisfy some of the standard
related requirements and are able to produce evidence on demand (e.g. they
perform security testing and are able to declare to do so when asked).

2 – The manufacturer can provide some public evidence of following industry-
standard best practice methodology for security-related aspects in their
infrastructures; however, they do not follow a Secure Development Life Cycle
(SDLC) and do not possess any certification related to this topic.

3 – The manufacturer can provide formal public evidence of following
industry-standard best practice methodology for security-related aspects in
their infrastructure, such as the implementation of a Secure Development Life
Cycle, possibly with related certification (e.g. 62443-4-1).

P7 – Replicability 0 – The component and all of its parts can exclusively be replicated by the
manufacturer, with proprietary information.

1 – It is possible to obtain functional replicas of parts of the product with
publicly available open source information, however a fully functional replica
cannot be achieved.

2 – A fully functional replica of the component may be built by anyone with
publicly available open source information; however, some parts of the
component may not be open source and may therefore require to be
integrated "as-is" (e.g. proprietary Java Card applet for a secure token).

3 – The component can be fully replicated by anyone in its design and
functionality, leveraging publicly available open source information.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 14

Property Scores

P8 - Documentation 0 – The documentation is not furnished with the physical product and cannot
be recovered in any way.

1 – The documentation can be obtained by paying for it or signing an NDA.

2 – Documentation is not provided with the physical product. It is possible
(but difficult) to find it via the Internet without charge.

3 – The documentation is furnished with the physical product (or it is trivial to
find it).

P9 – Code examples 0 – Code examples are not provided with the product, and cannot be found
anywhere.

1 – Code examples are not provided with the product, few undocumented
ones can be found on the Internet with some effort.

2 – Code examples are not provided with the product, but it is possible to
easily find them on the Internet (e.g. from the community).

3 – Code examples are provided with the product (or can be easily found and
downloaded directly from the manufacturer's website).

This Table is the result of our best effort, and it is the current state of our work. It is clear that it could
be extended, in case that a new property is added in the list of studied properties. Also the range of
the scores could be changed in future, becoming stricter or larger, including more possibilities and
nuances in the levels of the properties.

2.5.2 Final Score

Using what we described so far, we are able to compute a vector of scores for each hardware
component. However, it is useful to compute a final score, which summarises how much an hardware
component is open source.

Our first attempt in this direction was to compute the mean of the vector scores, and round the result
to the closest integer. For example (Figure 3), a component can have the following scoring vector:

𝑐 = 1 0 2 1 3 2 1 2 2 2

Hence in this case the overall score is 𝑚𝑒𝑎𝑛(1,0,2,1,3,2,1,2,2,2) = 1.6 which is rounded as 2.

Figure 3: Example: computation of the final score as mean of scores in the vector.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 15

However, this approach cannot be the most realistic one, because the formula gives the same weight
to each property. Indeed, we are giving the same weight to all the properties, and consequently we
are computing a mean that gives more importance to the properties in the infrastructure and
ecosystem groups, and less to the properties in the component group (see Section 2.4.2 -
Categorization of Properties in Sets for more details). This is because the number of properties listed
under the component group are less in number than those in the other two groups.

Thus, our improvement to this approach is to first compute the mean of the scores of each group,
and then compute the mean of the means which becomes the final result (weighted mean).

Let 𝑐 be the scoring vector of a component, as in previous example (Figure 4):

𝑐 = 1 0 2 1 3 2 1 2 2 2

Now we compute:

- The mean of the scores in each group:
o 𝑚1 = 𝑚𝑒𝑎𝑛(1,0) = 0.5

o 𝑚2 = 𝑚𝑒𝑎𝑛(2,1,3,2) = 2
o 𝑚3 = 𝑚𝑒𝑎𝑛(1,2,2,2) = 1.75

- The overall score: 𝑚𝑒𝑎𝑛(𝑚1, 𝑚2, 𝑚3) = 𝑚𝑒𝑎𝑛(0.5,2,1.75) = 1,42 which rounded is 1.

Note that by giving more importance to the two properties in the component group (that have very
low scores), the mean is reduced and then also the overall score.

Figure 4: Example: computation of the final score as mean of means of scores in the groups.

We prepared a template that allows the evaluator to easily score a hardware component simply by
filling a table with the scores of the properties. In particular, the file has the following sheets:

● Views: in this sheet the list of the analysed views and the diagram that we presented in
Section 2.3 - Views are reported. This is a useful memo to find the best view in which place
the hardware component that is under study.

● Properties and scores: this table collects the list of properties, divided into the three sets
Component, Ecosystem, and Infrastructure (Section 2.4.2 - Categorization of Properties in
Sets). For each property a short description and the meanings of the scores are reported
(Section 2.5 - How to Score Hardware Open sourceness).

● Computation of the final score: here we present a short explanation on how the final scores
are computed. In particular, in this attached file we have reported the two methods of scoring
proposed in this Section. We recall that method 1 consists of computing the final score as
simply the mean of the scores of all the properties without distinction. On the other hand, in
the second method the means of the properties in the sets are computed separately, and the
final result is computed as the mean of these means.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 16

● The last four sheets contain the table for evaluation (Evaluation View 0, Evaluation View 1,
Evaluation View 2, Evaluation View 3). If the hardware component under evaluation is in view
0, then column Score in sheet Evaluation View 0 needs to be filled; similarly, when
considering view 1 sheet Evaluation View 1 needs to be chosen, and so on. Note that the
tables for the evaluations are all equal, except for view 0, for which the three properties of
Software ecosystem, Firmware, and Processes cannot be evaluated. In each sheet, it is
possible to choose between the computation of the score with method 1 or method 2 (or
both).

For example, if the hardware component belongs to view 0, then the table that has to be filled (with
method 1 or 2) is the one in Figure 5. Note that in this case some properties are dimmed and must
not be filled, since these properties can’t be defined for a hardware in view 0 (see Section 2.4.1 -
Applicability of Properties to Views). By filling the column titled Score, the last three columns on the
right are automatically compiled. In case of using method 2, the column closest to the Score one is
filled with the means of the scores grouped in the sets; the next one is the mean of means, not
rounded. The last column Final score is the last computed mean rounded.

Figure 5: Tables for the final score computation in sheet Evaluation view 0.

2.6 How to Apply our Open source Definition: Case Studies

In this Section we present an example of scoring a hardware component for all the views. In
particular, the hardware evaluated are listed below:

● V0: UMC
● V1: OpenTitan
● V2: TROPIC01
● V3: Trezor

For each view, the set of properties (defined in Section 2.4 - Properties) are evaluated. The final
score achieved by each of the components is a composition of the scores of the singular properties.

In the scoring process of component properties, the evaluator relies on information sourced from
official channels: unofficial or unlicensed sources or artefacts that disclose relevant details on a
component/development are not taken into consideration when not explicitly authorised by the

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 17

original author/owner of a component/development (think for example of reverse engineering
attempts from the community), as they do not bring any open source-related "merit" to the project.
The scores are assigned ranging from 0 (indicating closed-source) to 3 (representing open source).
The score is assigned by the evaluator according to its subjective assessment. However, such an
assessment shall be influenced by factors such as the difficulty in retrieving information and the
physical accessibility of the material. If some material is reserved and some is freely available, the
evaluator can pick a score which is between 0 and 3 according to its knowledge and experience. In
order to achieve a coherent and unbiased assessment, the results should be reviewed multiple times
by differently experienced evaluators.

These examples have been computed using the template presented in Section 2.5.2 - Final Score.
We filled the column corresponding to the scores vector, one table per example. Then our templates
automatically compute the final scores. For sake of completeness, we report the results with both
the presented scoring methods.

2.6.1 V0 - Technology Library

As a first example for a component in V0, we present in this Section the United Microelectronics
Corporation (UMC) technology library.

UMC is a Taiwanese semiconductor company. It is specialised in the manufacturing of integrated
circuits (ICs) for a variety of applications.

Among UMC products, we consider the technology library UMC, and in Table 4 we report our scoring
table for this component in V0. The evaluation reported in the Table is performed with the second
method described in Section 2.5.2 - Final Score, i.e. computing the means for the properties in sets
of component, ecosystem, and infrastructure, and obtaining the final result as the mean of these
means.

Table 4: Scoring for the Technology Library UMC with the second method.

 Properties Score Final score

COMPONENT

Source code and

design files
0

0

0,67 1

Licences 0

ECOSYSTEM

Design tools 2

2

Toolchain 2

Software

ecosystem

Firmware

INFRASTRUCTURE

Processes

0

Replicability 0

Documentation 0

Example code 0

The final rounded score of 1. This first result suggests that this library can be considered more
closed-source than open source. By analysing more in depth the individual properties scores, it is
possible to note that all the properties belonging to the sets component and infrastructure are
evaluated as the lowest scores possible (all zeros), whereas the properties related to the set

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 18

ecosystem have higher scores (all twos). This means that the closeness of the UMC library is mostly
caused by the features related to its components and infrastructure.

2.6.2 V1 – CPU / IP

The second example, concerning a hardware component in V1, is Open Titan. OpenTitan is an
open source silicon root of trust project. It aims to provide a fully open and transparent solution for
building hardware security chips. OpenTitan is a collaborative effort led by Google, along with several
other organisations.

The main goal of OpenTitan is to address the increasing need for secure hardware in various
industries, including data centres, cloud infrastructure, and connected devices. The project focuses
on creating a trustworthy, open source reference design and integration guidelines for silicon root of
trust chips.

The OpenTitan project incorporates various security features, such as cryptographic accelerators,
secure boot, key management, and hardware-based attestation. The project aims to develop a
robust and flexible solution that can be customised to meet the specific security requirements of
different applications and industries.

In Table 5 we report our scoring table for this component in V1, another time evaluating it with the
second method described in Section 2.5.2 - Final Score.

Table 5: Scoring for Open Titan with the second method.

 Properties Score Final score

COMPONENT

Source code and

design files
3

3

2,75 3

Licences 3

ECOSYSTEM

Design tools 3

3

Toolchain 3

Software

ecosystem
3

Firmware 3

INFRASTRUCTURE

Processes 3

2,25
Replicability 0

Documentation 3

Example code 3

The final rounded score is 3, suggesting how this IP can be considered actually an open source
hardware component. Indeed, by providing an open source reference design, OpenTitan enables
transparency, peer review, and collaborative development for hardware security. It allows anyone to
access, use, and contribute to the project, fostering innovation, security, and standardisation in the
domain of hardware security. Moreover, the project aims to develop a robust and flexible solution
that can be customised to meet the specific security requirements of different applications and
industries.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 19

As can be noted by the Table, all properties received the maximum score possible, except for
Replicability, because it depends on the ASIC manufacturing limitations.

2.6.3 V2 - Chip / SoM

The third example, specific for a hardware component in V2, is the secure element TROPIC01.

TROPIC01 is the first of Tropic Square’s secure element series. It supplies and stores the
cryptographic keys of embedded systems. It is built with dedicated secure HW engines to provide
cryptographic algorithms, a set of sensors for anti-tampering, and design practices to protect against
a wide range of attacks.

In Figure 6 the TROPIC01 schematic is shown, with its parts and functionalities.

Figure 6: TROPIC01 schematic.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 20

Table 6 shows the scoring table for TROPIC01.

Table 6: Scoring for TROPIC01 with second method.

 Properties Score Final score

COMPONENT

Source code and

design files
3

3

2,67 3

Licences 3

ECOSYSTEM

Design tools 3

3

Toolchain 3

Software

ecosystem
3

Firmware 3

INFRASTRUCTURE

Processes 2

2

Replicability 0

Documentation 3

Example code 3

The final rounded score results in 3. All but two properties have been evaluated with the higher score
(3). The only exceptions that do not have the maximum score are Processes and Replicability.
Processes has score 2 because, although the manufacturer (Tropic Square) provides some public
evidence of following industry-standard best practice methodology for security-related aspects in
their infrastructure, it does not follow a Secure Development Life Cycle. Replicability has score 0
because the component and all of its parts have proprietary information and can only be replicated
by Tropic Square.

Here, it is possible to note that even though the means are lowered by these not-optimal values, the
final score is the highest possible, therefore TROPIC01 can be considered to be open source.

2.6.4 V3 - Device

The fourth example, specific for a hardware component in V3, is the Trezor hardware wallet.

Trezor is a brand of hardware wallets designed for securely storing and managing cryptocurrencies.
Developed by SatoshiLabs, Trezor devices provide an offline, cold storage solution for protecting
private keys and conducting cryptocurrency transactions.

In Table 7 we report our scoring tables for this V3 component.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 21

Table 7: Scoring for Trezor with the second method.

 Properties Score Final score

COMPONENT

Source code and

design files
3

3

2,92 3

Licences 3

ECOSYSTEM

Design tools 3

3

Toolchain 3

Software

ecosystem
3

Firmware 3

INFRASTRUCTURE

Processes 2

2,75

Replicability 3

Documentation 3

Example code 3

Once again, the result is a final rounded score 3. Indeed, Trezor's software and hardware are open
source, allowing developers and security experts to review and audit the code for any potential
vulnerabilities or issues.

Also, as can be noted by the scores in the Table, the exact score is close to the maximum: all singular
values reach 3, except for Processes property, which has score 2. As before, the manufacturer
follows security best practices, the development is public so there is review by the community and
also bounty programs motivate security researchers to contribute. However, a Secure Development
Life Cycle is not implemented or certified for the creation of the device.

2.7 How to Score Hardware with Subcomponents

In general, scoring the bare hardware component cannot reflect a very realistic outline of how much
a hardware device is open source. For this reason, we decided to push our effort in trying to include,
in the component that we are evaluating, also the scores of the subcomponents (or at least the more
representative ones).

We define a subcomponent scoring method that allows to compute the score of a device or a
component belonging to a view different from view 0. Indeed, we can compute the vector of scores
for the component considering both its vector of scores and the vector of scores of the
subcomponent, merged together with different weights.

More in detail, to apply the subcomponent scoring method, next steps have to be followed.

1. Compute the vector 𝑐 containing the scores of the properties of the component currently
under study. Identify the j-th element of 𝑐 as 𝑐𝑗.

2. Compute the vectors 𝑐𝑖 of the scores of the subcomponents, one score for each property.

Identify the j-th element in the i-th vector as 𝑐𝑗
𝑖.

3. Compute the vector of means 𝑚 of the scores of the subcomponents. The j-th element in 𝑚

will be 𝑚𝑗 = 𝑚𝑒𝑎𝑛(𝑐𝑗
0, 𝑐𝑗

1, …).

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 22

4. Give a weight 𝑤𝑐 ≥
1

2
 to the scores of the current component and a weight 𝑤𝑚 = 1 − 𝑤𝑐 to the

mean of the scores of the subcomponents.
5. The vector of the weighted scores of the current component is 𝑐∗, where each element is

given by

𝑐𝑗
∗ = 𝑤𝑐 ∗ 𝑐𝑗 + 𝑤𝑚 ∗ 𝑚𝑗

6. The final score is computed with one of the methods described in Section 2.5.2 - Final Score,
applied on the vector of 𝑐𝑗

∗.

As specified in point 4., this formula gives more weight to the score of the current component than
the scores of the subcomponents, but the final result can be heavily influenced by the latter.

In particular, in our observations and applications of this method to known devices, we decided to

assign to 𝑤𝑐 the value of 0.75, and to 𝑤𝑚 the value of 0.25.

2.7.1 Numeric Subcomponent Scoring Example

In this Paragraph we present a numeric example, to understand the application of the method step
by step.

1. Vector 𝑐 containing the scores of the properties of the component that we are hypothetically

studying is:

𝑐 = 3 3 3 3 2 3 3 1 2 3

The current score of the component, that is the mean of the element in 𝑐 rounded to the
nearest integer, is 3.

2. Suppose that it has 2 subcomponents, 𝑐0 and 𝑐1. The vectors of the scores of these
subcomponents are:

𝑐0 = 1 0 3 1 2 0 2 0 2 3

𝑐1 = 0 1 3 2 1 1 3 0 1 1

3. We compute the vector of the means:

𝑚 = 0.5 0.5 3 1.5 1.5 0.5 2.5 0 1.5 2

4. We assign the weight 𝑤𝑐 = 0.75 to the score of the current component and a weight of 𝑤𝑚 =
0.25 to the mean of the scores of the subcomponents.

5. The vector of the weighted scores of the current component is 𝑐∗ (each element 𝑐𝑗
∗ is rounded

to the closest integer):

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 23

𝑐𝑗
∗ = 2 2 3 3 2 2 2 1 2 3

6. To compute the final score of the studied component, we follow the first method presented
in Section 2.5.2 - Final Score. Then, the overall score is the mean of 𝑐𝑗

∗, which rounded to

the closest integer is 2. Note that taking into account the open sourceness of the
subcomponents has decreased the score of the studied component.

Table 8 resumes all the previous computations.

Table 8: Numerical example of how to score a component taking into account its subcomponents.

 𝑃0 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 𝑃8 𝑃9 Final score
(rounded

mean)

𝑐 3 3 3 3 2 3 3 1 2 3 3

𝑐0 1 0 3 1 2 0 2 0 2 3

𝑐1 0 1 3 2 1 1 3 0 1 1

𝑚 0.5 0.5 3 1.5 1.5 0.5 2.5 0 1.5 2

𝑐∗ (exact) 2.38 2.38 3 2.63 1.88 2.38 2.88 0.75 1.88 2.75

𝑐∗ (rounded) 2 2 3 3 2 2 2 1 2 3 2

We prepared a template in which the final score is automatically computed. In this case, the file is
composed of one sheet. In this sheet, there are two Tables (Figure 7), one for method 1 and one for
method 2, and the user can decide which method to apply to compute the final score (see Section
2.5.2 - Final Score). In these Tables it is possible to insert the vector of the actual scores of the
component under study, the vector of the scores of the subcomponents, and automatically the new
score for the component is computed, taking into account also the subcomponents. Note that we
assign a weight of 0.75 to the component’s properties, and a weight of 0.25 to the subcomponents
properties. Lower-right cell is the final rounded score for the hardware component under study.

Figure 7: Tables for the computation of the score of a component considering also the score of
subcomponents; one Table is for method 1 and one is for method 2.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 24

2.7.2 Case Study: Raspberry Pi 4

Raspberry Pi 4 is a single-board computer launched by the Raspberry Pi Foundation in 2019. It is
the latest addition to the Raspberry Pi series, at the time of writing. Raspberry Pi 4 is a machine that
can be used for a wide range of applications, including IoT projects and industrial solutions. The
Raspberry Pi 4 is built with a Broadcom BCM2711 SoC, based on quad core ARM A-72 processor
that runs at 1.5GHz. The board comes with up to 8GB of RAM and supports USB 3.0, dual-band Wi-
Fi and Bluetooth 5.0 module. The Raspberry Pi 4 runs on the latest version of Raspberry Pi OS,
which is built on Debian Linux (Figure 8).

Figure 8: Raspberry Pi 4 [Raspberry Products].

In this Section, we test our subcomponent scoring method to evaluate its effectiveness and its
robustness by analysing the Raspberry Pi 4. Although the Raspberry Pi 4 was designed mainly to
spread the use of compute modules by developers [Raspberry About] and the Raspberry Pi
Foundation has never claimed its products as open source solutions, it is commonly associated with
the open source world among the developer community. This perception can be related to the
plethora of resources that are available from and by the community (e.g., project [Home Assistant]).
In particular, the aspect we observe in this analysis regarding Raspberry Pi 4 is that it defines a clear
division between software and hardware: the software being open source and the hardware being
strictly closed.

Table 9: Analysis of the Raspberry PI4.

RASPBERRY PI4 Properties Score

COMPONENT

Source code and design
files 2

2 Licences 2

ECOSYSTEM

Design tools 3

3

Toolchain 3

Software ecosystem 3

Firmware 3

INFRASTRUCTURE

Processes 1

2,25

Replicability 2

Documentation 3

Example code 3

FINAL SCORE 2

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 25

Table 10: Analysis of the Broadcom BCM2711.

BROADCOM BCM2711 Properties Score

COMPONENT

Source code and design
files 0

0 Licences 0

ECOSYSTEM

Design tools 0

0

Toolchain 0

Software ecosystem 0

Firmware 0

INFRASTRUCTURE

Processes 0

0,75

Replicability 0

Documentation 3

Example code 0

FINAL SCORE 0

As shown in the previous Tables, the analysed views are two. Table 9 represents the device, which
is the Raspberry Pi 4 itself. In such a view (V3), the score is 2 and it is easy to retrieve information
about the components and the software that drives them.

The analysis is interrupted at the very next view: Chip/SoM (V2), in Table 10. The BCM2711 SoC is
manufactured by Broadcom, which does not provide detailed information about the schematics and
the architecture of its subcomponents. Since it is not possible to easily access and evaluate the Chip
details, being trade secrets, we assign 0, the lowest score for this level. Without having access to
the information of this level, it is not easy to recover the details about the subcomponents, thus the
analysis stops.

From the analysis, it is clear the separation between the software and hardware. For example, a
specific observation can be made about Linux, which is free and open source and allows many of
the licensing restrictions software-related to be avoided. However, the latter observation should be
considered true for all devices that allow the installation of open distributions and variants of the
operating system. Thus, the evaluation of this aspect needs to be softened by the weight of the
evaluations of the other (more specific) properties. Moreover, the fact that the operating system is
open source, does not imply that the whole product can be considered as such. The closed aspects
of its low level components should be part of the final score. Our scoring method is capable of
managing this information and altering the final score according to each subcomponent.

We apply our scoring system and retrieve the final score for Raspberry Pi4 considering the
subcomponent BCM2711 (Figure 9). Note that now the not rounded final score of Raspberry Pi4 is
lower than before (i.e., final score 2.4 without BCM2711, final score 1.9 with BCM2711).

Figure 9: Scoring Raspberry Pi4 considering the subcomponent BCM2711.

For comparison purposes, we evaluate the Toradex Apalis IMX6 (Figure 10) and its subcomponents,
in Table 11. Apalis is a scalable System on Module (SoM) / Computer on Module (CoM) family that

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 26

aims to provide high performance in a compact form factor. In particular, the Apalis IMX6
implementation embeds an IMX6 processor by NXP, in Table 11.

Figure 10: Apalis IMX6 [Toradex Apalis].

The Apalis IMX6 is not meant to be an open source alternative to the Raspberry PI 4. However, the
score reached by the Apalis IMX6 is higher.

Table 11: Analysis of the Toradex Apalis IMX6.

TORADEX APALIS IMX6 Properties Score

COMPONENT

Source code and design
files 2

1,5 Licences 1

ECOSYSTEM

Design tools 3

3

Toolchain 3

Software ecosystem 3

Firmware 3

INFRASTRUCTURE

Processes 3

2,75

Replicability 2

Documentation 3

Example code 3

FINAL SCORE 2

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 27

Table 12: Analysis of the NXP IMX6.

IMX6 Properties Score

COMPONENT

Source code and design
files 2

1 Licences 0

ECOSYSTEM

Design tools 2

2,25

Toolchain 3

Software ecosystem 2

Firmware 2

INFRASTRUCTURE

Processes 1

1,5

Replicability 1

Documentation 1

Example code 3

FINAL SCORE 2

In Figure 11 the score for Toradex Apalis considering the subcomponent IMX6 is shown. The higher
score w.r.t. the one in Figure 9 is justified by taking into account the subcomponents. The Raspberry
Pi 4 embeds the BCM2711 processor, which is a custom and close implementation of the ARM
architecture from Broadcom. On the other hand, the Apalis module embeds the IMX6 from NXP,
which provides some information freely or just by creating an account on the official website. In
conclusion, although the IMX6 is not an open source solution, the amount of available information is
greater.

Figure 11: Scoring Toradex Apalis considering the subcomponent IMX6.

A fully open-hardware solution that can be compared with the previous two products is the USB
Armory Mk II from F-Secure now named WithSecure [USB Armory]. The USB Armory is an open
source hardware design, implementing a flash drive sized computer. The main focus of this product
is to provide a system that takes advantage of the shelf components and can be completely
customizable.

Figure 12: USB Armory Mk II [USB Armory Mk II].

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 28

The analysis in Table 13 highlights a higher score with respect to the previous cases. As in the
previous cases, the final score is altered by the subcomponents. Since the processor on the USB
Armory Mk II is the NXP IMX6, for this subcomponent we consider the scores reported in Table 12.

Table 13: Analysis of the USB Armory Mk II.

USB Armory Properties Score

COMPONENT

Source code and design
files 3

3 Licences 3

ECOSYSTEM

Design tools 3

3

Toolchain 3

Software ecosystem 3

Firmware 3

INFRASTRUCTURE

Processes 3

3

Replicability 3

Documentation 3

Example code 3

FINAL SCORE 3

In Figure 13 the score for USB Armory considering the subcomponent IMX6 is shown. The mean of
the scores in the vector is slightly lower than the previous one, because we took into account the
subcomponent IMX6, which is not an open source solution. However, the final rounded score doesn’t
suffer from that, and remains the highest possible (3).

Figure 13: Scoring USB Armory considering the subcomponent IMX6.

We conclude that the model that we propose in this work is valid to analyse most common cases.
The scoring inheritance allows us to evaluate the final product according to the score of all the
elements of the system. However, some improvements can be introduced to enhance the evaluation
and to support different or unusual scenarios.

2.8 Considerations about this Scoring System

Our scoring system offers valuable insights in the context of open source hardware, such as the
capability to define a hardware component as part of a specific view and the possibility to compare
two components in the same view on their open sourceness. However, it has the potential for
improvement and may not encompass all possible scenarios.

One possible improvement involves the enhancement of the scoring criteria and the properties
defined. Currently, the properties proposed in this document can cover most of the main aspects of
an hardware design; however, according to further research, more or different properties may be
identified, in order to provide support for novel scenarios. The same reasoning applies to the property
categorizations.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 29

Another limitation of the scoring system is related to the granularity of the scores. In an attempt to
provide an overview of the main properties of the entire system, rounded scores are often utilised.
This approach allows evaluators to visualise an overview of the entire system, without requiring to
focus on small (or irrelevant) details to balance scores in search of perfect consistency across
different analyses. Moreover, such an approach permits an easier interpretation for the non-experts,
who might not have instruments or interest in understanding nuances of the analysis that are too
technical.

On the other hand, having a rounded scoring system implies the loss of some information. By
rounding, certain distinctions among different properties are inevitably omitted. This approach
potentially limits the depth of analysis and understanding. This rounding can result in the merging of
scores that may have slight variations, blurring the distinctions between them. As a consequence,
the final scores of the analysis tend to be flattened towards mean values (e.g.: scores equal to 1 or
2). For example, according to the documentation available at the time of writing, it is not clear whether
the Raspberry Pi4 provides hardware support for secure boot, as opposed to the IMX6, which clearly
supports the Secure Boot. Nevertheless, the Raspberry Pi4 obtains good scores for all the
properties, since specific topics are not individually classified.

However, when thinking about the actual distribution that our scoring system should model, it is
natural that most evaluated hardware should score either 1 or 2; indeed, the extremes of 0 and 3
have been designed with the goal of modelling, respectively:

- completely closed-source projects, which are very frequent, but not the target of our evaluation;

- completely open source projects on most properties, which are rare.

In practical terms, if we do not consider completely custom solutions and we focus on system
designed to be publicly used, by performing the evaluation over a large number of parameters it is
difficult to encounter a product that obtains a maximum or a minimum score over all the three
categories defined by our model: component, ecosystem, infrastructure.

Another aspect that might be considered is the verifiability property. This property provides the
possibility of an evaluation about the components adopted in a system, with different levels of
granularity up to formal verification. Open source systems promote a transparent, collaborative and
inclusive approach. In order for a system to be considered transparent, it is necessary that anyone
with the necessary skills and expertise can review the source code, design files and up to hardware
components to assess the system's integrity, reliability, and adherence to established standards.
The verifiability property provides important information about how open a system can be
considered. However we think that the verifiability property is not fitting properly in the current model,
since it requires the evaluator to deeply analyse and understand the material provided by the
manufacturer in order to assign a coherent and fair score. Some aspects of verifiability will be
considered in the other work packages of the project.

In conclusion, our scoring system provides an improvement with respect to the current situation (no
universal definition/scoring system available) and it is robust to many different typical scenarios, as
shown in the previous Sections. As any other scoring system, it is susceptible to abuse aimed at
making it ineffective, as for the so-called Cobra Effect. The original concept derives from a historical
anecdote involving a failed attempt to control a cobra population. The Cobra Effect in scoring
systems highlights how well-intentioned solutions can lead to unexpected and undesirable
outcomes. In practical terms, a manufacturer may be interested in maximising the scores without
providing support for the core values of the open source design concept. These fallacies can occur
in the real world. For example, a recent case involves a well-known graphic card manufacturer. The
latter was recently at the centre of a debate for claiming to provide open source drivers. However,
prior to release to the community, proprietary technologies were moved from the driver to the
device's closed firmware. From our point of view, mitigating such cases requires foresight,
transparency, and ongoing evaluation to ensure fairness and meaningful results.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 30

Chapter 3 Definition of the Trusted Life Cycle

3.1 Overview

After having discussed a definition and scoring method for open source hardware, we now proceed
with analysing the core contribution of our research reported in this document, that is the definition
of the Trusted Life Cycle (TLC) for ORSHIN including its phases and process requirements.

We start our journey with introductory considerations on requirements, then move onto analysing
process-oriented international standards, and afterwards we make our proposal for the definition of
the TLC phases and requirements.

The development of a secure component relies on two pillars:

● A set of requirements and best practices for the technologies used to provide the component
with a certain level of security and privacy. We call these product requirements.

● A set of requirements and best practices for structuring the development process itself, the
security of the development environment, and any process/procedure not part of, but related
to, the development of the secure component. We call these process requirements.

Some cybersecurity-focused standards are focused on the process (for example, ISO 27001), while
others are targeting the product (for example, ISA/IEC 62443-4-2). Many standards include a mixture
of these types of requirements, and do not make a clear distinction (this is the case, for example, of
NIST SP 800-53). Our goal is to explore the definition of a Trusted Life Cycle for secure open source
hardware, specifically focusing on process-related aspects for Task 2.1.

Given the literature on process requirements, we start from existing knowledge, and try to shift
towards the relatively new and unexplored context of open source hardware. In fact, most existing
cybersecurity standards either come from the world of IT systems, and therefore focus almost
exclusively on software requirements, or recently from the world of Industrial Automation Control
Systems (IACS) and Internet of Things (IoT) systems, which have some hardware-related aspects.
However, even when standards are related to IoT systems, they lack the depth and specificity to
accurately model low-level hardware development, and any reference to open source.

Back to our initial goal and given the above considerations, we make the remarks that follow.

1. We wish to preserve the valuable knowledge from public documents and repositories,
international standards and regulations. Therefore, we start from a review of the state-of-the-
art, gathering:

a. Requirements that apply to a generic secure life cycle, regardless of its technological
nature. This is the case, for example, of governance requirements and cryptography
best practices.

b. Requirements that do not specifically apply to the context of open source hardware,
but which can provide valuable content if adapted or partially rewritten.

c. Knowledge that is specific to the worlds of hardware and open source, but does not
yet possess the status of "requirement" for any secure life cycle.

We build on this information to produce content that is coherent with existing knowledge on
secure life cycles.

2. We provide definitions for the phases of our Trusted Life Cycle for open source hardware,
specifically:

a. Explaining what is a life cycle and how it becomes trusted as a result of the
composrition of various, adequately chosen security requirements.

b. What peculiarities that are specific to hardware design and development must be
considered, and how they impact the definition of the life cycle and its phases.

Our work on this topic is articulated in the next Sections. We first explore the state-of-the-art (Section
3.2 - State-of-the-art) and review some of the main cybersecurity standards that provide valuable

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 31

input with respect to secure life cycles and process requirements (Section 3.3 - Review of Main
Cybersecurity Standards for Process Requirements). Afterwards, we choose a promising source as
a starting point for drafting the requirement of our Trusted Life Cycle (Section 3.4 - Definition of the
Trusted Life Cycle Phases), which is then adapted in order to draft a first version of the ORSHIN
Trusted Life Cycle process requirements (Section 3.5 - Process Requirements for the ORSHIN
Trusted Life Cycle).

3.2 State-of-the-art

The life cycle of a system refers to the complete sequence of stages and activities that the system
undergoes, from its creation to its eventual retirement. It encompasses design, development,
implementation, operation, and disposal, providing a structured framework for managing and
maintaining the system throughout its entire lifespan.

The literature is rich of definitions and examples for the concept of Secure Development Life Cycle
(SDLC). Under this term are grouped a series of procedures and best practices for trying to
guarantee that a development process has the higher chances of producing, as output, a product
that has a good starting security posture, and for which any security defect discovered after release
will be handled appropriately.

The fundamental idea behind the adoption of a SDLC is that of security-by-design, namely the idea
that security should be integrated in development practices from the beginning of a product's life
cycle (i.e., the definition of the functional context and of the requirements) to its end (i.e. when the
product is decommissioned and retired from the field).
This concept is opposed to the wide-spread bad habit of security-after-the-fact, i.e. considering it as
a step of the product life cycle, typically late in development and close to release.

To understand why the security-after-the-fact approach is dangerous, consider the topic of testing:
if security-related tests begin only after development, it is easy to see how issues can have
unforeseen impact, requiring changes in design and implementation choices that were supposed to
be consolidated (we refer to them as milestones).

An example of such a milestone is the final choice of hardware that will compose the product,
constituting its Hardware Bill Of Materials (HBOM, see Section 4.3 State-of-the-art: Component
Inventory for more details). Typically, changing the HBOM after it is approved will range from costly
(if the wrong components have been already ordered) all the way to impossible (if production has
already happened), with related consequences on the business and of the security of the product.

A threat model is a conceptual representation or framework that identifies and evaluates potential
threats, vulnerabilities, and attack vectors within a system or application. It helps understand the
security risks, prioritise mitigation efforts, and guide the development of effective security measures
to protect against potential threats.
If the security requirements are clear from the beginning, a threat model is made accordingly, and
the product design conforms to such a threat model, the selection of components for the HBOM will
be easy, whereas if these activities are performed erratically, it is more probable that components
with the wrong features will be selected.
To summarise, security-by-design is an approach that allows distributing the risk of such a mistake
over time, with multiple checkpoints that allow to catch human error, whereas security-after-the-fact
concentrates all the risk in single points in time, making it possible for single high-impact decisions
to be taken without justification.

A typical composition of a Secure Development Life Cycle for a hardware product, therefore, will
typically touch the following definitions:

- Product's operating context.
- Security requirements.
- Product design best practices.
- Implementation best practices.
- Testing types and related best practices.
- Vulnerability management process.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 32

- Maintenance operations (e.g., definition of procedures for the release of security updates).
- Cybersecurity product information
- Procedure for the retirement of the product from the field.

Most of these aspects are not recent, and can benefit from consolidated knowledge coming from the
domain of IT cybersecurity. Nevertheless, the definition of comprehensive approaches for the secure
development life cycle is more recent, especially in the relatively newer contexts of Industrial IACS
and Internet of Things (IoT).

One of the first works to extensively cover the concept of Secure Development Life Cycle is [Howard
2006]. The book describes Microsoft's history and choices with respect to their implementation of an
internal Secure Development Life Cycle. Microsoft SDL has been first developed internally, and
made available publicly since 2004, and remains one of the standard approaches for implementing
a Secure Development Life Cycle.

Since then, alternative models and frameworks for implementing secure life cycles have been
proposed. Notable examples include the Software Assurance Maturity Model (SAMM) [OWASP
SAMM]; the Building Security in Maturity Model (BSIMM); and the Comprehensive, Lightweight
Application Security Process (CLASP), but also the Secure Development Life Cycle described by
IACS cybersecurity standard ISA/IEC 62443, particularly by its section ISA/IEC 62443-4-1.

An article from 2010 covers the topic of actual adoption of SDLCs in companies [Geer 2010], and
provides insight of real-world difficulties in conforming to these relatively new methodologies.

3.3 Review of Main Cybersecurity Standards for Process Requirements

Nowadays there are several cybersecurity standards to certify the security of connected devices,
and the number is growing. All of them require that some processes are in place to guarantee the
security properties of the final product.

We made a selection among the most relevant generic cybersecurity standards, prioritising the ones
with a context closer to the one of ORSHIN; we analysed their characteristics to find their
commonalities and differences, and also their gaps in terms of coverage of the domains of hardware
and open source.

The standards that we have considered are the following:

● ISA/IEC 62443
● ISO 27001
● NIST SP 800-53
● ENISA Good Practices for Security of IoT
● CSA IoT Security Controls Framework
● ETSI EN 303 645

Among these, ENISA Good Practices for Security of IoT, CSA IoT Security Controls Framework and
ETSI EN 303 645 provide requirements and recommendations specific for the security of IoT devices
and systems, therefore we mostly consider their requirements as a starting point for drafting the
requirements of the ORSHIN Trusted Life Cycle.

In the following Section, we describe the standards listed earlier and present our considerations
regarding their applicability in the ORSHIN context.

3.3.1 ENISA Good Practices for Security of IoT

The “ENISA Good Practices for Security of IoT” is a document authored by ENISA in 2019, the
European Union Agency for Cybersecurity, collecting good practices for IoT security. The document
primarily focuses on software development guidelines for ensuring the security of IoT products and
services throughout their entire life cycle.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 33

Although these guidelines are specific to IoT devices, which include software and hardware
components, the ENISA document addresses mainly the security of the software components
(including firmware, communication protocols, operating systems, and device drivers). Indeed, the
purpose of the document is to define security requirements for the Software Development Life Cycle
(SDLC). This includes the definition of security measures that apply to the entire IoT ecosystem (e.g.,
communications, networks, and cloud) to strengthen the security of the development process.

The phases of the SDLC identified by ENISA are the following.

Figure 14: SDLC phases defined in ENISA Good Practices for Security of IoT.

1. Requirements. This phase involves the definition of business and functional requirements,
which will be the starting point for the definition of technical specifications that will guide the
later stages. This allows to implement security by design principles, having in mind that
security does not come as an afterthought.

2. Software Design. During this phase the architecture and the design of the IoT device are

outlined. This includes the definition of system specifications (how the IoT solution will work),
starting from the business and functional requirements.

3. Development/Implementation. This phase includes the part of coding (and, in particular,
secure coding), starting from the specifications defined in the previous phase.

4. Testing and acceptance. This phase encompasses all necessary steps to ensure that the
developed software meets the identified requirements and design principles from earlier
phases. It includes both automated and manual testing of the source code and running
software.

5. Deployment and integration. This phase involves integrating all essential software
components into the production environment and deploying them.

6. Maintenance and disposal. In this phase, continuous maintenance is performed to ensure
the availability and integrity of the IoT device’s functionalities. This includes, for example,
over-the-air update procedures and security maintenance (e.g., vulnerability continuous
monitoring, penetration tests, threat detection and response, etc.). In addition, secure
disposal is defined, to be applied when the IoT software becomes obsolete to preserve
privacy management.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 34

The phases outlined for the SDLC are similar from those identified in the ORSHIN project for the
definition of the Trusted Life Cycle (TLC), which will be detailed in Section 3.4 - Definition of the
Trusted Life Cycle Phases. However, ORSHIN's TLC phases are designed to include the steps
specific to the implementation of open source hardware, which this SDLC does not take into account.

Overall, the ENISA framework is quite comprehensive and not overly detailed. It defines high-level
requirements and associates them with the SDLC phases, standard references (e.g., ISA/IEC
62443) and threats for which the requirements are a countermeasure.

The security requirements are divided into three categories, namely: people, process, and
technology. In particular, process-level requirements are defined, which are particularly useful as a
reference for defining process requirements for ORSHIN's TLC. An example of a SDLC process
requirement is in the following Figure 15.

Figure 15: An example of process security requirement defined in ENISA Good Practices for Security of IoT.

ENISA Good Practices for Security of IoT has been chosen as the starting point for defining the
process requirements for ORSHIN's TLC. It constitutes a baseline for the definition of the TLC
phases in the ORSHIN context, but it lacks specific requirements for open source hardware.

3.3.2 ISA/IEC 62443

ISA/IEC 62443 is a series of standards developed by ISA99, i.e., the ISA (International Society of
Automation) committee for Industrial Automation and Control Systems Security, and produced by
IEC (International Electrotechnical Commission). It is a structured and extended standard,
composed of 14 work documents, and divided in four tiers, i.e., General, Policies & Procedure,
System, and Component. These tiers, shown in the image below, characterise different aspects of
an organisation's security.

ISA/IEC 62443 introduces an approach for building secure systems based on the composition of
secure components, and provides both procedural and technical requirements for implementing
such a model.

Specifically, Tier 3 focuses on the system level, and the work document ISA/IEC 62443-3-3 contains
system-scoped requirements.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 35

Figure 16: The document structure of ISA/IEC 62443.

Tier 4 focuses on the component level, and is divided into two work documents:

1. ISA/IEC 62443-4-1 (Product Security Development Life Cycle Requirements) deals with how
a product’s development life cycle shall be managed to guarantee that the product’s security
level can be ensured throughout its lifetime. Specifically, it contains the requirements for
implementing a Secure Development Life Cycle; it also defines a maturity model, against
which it is possible to evaluate a specific implementation of a SDLC compliant with ISA/IEC
62443-4-1.
The Tier 4 SDLC requirements are divided into 8 categories, called "Practices":

a. Security management
b. Specification of security requirements
c. Secure by design
d. Secure implementation
e. Security verification and validation testing
f. Management of security-related issues
g. Security update management
h. Security Guidelines

Practise a is a category containing mostly high-level, general requirements for proper set up
of the SDLC framework; Practices b to h instead follow the product's life cycle from the
beginning to the end.

2. ISA/IEC 62443-4-2 (Technical Security Requirements for IACS components) deals with what

technical features the product should contain to meet the user’s expectations and needs in
terms of the product’s capability to respond to threats. Specifically, it contains the technical
requirements that a secure component must have in order to reach a certain security level,
representative of the resistance of the component against adverse cybersecurity events.

These levels are formally defined in ISA/IEC 62443, as follows:

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 36

Table 14: ISA/IEC 62443-4-2 Security Levels.

Security Level (SL) Definition

SL 0 No specific requirements or security protection necessary

SL 1 Protection against casual or coincidental violation

SL 2 Protection against intentional violation using simple means
with low resources, generic skills and low motivation

SL 3 Protection against intentional violation using sophisticated
means with moderate resources, IACS specific skills and
moderate motivation

SL 4 Protection against intentional violation using sophisticated
means with extended resources, IACS specific skills and
high motivation

Requirements in ISA/IEC 62443-4-2 are already mapped to the above Security Levels; for
reaching a certain level, a component must implement all the corresponding requirements.

As of today, it is possible to use ISA/IEC 62443-4-2 to evaluate the security of four distinct
types of components:

● Embedded devices
● Host devices
● Software applications
● Mobile devices

 ISA/IEC 62443-4-2 contains both component requirements that apply to all four categories
and requirements that are specific for a particular type of component.

For ORSHIN, ISA/IEC 62443-4-1 is a valuable reference for the definition of Trusted Life Cycle
process requirements, while ISA/IEC 62443-4-2 constitutes a good reference for outlining more
technical requirements.

3.3.3 NIST SP 800-53

NIST Special Publication 800-53, “Security and Privacy Controls for Information Systems and
Organizations”, is a widely recognized standard defined by the National Institute of Standards and
Technology (NIST), that provides a comprehensive set of security and privacy controls for federal
agencies (and other organisations) in the United States.

NIST SP 800-53 was initially published in 2005 as “Recommended Security Controls for Federal
Information Systems” and revised periodically thereafter. With the last revision (Revision 5),
published in 2017 and updated in 2020, the word “federal” was removed to indicate that the
regulations may be applied to all organisations, not just federal ones.

A control is defined as a measure that modifies or maintains risk, including processes, policies and
practices. NIST SP 800-53 defines a risk-based framework that guides the management and
implementation of security and privacy controls, to protect information systems and organisations
from a diverse set of threats. Security and privacy controls described in this standard have a well-
defined organisation and structure and address many different areas.

The controls are organised into 20 families, each distinguished by a two-character identifier (e.g.,
AC for Access Control). The following Table provides a schematic representation of the control
families.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 37

Figure 17: NIST SP 800-53 security and privacy control families.

Each family comprises base controls, that serve as foundational measures, and control
enhancements that can be implemented to augment the functionality and specifications of the base
controls, strengthening their effectiveness.

This framework is comprehensive and granular, and includes multiple controls. In fact, it can be
considered to be a baseline for the definition of more specific frameworks tailored to the particular
requirements of the context in which it is applied, rather than being strictly enforced for every control.
Many organisations use it as a starting point for developing their own security and privacy programs.

The catalogue of requirements offered by this framework is also flexible and offers various levels of
detail for each family of controls. This adaptability allows organisations to establish both high-level
and highly-detailed specifications (e.g., using control enhancements). In terms of high-level controls,
NIST SP 800-53 includes requirements that are comparable to those found in standards such as
ISO 27001, which can be classified as organisational controls. On the other hand, it includes
technical controls that delve into specific aspects of information security. For instance, within the
family of SA (System and Services Acquisition), are defined enhancements for Developer Testing
And Evaluation control concerning Static Code Analysis, Threat Modeling And Vulnerability
Analyses, Independent Verification Of Assessment Plans And Evidence, Manual Code Reviews,
Penetration Testing, or within the family of SI (System and Information Integrity) are defined
enhancements for Software, Firmware, and Information Integrity control for Verify Boot Process and
Protection Of Boot Firmware.
For ORSHIN, NIST SP 800-53 provides value as a possible source and reference for requirements,
showing a comprehensive approach that embraces many different aspects of IT security.

3.3.4 ISO 27001

ISO/IEC 27001 is an international standard for information security management systems (ISMS)

developed by ISO, the International Organization for Standardization. It provides a framework for

organisations to establish, implement, maintain, and continually improve their information security

management.

ISO 27001 was first published in 2005, then revised in 2013 and 2022 to better accommodate the

changing information security challenges. The current version is called ISO 27001:2022 [ISO 27001].

The high-level requirements of the standard are addressed in 7 clauses, schematised in the following

Table.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 38

Table 15: The 7 clauses from ISO 27001.

Clause Explanation

Context of the organisation The first step is to identify the organisation’s issues related to
information security and to determine interested parties’
expectations and requirements, with the aim of assessing the scope
of the ISMS and establishing it.

Leadership Top management should support the importance of the ISMS by
ensuring its integration and effectiveness. Management should
establish an information security policy and assign roles and
responsibilities to manage the ISMS.

Planning This clause is about planning of actions to address risks and
opportunities. Risk assessment and treatment processes should be
defined by determining the necessary controls. In order to protect the
information asset, information security objectives should be
established and planned.

Support It is important to provide an adequate level of resources,
competences and employee awareness for the implementation and
maintenance of the ISMS. Everything related to the ISMS should be
documented and kept updated.

Operation This clause is about implementing controls to ensure the outcomes
of the ISMS are achieved. Risk assessment and treatment should be
adequately implemented.

Performance evaluation The organisation should determine which and how data, processes
and controls need to be monitored and measured to evaluate the
effectiveness of the ISMS. Internal audits should be conducted and
planned, and management reviews should be performed.

Improvement The effectiveness of the ISMS should be continually tested and
improved, and the system should be corrected whenever an
unconformity occurs.

ISO 27001 is related to ISO 27002, or Annex A, which defines a checklist of generic information
security controls designed to be used by organisations within the context of an ISMS. After a risk
assessment process, the organisation should determine which of the reference ISO 27002 controls
are relevant based on the identified risks. The chosen measures are then described in a central
document for the ISMS called the Statement of Applicability, where inclusion or exclusion of
reference controls need to be justified, together with presence or lack of their implementation.
The current version of the document, called ISO 27002:2022 [ISO 27002], presents significant
changes with respect to the 2013 version: the list of controls was reconstructed and compacted from
114 to 93 controls, structured in the following four categories:

● Organisational controls (37 items) define rules and behaviours regarding users, devices and

systems, including organisational information policies, cloud service use and asset use.

● People controls (8 items) provide security knowledge and awareness to employees and

relevant third parties. This type of controls concern remote work, screening, confidentiality

and non-disclosure measures.

● Physical controls (14 items) include maintenance, facilities security, media storage and

security monitoring.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 39

● Technology controls (34 items) are those implemented in informative systems utilising

software and hardware components, and concern authentication, encryption and data leak

prevention.

In addition to the category, for each control are specified attributes which have the aim to gain

different perspectives on the controls and allow filtering. ISO 27002 suggests the following 5 attribute

classes with respective attribute values:

● Control type: Preventive, Detective or Corrective.

● Information security properties: Confidentiality, Integrity and Availability.

● Cybersecurity concepts: Identify, Protect, Detect, Respond and Recover.

● Operational capabilities such as Governance, Asset Management, Information Protection,

and others.

● Security domains: Governance and Ecosystem, Protection, Defence and Resilience.

Ultimately, ISO 27001 is a comprehensive standard that not only equips companies with essential
knowledge to safeguard their valuable information but also allows them to obtain certification,
demonstrating their commitment to data protection to customers and partners. Similarly, individuals
can enhance their professional credentials by becoming ISO 27001 certified through training and
examination, showcasing their expertise in implementing or auditing Information Security
Management Systems.
The applicability context of this standard is quite distant from the ORSHIN context, and for this reason
ISO 27001 does not represent a good starting base for the process requirements of the ORSHIN
TLC. However, it provides a solid reference for governance-oriented requirements, and in general
for the integration of risk management topics.

3.3.5 CSA Security IoT Controls Framework

The Internet of Things (IoT) Security Controls Framework, developed by the Cloud Security Alliance
(CSA), provides a set of security controls to mitigate risks associated with an IoT system, that
incorporates multiple types of connected devices, cloud services, and networking technologies. It is
applicable to many IoT domains, ranging from systems processing only “low-value” data with limited
impact potential to highly sensitive systems that support critical services.

The most recent version of the framework is version 2. The version 3 is planned for the future with
some improvements such as the definition of the ENISA Guidelines for Securing the Internet of
Things.

The framework is provided in an Excel document that includes the following pages:

● Domain Definitions: the list of domains covered by the framework's controls, along with a
short name, a list of sub-domains and a definition.

● IoT Controls Matrix: the table containing all controls of the framework. For each control are
specified:

○ An identifier (Control ID).
○ The control domain and sub-domain associated.
○ The related identifiers from the CSA Cloud Controls Matrix (CCM), a cybersecurity

control framework for cloud computing.
○ The impact levels on Confidentiality, Integrity, Availability.
○ Some additional directions (supplementary information detailing special

requirements, explanations of terms, etc.).
○ Some references.
○ An implementation guidance (e.g., how organisations can implement the controls and

the frequency with which each control measure should be enacted).
○ The architectural allocations (at which level the control can be applied, that can be

one or more among Device, Network, Gateway and Cloud Services).

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 40

Alongside the Excel document, the CSA Guide to the IoT Security Controls Framework is provided
to help users and organisations in understanding and applying the framework effectively.

The IoT Security Controls Framework serves as an invaluable asset for designers and developers
responsible for crafting secure IoT systems, as well as individuals evaluating the effectiveness of
such systems. This tool enables designers and developers to consistently assess the security
measures implemented in their IoT projects, allowing them to ensure the robustness of their
implementation at every stage of the development life cycle. By providing a comprehensive
evaluation, the framework guarantees compliance with industry-approved standards and
recommended practices for IoT systems.

For ORSHIN, this source offers a good reference as it applies to the IoT context, which includes both
hardware and software elements.

3.3.6 ETSI EN 303 645

ETSI EN 303 645 is a standard for cybersecurity of IoT devices. It provides a set of requirements
and recommendations for the security of IoT devices and systems. It constitutes a very high-level
guide, lacking specific technical content.

The standard is a continuation of the UK initiative of 2018 about the definition of a code of practice
for IoT cybersecurity [Code of Practice for Consumer IoT Security]. The UK initiative started with the
definition of the involved stakeholders: device manufacturers, IoT service providers, mobile app
developers and retailers. The initiative also identifies what are the types of IoT devices that are
included in this activity, like connected children's toys, connected safety products, smart camera,
smart TVs, smart speakers, home automation, fitness trackers and similar devices. The initiative
collected open comments from whoever had an interest in commenting and presenting information.
The activity is summarised in the final report. This initiative has been recognized as well structured
and as a tradeoff between the technical standards that are too focused on the details of a specific
sector and the needs of the end users that are not represented in the technical standards.

ETSI defines some aspect that we summarise in the following points:

● No universal default password. If passwords are used as a method of authentication they
should be defined by the user, otherwise securely implemented pre-installed password
unique per device should be used. Whenever other forms of authentications are in force, they
shall use best practice cryptography and implement countermeasures against brute-force
attacks via network interfaces.

● Implement a means to manage reports of vulnerabilities. The manufacturer shall make a
vulnerability disclosure policy publicly available to specify the process for reporting issues. It
is crucial to build the so-called Software Bill of Materials (SBOM), a list of third party
components and the version used, that allows manufacturers to continually monitor for
product security vulnerabilities.

● Keep software updated. The device should check periodically for updates and verify their
authenticity and integrity by using best practice cryptography. Configurable automatic update
mechanisms should be used. For constrained devices that cannot have their software
updated, the product should be isolable and the hardware replaceable.

● Securely store sensitive security parameters. Secure storage mechanisms should be used.
The implementation of hard-coded security parameters should resist physical and software
tampering. Lastly, any critical security parameter used for integrity and authenticity checks of
software updates and for communication with associated services shall be unique per device
and securely produced.

● Communicate securely. The device shall use reviewed implementations of best practice
cryptography, and the cryptographic algorithms should be updatable. Authentication is
required for security-relevant device functionality and for communication of security
parameters that happens via a network interface.

● Minimise exposed attack surfaces. The network interfaces of the device shall minimise the
disclosure of security-relevant information, and they should be disabled when unused. Code,
hardware physics interfaces and software privileges should be minimised.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 41

● Ensure software integrity. The IoT device should verify its software using secure boot
mechanisms, e.g., with a hardware root of trust. If an unauthorised change is detected to the
software, the device should alert the right stakeholder.

● Ensure that personal data is secure. The confidentiality of personal data transiting between
the device and a service, especially associated ones such as cloud services, should be
protected with best practice cryptography. All external sensing capabilities of the device shall
be clearly documented.

● Make systems resilient to outages. The IoT device should stably connect to networks, it
should remain operating in the case of a loss of network access and cleanly recover in the
case of a loss of power.

● Examine system telemetry data. If data such as usage and measurement data is collected
from the device or associated services, it should be examined for security anomalies.

● Make it easy for users to delete user data. There should be a simple functionality to erase
data from the device and associated services, which should provide clear confirmation of the
deletion.

● Make installation and maintenance of devices easy. The manufacturer should provide users
with guidance on how to securely set up their device and how to check whether the set up is
correct.

● Validate input data. The device software shall validate data input via user interfaces, or
transferred via Application Programming Interfaces (APIs), or between networks in services
and devices.

Along with the ETSI 303 645 there is also a very important document, the ETSI TS 103 701. This
document puts in perspective how a device manufacturer can perform a series of tests to
demonstrate that the device is in line with the requirements of the 303 645. In the case of the baseline
requirement it is possible to perform a self assessment of the cybersecurity posture of the device.

It is possible to see that the standard is a mix of technical requirements (like no default password)
and procedures (like “keep software updated”).

The very positive aspect of the standard is the pragmatic approach in defining tangible results that
the IoT device manufacturer should reach and how they can be demonstrated.

This standard has been also adopted by Singapore [CLS CSA Singapore], indeed the Cybersecurity
Singapore Agency defined a labelling scheme for helping consumers in identifying the level of
security of IoT devices.

For ORSHIN, we make sure that the definition of the TLC requirements does not contradict the best
practice guidelines of ETSI EN 303 645.

3.4 Definition of the Trusted Life Cycle Phases

We now define the Trusted Life Cycle for ORSHIN secure open source hardware.
The concept of Trusted Life Cycle (TLC) is comparable to the one of Secure Development Life Cycle,
in that it provides a methodology for secure development. In particular, the goal of the TLC is to
describe a systematic and generic approach for designing and developing secure and trustable
hardware devices with open source components.

One key point for the Trusted Life Cycle is the concept of "trust", which refers to the possibility for
manufacturers to build secure hardware without necessarily dealing with the cybersecurity
architecture and specification of every single component used in the design, but rather relying on a
chain of trust that leads to the adoption of reusable secure hardware through the multiple-step and
multiple-stakeholder process of building hardware. Even though requirements of verifiability about
3rd-party developments are already present in most SDLCs, the TLC takes this concept one step
further, exploring the generic "1st-party"/"3rd-party" distinction and decomposing hardware designs
into their layers, down to the lowest abstraction level, and providing a way to evaluate security for
hardware developments of any kind. Openness of designs and source code plays a crucial role in
this evaluation, allowing for more efficient collection and distribution of the details of a hardware
component that impact its security, thus facilitating the validation of trust. Although the ORSHIN TLC

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 42

requirements potentially fit any type of hardware and embedded development, the performance of
the TLC is maximised when applied to open source components.

As a result of our review of existing standards for process requirements, our opinion is that none
describes a development life cycle that fully matches our expectations in this regard. However,
valuable common themes of consolidated SDLC knowledge can be reused, and we make sure to
build on such information.

We define the ORSHIN Trusted Life Cycle as a set of process requirements, which can be used to
derive product requirements and practically define an instantiation of the Trusted Life Cycle for a
particular single piece of hardware, or for more complex products.

The first building block of the TLC are its phases. For the development of ORSHIN hardware, we
identify the following seven phases (Figure 18).

Figure 18: Seven phases of the Trusted Life Cycle.

3.4.1 Threat Modelling and Risk Assessment

Being built on a security-by-design approach, the ORSHIN Trusted Life Cycle must have its roots in
threat modelling and risk assessment.

These activities allow for the definition of security and privacy requirements, a set of product
requirements for guaranteeing certain cybersecurity properties.

The ways in which these requirements can be gathered are various:

1) They may come from non-controllable sources: for example, the commissioner may impose
certain requirements on the entire system, thus including the product under development.

2) They may come from adequately selected sources: this is the case of requirements and
control lists provided by international standards and other guidance documents.

3) They may be extracted as a result of ad hoc cybersecurity analyses: for instance, threat
enumeration strategies such as STRIDE [STRIDE] may yield interesting threats when run on
an accurate model of the system; mitigation of such threats may result in the introduction of
new security requirements.

Regardless of their source, the common denominator of all security requirements is that their
selection should always be validated by threat modelling and risk assessment activity.
The revised list of security requirements is the output of this first phase, and constitutes the
foundation of the entire Trusted Life Cycle.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 43

3.4.2 Design

In this phase, the product hardware is designed, starting from the specifications and functional
requirements, and taking into consideration the output of the previous phase, i.e. the security
requirements that are to be implemented.

The design activities are not strictly limited to the hardware only, but involve any other relevant
product component (e.g., if the product being developed is an IoT device, the firmware will go through
its own design phase as well).

The output of this phase is the complete product design in the form of artefacts that can be used for
implementation. These include, as an example, hardware schematics, hardware and firmware
design files, system diagrams, sequence diagrams for the design of protocols.

From a cybersecurity perspective, it is crucial that this phase is based on a security-by-design
approach, meaning that the design activities follow a series of process requirements and general
design best practices to:

● Integrate with the output of the threat modelling and requirement definition activities, making
sure that the design does not contradict any of the defined security requirements;

● Output designs that have minimal chance of introducing security issues due to design errors;
● Output designs that facilitate a secure implementation;
● Output designs that facilitate testing and validation activities.

3.4.3 Implementation

In the implementation phase, starting from the design, the development of hardware and
software/firmware components are carried out. Single parts can be in-house designs, but it is also
possible to integrate external custom developments, or pre-developed 3rd party components, to be
used off-the-shelf. Eventually, all parts are connected to implement the complete design plan.
In this phase, the topic of open source becomes important. While open source components are found
everywhere in the software world, from small developments to enterprise applications, in the
hardware world the trend is different, with the vast majority of low-level hardware still being
composed of proprietary IP designs, and with only slight improvements in the stance of high-level
hardware CPU, SoCs, and devices.

As for the design phase, the implementation phase should be based on solid principles and best
practices for security, with goals that include, but are not limited to, the following:

● Avoid or minimise the chance of implementation errors such as coding errors in
software/firmware;

● Guarantee that the implementation will be coherent with the input from the design phase;
● Include secure components in the development, and keep track of them (see Chapter 4 -

Component and Vulnerability Tracking);
● Test individual parts of the implementation as early as possible, developing evaluation

strategies and tools together with the product.

3.4.4 Evaluation

Starting from the implementation, in the evaluation phase the developed components are tested,
both from the functional and the cybersecurity points of view.
For example, one test may assess if power or energy consumption is within a specific budget. For
connected devices, it may be checked if communication throughput and latency are acceptable.
Security-specific tests aim at validating that:

● The security requirements have been adequately implemented;
● The product is free from known vulnerabilities, which may be introduced by 3rd party

components;

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 44

● The product resists more thorough security-specific testing, such as fuzz testing, penetration
testing, or fault-injection testing (described below), in which the product is tested for hidden
security weaknesses.

While in general the evaluation is performed on the outcome of the implementation, it is also possible
to evaluate models. In this case, it is possible to call this presilicon evaluation for models that simulate
the power consumption or that allow the evaluation of fault injection attacks. Some of these types of
testing are very context-specific, and some of them are not part of generic Secure Development Life
Cycles. For example, fault-injection is crucial for ensuring that the hardware and firmware of an
embedded device will have a sufficient level of resistance to adversarial signal injection.

A fault is defined as a physical defect, imperfection, or flaw that occurs within some hardware or
software component. Fault injection can be defined as the validation technique of the dependability
of fault tolerant systems, which consists in the accomplishment of controlled experiments where the
observation of the system’s behaviour in presence of faults is induced explicitly by the introduction
(injection) of faults in the system. There have been many efforts to develop techniques for injecting
faults into a system, including prototypes or models. These techniques can generally be grouped
into five main categories:

● Hardware-based fault injection: involves introducing errors into the system by physically
altering the hardware of the system. This can include techniques such as disturbing the
hardware with environmental parameters such as heavy ion radiation or electromagnetic
interferences, injecting voltage sags or power supply disturbances on the power rails of the
hardware or using laser fault injection to modify the values of the pins of the circuit.

● Software-based fault injection (software-implemented fault injection): force errors that would
occur in hardware at the software level. This technique aims to reproduce hardware faults in
the system through software means to understand how the system behaves under these
conditions.

● Simulation-based fault injection: involves introducing errors or faults into high-level models,
such as Hardware Description Language (HDL) models, to evaluate the dependability of the
system when only a model is available. This method utilises different description languages
to target different levels of abstraction, and a cohesive environment is needed to promote
compatibility between abstraction levels and integrate validation into the design process.

● Emulation-based fault injection: uses Field Programmable Gate Arrays (FPGAs) to simulate
errors or faults in a system and study the circuit's actual behaviour under these conditions.
This method is considered an alternative solution to simulation-based fault injection
campaigns, as it can speed up the process and provide more accurate results. The technique
involves emulating the circuit in the application environment, taking into account real-time
interactions. However, it is important to note that the HDL description used for the emulator
must be synthesizable.

● Hybrid fault injection: This method combines software-based fault injection with hardware
monitoring.

Another way to categorise fault injection methods is by distinguishing between invasive and non-
invasive techniques. Invasive techniques are those that leave a noticeable impact on the system,
while non-invasive techniques are able to introduce faults without affecting the system's normal
behaviour. The challenge with complex and time-sensitive systems is that it may be difficult to
eliminate the impact of the testing mechanism on the system, regardless of the type of fault injected.
Invasive techniques may cause a permanent effect on the system, while non-invasive techniques
aim to minimise their impact and leave the system's behaviour unchanged.

In the context of ORSHIN secure hardware, significant attention will be given to security audits of
hardware and software. The evaluation phase provides meaningful feedback information to the
design and implementation phases before deployment.

Of particular importance for hardware is the process of vulnerability analysis (VA), which for a future
device is a multi-step process, split between pre-production and post production/prototyping.

During testing of a prototype, in case of detected vulnerabilities one would go back to a previous
step in the design & implementation process. Generally earlier steps of VA are less precise, but are

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 45

also much less expensive and thus can be repeated with several different designs, while later steps
would engage more costly re-design if issues are found. Thus, device manufacturers are interested
in detecting as many security issues as possible at early stages of device development.

Hardware and software vulnerabilities vary in nature and may be introduced and detected at different
stages of the Trusted Life Cycle. The attack scopes are also different, but hybrid testing is required
to efficiently cover the attack surface.

3.4.5 Installation

After evaluation embedded devices get deployed and installed, possibly in restricted or constrained
environments. For example, it may not be possible to access or recall them physically.

Great care must be taken to ensure that the installation of devices conforms to the threat modelling
and the security context intended for them; even the most secure designs and implementations may
fail to meet security requirements due, for example, to:

● Improper understanding of the security context - this is the case in which, for example, an
IoT device which does not implement any network controls, but rather needs them
implemented in the environment to guarantee a certain level of security, is deployed within
an insecure network.

● Improper configuration - this is the case in which robust security mechanisms provided by a
device (for example, secure boot) fail or are affected by weaknesses due to an incorrect
configuration of the mechanisms themselves; in the case of secure boot, for example, this
could translate in not correctly isolating production keys from development ones, using keys
that are cryptographically weak, and other similar problems related to key generation and
management.

To counter these problems, clear guidelines for the installation of secure devices should be made
available to the installer, which should ideally be complete with actionable, checklist-style tests. For
IoT devices, a section in the product manual dedicated to cybersecurity is advisable.

3.4.6 Maintenance

We define the "maintenance" phase as the period between the installation and the retirement of the
product, so all the time that the product spends in the field counts as maintenance.
After installation, embedded devices may be remotely monitored and maintained in the field, for
example monitoring their correct functioning and providing firmware updates. Also, it may be possible
for 3rd parties to continuously run specific integrated tests and confirm that the device behaves as
specified.
Another crucial topic for the maintenance phase is the continuous monitoring of the product's
security; even with an implementation of a secure and trusted development life cycle, it is only
possible to guarantee a certain level of security up to the product's release, but the risk of future
vulnerabilities discovered in the product and in its subcomponents cannot be eliminated.
The continuous monitoring of the product security could be addressed by implementing a
vulnerability management process, which is composed of several key items:

- A process for receiving vulnerabilities that are reported on the products. These may come
from various sources, for example

- Users
- Developers
- Security researchers

- Processes for reviewing reported vulnerabilities, assessing their impact, and addressing
them accordingly

- Active monitoring of public vulnerability databases

A fundamental piece of information that is required for an efficient implementation of the above
processes is the complete and accurate knowledge of the product's composition, from a software
and hardware perspective. The list of components is referred to as the Bill Of Materials (BOM), which
can be divided into its software-only version (Software Bill Of Materials, SBOM) or hardware-only

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 46

version (Hardware Bill Of Materials, HBOM). Currently, there exist different ways to compile this
information, but there is no consensus on a universally preferred BOM standard. Along with the
BOM, the information regarding vulnerabilities need also to be tracked.

We discuss these topics in detail in Chapter 4 - Component and Vulnerability Tracking

3.4.7 Retirement

When a device reaches the end of its life cycle, it is time for its retirement from active deployment.
This phase holds significant importance from a security standpoint and should be considered as the
final stage of the Trusted Life Cycle. It is crucial not to overlook the security implications associated
with device retirement. Instead, this phase should be approached with utmost care and attention.

During the retirement process, one must take diligent measures to ensure that sensitive data stored
on the device does not persist beyond its expected lifespan. This entails implementing both
procedural and technical requirements to guarantee the secure erasure of sensitive data from the
device. Techniques like secure memory erasure can be employed to accomplish this task effectively.
It is essential to prevent any unwanted remnants of sensitive information from remaining on the
retired device.

Furthermore, it is imperative to address the dissemination of any data that the device might have
shared within the system. This data should be thoroughly erased along with the retirement of the
device to prevent any unauthorised access or unintended exposure.

Additionally, any access or privileges granted to the device for system and infrastructure resources,
such as cloud services, should be permanently revoked. This ensures that the retired device no
longer retains any privileged access that could potentially compromise the security of the system.

By adhering to these requirements, the secure retirement of a device can be achieved, mitigating
the risks associated with data exposure and ensuring the protection of sensitive information
throughout the last phase of the life cycle of the device.

3.5 Process Requirements for the ORSHIN Trusted Life Cycle

We now present a proposition for the process requirements composing the ORSHIN Trusted Life
Cycle.

We select the ENISA Good Practices for Security of IoT (Section 3.3.1 - ENISA Good Practices for
Security of IoT) as a starting source for drafting the requirements. In our opinion, among the process-
oriented standards and reference documents that we analysed, it represents the best compromise
between completeness, which is a property the ORSHIN TLC should strive for, hardware and IoT
applicability, that are crucial for the context of ORSHIN, and simplicity, which makes it possible to
focus the task of adaptation primarily on the core content of best practices, rather than on related
systems for definitions, scoring, related informative content, etc.

3.5.1 Selecting the Requirements

Even though the Good Practices for Security of IoT is a good starting point, we perform an accurate
review of the best practices for selecting the ones that pertain to the ORSHIN context, and filter out
best practices that do not fully apply.

3.5.1.1 Process Requirements vs. Product Requirements

The first important point to clarify is that the Trusted Life Cycle is a development life cycle, described
by process requirements, and not product requirements.

Unfortunately, although such a distinction is easy to operate on a conceptual level (see Section 2.1
- Overview), not all cybersecurity reference sources operate it, and thus the definition of purely
process-based life cycles is not immediate.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 47

For example, both NIST SP 800-53 and ISO 27001 standards contain a mixture of process
requirements and technical product requirements.

Our chosen reference source for drafting ORSHIN TLC requirements, ENISA Good Practices for
Security of IoT, contains mostly process-oriented best practices, but with occasional product
requirements, that we wish to filter out.

An example of such a case is represented by requirement TC-11, Implement secure session
management. TC-11 states that for all sessions that take place in IoT, it is essential to ensure that
active sessions are unique and cannot be shared or guessed, and that they are timed out and
invalidated when no longer necessary. Session tokens should be unique for each session,
guaranteeing a minimum level of entropy. They must never be disclosed in URLs or error messages.
Cookie-based sessions must have the 'Secure', 'SameSite', and 'HttpOnly' attributes enabled.

Such a good practice references specific technical properties of sessions, and it clearly applies to
the single product being developed rather than being an indication for the development methodology.

3.5.1.2 Context Differences

Although the Good Practices for Security of IoT describes best practices that are suited for a generic
IoT development, we wish to leverage the context of ORSHIN secure hardware to make the
requirements of the TLC more specific.

Given the specific context we chose to adopt, some requirements need to be adapted, while we think
that others cease to apply.

For example, consider the following items:

● PE-09 Designate a physical security officer.

Designate a resource responsible for fulfilling the plan or procedure defined to take actions
when risks have to be mitigated and to contain them and prevent them from resulting in
additional risks if information regarding the SDLC or spaces where it is stored are
compromised due to a fire, flood, electric show, etc.

● PE-12 Designate a Security Champion figure.
Designate a role to centralise all issues related to software development security. This figure
should not be responsible for the implementation of security functions, but for coordination,
follow-up, planning, and monitoring efforts and activities related to security. This position
should be understood as a bridge, a security catalyst among organisation statements
(developers, team leaders and decision- makers).

● PR-07 Contractually require controlling and monitoring the external services through
KPI's.
By means of contractual clauses, ensure that both internal and external service providers
implement security controls to measure the quality of the service (e.g. service incident
response time, unavailability terms, etc.) and detect potential flaws, stipulating a reporting
period (e.g. on a weekly basis) for the KPIs to assess the service, along with measures to be
taken to prevent impacts on the SDLC phases, such as, for instance, the maintenance phase.

● PR-13 Automate the SDLC process.
Processes supported by tested tools should be automated in order to reduce costs and
human efforts and errors. The main objective is to improve the monitoring and measurement
of development progress, as well as the implementation of security measures for the process.
The result of automated testing must be analysed, since automated tools are based on
patterns that can suffer modifications, which may not be detected and produce false
positives. In cases where this is not possible, manual tools should be used. It is
recommended to execute this process in every iteration (sprint).

The non-exhaustive list above contains best practices that we wish to exclude from the ORSHIN
TLC due to significant context differences.

Governance/"people" items PE-09 and PE-12 are too strict on the definition of roles, and would be
difficult to apply as-is, but also to translate for small development teams peculiar to open source

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 48

projects, which constitute a different reality from the enterprise organisations that could more easily
benefit from such requirements.

Similarly, process items PR-07 and PR-13 contain indications that make sense for larger
organisation, but not so much for the context of all hardware/embedded/IoT developments (including
small ones and open source ones), where contractual obligations may not exist, and automation of
the SDLC may not be an immediate necessity, considering that implementing such a best practice
would require a nontrivial amount of resources.

3.5.2 Adapting the Requirements to ORSHIN

On the remaining best practices that were not excluded for the reasons described in the previous
Section, work still needs to be done in order to fully adapt them to the context of ORSHIN.

Thus, we performed a review of all the best practices, and adapted their content based on the
following goals:

● Terminology: trivially, we want to use ORSHIN-specific terminology; for example,
requirements will not reference a generic "SDLC" anymore, but rather they will reference the
"TLC"

● Inclusiveness: rather than targeting a particular reality (e.g., enterprise IoT development),
ORSHIN requirements aim at covering the broadest possible range of
hardware/embedded/IoT developments; we adapt the terminology accordingly, for example
referring to the "team" rather than referring to the "organisation"

● Generality: even though the best practices already reference the context of IoT, some of them
primarily apply to software. We make sure to use appropriate terminology to also reference
hardware, where applicable.

3.5.3 Hardware-specific topics

Besides having many commonalities with the software development, the development life cycle of
hardware components differs on various aspects. In particular, the production of hardware artefacts
poses constraints in terms of time and cost. Fixing even a tiny bug in a hardware component late in
the cycle may range to being very hard, up to requiring to re-spin a new production cycle.
Furthermore hardware components belong to different classes, as detailed in Section 2.3 - Views,
each one with its own peculiarities in terms of involved entities, production dynamics and costs. For
instance, the manufacturing of a silicon IP requires access to highly specialised semiconductor
fabrication plants, also called foundries, and this forces the need to plan milestones in advance and
to strictly adhere to the timeline. Due to the highly specialised tools and processes required, a
production cycle is also very expensive.

This means that extended effort is put in the verification of the design before the tape-out, due to the
high penalty in terms of money and time in case of any malfunction of the design. It is common in
the hardware design of ASICs to apply extensive sets of testing and verification methodologies at
different levels of abstraction, from behavioural RTL simulation to gate-level simulation, formal
verification of protocols, prototyping on FPGA, physical simulation of power consumption and
electromagnetic emissions, etc. The state-of-the-art in this field involves the “design for testability”
(DFT) principle, which defines specific design constructions devoted explicitly for testing, such as
scan chains for synchronous elements in the design. These elements do not have any functional
role in the design but are necessary to validate that the product hardware contains no manufacturing
defects that could adversely affect the product's correct functioning.

In addition, the manufacturing process itself is subject to variability and it imposes constraints.
Achieving high-yielding hardware designs is an extremely challenging task due to the miniaturisation
of the silicon technology as well as the complexity of leading-edge design. In order to keep under
control the manufacturing, it is common practice for the hardware designs to apply principles of
“design for manufacturing” (DFM), for which the easiness and reproducibility of manufacturing of
a specific cell element is taken into consideration in the design choices. For instance, cells with high
yield are preferred over others with the same functionality but worse in performances.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 49

Different principles apply to different classes of hardware products. In general, compared with
software development, the development life cycle of hardware elements has the following
peculiarities:

● rigid milestones are defined to split phases for which the feedback loop is extremely
expensive or slow, and the responsibility is assigned to different entities (e.g., the design vs
the manufacturing);

● it is slower because of the timing and complexity of the manufacturing process;
● a big effort is put on testing and verification as early as possible in the development stages

in order to minimise the chance of defects in the final product.

The points highlighted above also impact the Trusted Life Cycle, because on one side they add new
constraints to the TLC, and on the other hand they extend the properties that must be covered by
trust among the providers of hardware components.

For the reasons exposed before, there are process requirements for the TLC that are peculiar for
the design implementation and operation of hardware components. Due to the different dynamics in
the development of hardware components, some requirements apply to the process itself. For
instance, a defined schedule with the main milestones becomes fundamental in a context where the
development and the manufacturing rely on highly specialised and expensive resources, that are
possibly offered by external parties. Closely tied to the schedule for the milestones there is the need
for well defined roles and responsibilities. When heterogeneous hardware components with different
life cycles are integrated in a product, a proper development procedure requires identifying, for
instance, the trusted party in charge of the sign-off, who in turn must rely on guarantees from each
component provider. The penalty in case of any failure in such a process imposes a stricter
management of interfaces between consecutive phases of the development, that is usually not
enforced in a more agile cycle applied to purely software components.

In the design phase of hardware components, evaluations and simulations play a relevant role,
together with prototypes when possible. For software products, it is common to start with a proof of
concept, which then evolves in a featured component over multiple iterations. Performances and
other metrics are usually evaluated on artefacts that are close to the current state of the component
under development, for instance through live profiling. This approach is usually not possible for
hardware components. This means for instance that design choices must be defined in advance
relying on experience from similar platforms and on simulations. It is common practice for hardware
designs to prototype several variants of the final components and to simulate/evaluate the key
metrics before starting with the actual development of the product. For instance, in the development
of hardware IPs as defined in the Section 2.3 - Views it is common to explore multiple solutions for
area occupancy versus throughput and maximum frequency. This is done by simulating and
synthesising different designs in order to get data points in support of the choice for the best
architecture. In a similar way, when a required throughput must be reached it is necessary to simulate
the system in order to decide how many processing engines to instantiate in parallel, the size of the
data buffers, the width of the data paths and so on. All these design choices get harder to modify
when going forward in the development process.

In a similar way, physical properties of the hardware components are accurately simulated well
before any physical instance of the component will be available. Things such as the power
consumption, the electromagnetic emission, the thermal performances must be kept under control
since the beginning. Starting from silicon technology cells, to hardware IPs, to SoCs, and electronic
boards, every stage must strictly profile and guarantee the physical properties, because this aspect
alone can make the difference between a good product and a design that simply cannot work in
reality. The benefit and importance of such early evaluations are well recognised even if the
evaluations usually are heavy and long to execute. The relative weight of pre-design evaluations
among the whole development process is much higher than for software development.

These approaches that are nowadays consolidated in the hardware development are pushed a step
forward in terms of challenge when security properties for a TLC must be taken into account.
Protections against physical attacks such as side-channel attacks or fault injections require to
perform accurate evaluations about the physical behaviour of the resulting object a lot before any
physical realisation could be available for actual evaluation. Therefore, it is necessary to have
models and tools that allow the early simulation of those physical properties. For instance, in the

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 50

case of side-channel attacks, both the power consumption and the electromagnetic emission should
be simulated of models of the device. These models and tools can leverage the consolidated know-
how built over the years for purposes other than side-channel attacks (e.g., power consumption to
size the power supplies and characterise the thermal management). However, they must often be
adjusted for the specific purpose, for instance isolating data-dependent consumption in relative
terms, rather than accurate average absolute values of consumption.

In terms of “trust”, a common approach for software open source is to make the source code publicly
accessible and to let the final entity inspect it and build that from scratch up to the final application
to be used. This approach is simply not viable in the context of hardware components, with multiple
layers (i.e., hardware views), multiple parties that must be involved (e.g., silicon manufacturers) and
the associated timings and costs. For this reason, a TLC process must include requirements that
aim at providing evidence and at building trust in the design itself. For instance, some design choices
may be more trustworthy than others, or exposing some interfaces for inspection may contribute to
the overall confidence on the final product. These aspects are sometimes in conflict with the security
properties required by the final product. It is usually not possible to make a clear distinction between
debugging (and then inspectable) devices and production devices, and therefore the access to some
resource must be allowed only under some conditions, commonly related with the life cycle of the
device.

Similarly, in a TLC for hardware components that must fulfil some security properties the test must
be extended in order to provide evidence to the user of the product about the goodness of the
protections. The “design for testability” concept described above extends in order to explicitly cover
testing of security properties. Therefore, it is common to have self-tests of basic cryptographic or
security properties, which are run automatically at boot or can be requested by the final user in order
to check at any time the proper functioning of the device.

3.5.4 Open source-Specific Topics

Open source projects can be selected for different reasons, sometimes even just for economics
aspects, because they are publicly available, and "good enough" for meeting implementation
requirements.

Specifically regarding the context of security, for an electronic product, the property of being open
source has always been associated with the benefit of being trustworthy. The reasoning behind this
is very simple and involves multiple arguments:

● Transparency: a software product for which the source code is publicly available can be
inspected in search of any possible security bug, bad practice, malicious piece of code or
instruction;

● Independence: a software product for which the source code and the building tools are
publicly available can be modified by the end user in order to fix any misbehaviour, and rebuilt
without the need of relying on external parties.

The two aspects above are solid, but we have to remember that being open source does not always
lead to trust by itself, and in particular we believe that the link between open source and
trustworthiness should be better elaborated in the case of hardware components and in the specific
context of trust of security properties.

When the motivations above are applied to the whole product in order to also include hardware
components, it becomes clear that the scenario is more complex.

First of all, it is worth noting that every software product requires a hardware platform to run. Stating
that a software component is trusted without having any form of guarantee from the underlying
hardware, makes the statement empty and meaningless. This relationship of trustworthiness is true
at any level, especially on modern platforms which are composed of multiple layers of components
stacked onto one another. In order to be trusted by the final user, a software application must be
itself trusted, but must also be built using trusted libraries and frameworks. It must also run on a
trusted operating system, which in turn must run on a trusted hardware platform, composed of trusted
components. It is clear that the level of trustworthiness in a system ultimately hinges on its weakest
component within the stack. This inherent vulnerability undermines the overall security of the entire

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 51

process, necessitating the pursuit of reliable solutions. To overcome the shortcomings of trust-
deficient alternatives, truly secure implementations demand a co-design and evaluation approach
that encompasses both hardware and software. This collaborative effort is precisely what ORSHIN
focuses on.

In the case of hardware components, even having access to the codebase is usually only a first step
towards trusting the final object, but it is far from being sufficient, for two main reasons. First, the
independence property is really hard to satisfy because of the highly specialised tools and
competencies necessary to process the source code, and the high costs associated with building
the final component. This means that in most of the cases one or more third parties must be trusted
along the manufacturing chain. Second, by having to rely on a final product manufactured by a third
party it is hard (harder than with the software) to guarantee that the physical object has been
originated by the exact same codebase that has been inspected. This requires additional trust on
third parties that might undermine in practice the benefits in terms of trust provided by a hardware
design with an open source codebase. These aspects have generated a research thread related to
hardware trojan and how a hardware design might include countermeasures or techniques to detect
malicious manipulation during the fabrication. A very recent and very interesting aspect has been
discussed in the open source project Precursor [PRECURSOR] where the designer of this
messaging device put at the core the possibility for the user to know if the device is malware-free at
every level.

In addition, when discussing trust not in a general sense, but related to security properties and
guarantees of an electronic component, the access to the source code can help but it cannot be
considered enough to trust the final artefact. As this document about TLC aims at demonstrating,
the most effective way to build a secure product that can be trusted requires to apply a security-
oriented methodology across all the phases. And this involved producing evidence that good
practices have been applied during the whole life cycle of the device. An open source component
with poor specifications and documentation, without a testing strategy coming from an unknown
public repository, can hardly be more trusted than a close-source component from a respected
provider with clear documentation and reports about the testing strategy applied. In this context, the
foundation of the trust starts with the lower levels of providers, who produce evidence of good
practices, which in turn are received and integrated by upper layers up to the final user. Having
access to the source code is considered a big plus, which opens the possibility to produce more
relevant evidence, but that cannot generate and sustain alone the trustworthiness that this project
aims at.

Similarly for the case of hardware development, open source components lead to peculiar
requirements that are relevant for the TLC. One set of aspects are related to the need for ensuring
reproducibility of artefacts as much as possible, therefore aiming at using open source tools for all
the stages of the development, including simulations, evaluations, testing, synthesis, layout design.
Results of all these stages should be publicly available, together with instructions to replicate the
results. Also the licence should enable the propagation of as much information as possible along the
integration chain.

3.5.5 A Proposal for the ORSHIN TLC Requirement List

We now present a proposal for the process requirements of the ORSHIN Trusted Life Cycle.

These requirements are derived from the ENISA Good Practices for Security of IoT as a starting
base, selected using the criteria explained in Section 3.5.1 - Selecting the Requirements, adapted
to the ORSHIN context as discussed in Section 3.5.2 - Adapting the Requirements to ORSHIN, and
extended considering Hardware-specific topics (Section 3.5.3) and Open source-Specific Topics
(Section 3.5.4).

This list of requirements is a solid set of broadly applicable best practices for hardware development,
context-aware with respect to open source aspects. Others can reuse it and even extend it.

As the study of open source hardware development progresses and knowledge is expanded,
requirements may be added in the future, and it is also possible that specific sets of requirements
will be adapted for specific types of development, at different levels of abstraction in the hardware
chain (e.g., low-level IP vs high-level device), or depending on the hardware properties (e.g., highly-

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 52

detailed and specific cryptography requirements for hardware implementing cryptographic
functions).

Given the possibility of these future extensions, we think that, as of today, our proposed set of
requirements is suitable for starting an open source hardware project that follows the ORSHIN
Trusted Life Cycle.

We provide further detail on applying our set of requirements in the related Section 3.5.6 - Applying
the TLC requirements.

We keep the division in three categories made by the starting source, but we rename the "People"
category with the broader "Governance" term, for including high-level requirements about the
organisation/company/development team that is implementing the TLC. We also keep the "Process"
category name, in order to align with the ENISA terminology, even though all the requirements listed
in this document belong to the general class of process requirements, in the distinction between
process VS product requirements.
We also keep the same sub-categories defined in the document from ENISA, adapting their title if
necessary, and we add new sub-categories for the hardware-specific and open source-specific
extensions.

The following is the resulting category tree for the requirements.

● Governance
○ Training and awareness
○ Roles and privileges
○ Security culture
○ Hardware design
○ Open source

● Process
○ Third-party management
○ Operations management
○ TLC methodology
○ Secure deployment
○ Security design
○ Internal policies
○ Hardware design
○ Open source

● Technology
○ Access control
○ Third-party software
○ Secure communication
○ Secure code
○ Security reviews
○ Security of TLC infrastructure
○ Secure implementation
○ Hardware design

The complete requirements list is provided in Appendix A - List of process requirements for the TLC.

3.5.6 Applying the TLC Requirements

From the previous Sections it follows that both process requirements and product requirements are
necessary in order to achieve a good security posture. A secure product cannot be built simply
implementing a list of technical requirements, such as encrypt the communication channel or enable
the secure boot mechanism. Proper management of the cryptographic keys associated with those
mechanisms is as fundamental as the mechanisms themselves. Similarly, without proper testing of
the security mechanisms it is hard to get confidence on the actual security of the product.

In the context of a Trusted development lifecycle the role of the process requirements become even
more important. The only way to build trust on the security of the resulting product is to provide

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 53

evidence about the good practices applied as part of the underlying development process. In the
examples above, for instance, trust can be increased by statements about the realisation of a proper
key ceremony for the generation of keys used in production, together with the report of the execution
of such a ceremony. Or again, the presence of a security testing suite, together with the logs of the
execution of the tests on the current version of the product.

For a hypothetical hardware open source project that starts today and wants to provide trust by
adhering to the TLC proposed in this document, the challenge is to concretely instantiate the best
practices listed in this document.

On one hand it is impossible to detail concrete guidelines about process requirements that can be
blindly applied to any development reality. Differently from product requirements, process
requirements impact the daily workflow and could impose arbitrary constraints that make the
development flow more complex. This is the very reason why none of the evaluated cybersecurity
standards, including the “ENISA Good Practices for Security of IoT” used as main reference, are
able to detail a practical procedure to be applied. We believe that the TLC should adapt to and extend
the development lifecycle that a team or an organisation has defined over the years and that has
been proven effective in realising good products. We think that requiring to revolutionise such an
established process to strictly adhere to practices defined once for all, would result in worse products
overall.

On the other hand, simply leaving a list of generic process requirements without any indication about
its application, would result in a theoretical proposal that only few entities will try to translate into
practice. One of the main goals of this project is rather to provide indications that can be applied in
a wide range of hardware open source projects of different sizes with benefits from the security point
of view.

We advise to use the list of requirements provided by this document as a methodology practical
starting set of procedures that the hardware open source project should follow as a reference of
good practices, but with two observations.

● First, this set should be considered as a reference, rather than a compliance list, in the
meaning of adherence to a standard. This means that it is possible for the owner of a new
project to decide upfront which requirements better fit in the specific case of the project and
which provide the most benefits in terms of supporting the generation of evidence towards
trust of the project. As elaborated in the previous Sections of the document, some
requirements from the reviewed references hardly apply to projects that are fully open source,
or realised by a team of few people. But the check on the applicability of each single
requirement to a specific project is delegated to the project owner. Reducing too many of the
requirements will result in little trust on the project, and vice versa enforcing too many
requirements could potentially slow down the project up to the point that it does not produce
any valuable result. The selection itself of the requirements, and their actual implementation
in practice should be continuously reviewed and adjusted towards reaching the good tradeoff.

● Second, being the subject of the requirements a live process, it is difficult to declare once for
all that a specific requirement has been fulfilled. This means that in practice, the checklist
should be used to define a procedure, and with this regards once the procedure is defined
the check mark can be set, but the application of the procedure should be continuously
monitored, considering the possibility that at early stages only part of the procedure could be
effectively in place. We believe that in order to reach the ultimate goal of the TLC, that is build
trust, the project owner should aim at transparency about the processes. Openly declaring
which requirements will be enforced in the projects, possibly with the plan to extend them,
and showing with evidence (e.g. log of the performed tests) the level of coverage currently
reached by the application of the procedures is an attitude towards trust well-perceived by
the stakeholders. This approach can build stronger trust in the long-term compared to the
simplistic approach of stating that all the requirements are enforced and are fully in place,
but providing no evidence.

Our practical advice for a hypothetical hardware open source project is to use the proposed list of
requirements for the TLC and to proceed in two stages:

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 54

1. First select the relevant requirements for the project and define the associate procedure to
fulfil each of those requirements;

2. Then progressively apply in practice the procedures, annotating the evidence of such an
execution.

As described, these two stages will be iteratively repeated over time, knowing that the list of selected
requirements and the procedures may be adjusted more frequently at the beginning, and then
become more stable. Similarly in the initial iterations the evidence produced may be partial and it will
be integrated over time. In this process it is more important to set up the proper security posture in
the mid-term, rather than rushing towards filling all the checkboxes in a way that is not replicable.

About the selection of the relevant requirements, our advice is to start with a minimal set of
requirements that are considered bringing the most value in terms of trust on the project. Once in
place and established such requirements in the actual development flow, the list can be extended
over time in order to improve and adapt based also on requirements coming from other stakeholders
interested in the outcomes of the project. Depending on the size and on the openness of the project,
the realisation of the list itself could be subject to discussions and improvements.

The high level classes of requirements, Governance, Process, Technology, can help in splitting the
effort of the definition of the actual instantiation of the TLC for a specific project. Governance
requirements should be defined first, because they impact roles and activities throughout all the
development phases. The project owner or a restricted set of people are in charge of these
requirements. Due to the width of these requirements, once established can be reused across
different projects from the same organisation or different projects in a similar context. In this set, for
instance, some of the most relevant and widely applicable are GO-05 and GO-06. They are about
proper definition of roles and proper separation of duties among roles. It is clear that such
requirements are meaningful for any kind of project and that should be enforced from the beginning,
because they are hard to apply late in the development process. Small teams may define only a few
roles, while for larger organisations the associated procedures may be definitely more complex.

Process requirements come next, and could be assigned to roles in the project more related to the
operations and executions. Also in this class there are requirements that are always relevant, such
as PR-05 and PR-07, that are about Incident management plan and Vulnerability management. It is
beneficial to set up from the beginning procedures for these aspects, not waiting for an incident to
occur. For small projects the associated procedures could be as simple as defining a responsible
person and to indicate the procedure to follow in case any security issue is found on the project, with
a clear communication channel established for this purpose (e.g. a dedicated email address).
Producing the associated evidence, that is having a publicly accessible and clearly defined page
with instructions and contacts, even if simple, shows the security-oriented mindset of the project and
therefore contributes in building trust. As much as this requirement is easy to set up, the vast majority
of open source projects currently do not have such a procedure in place.

Similarly PR-14, about testing strategy, and PR-20 and PR-22, about risk management and threat
modelling, in spite of their fundamental relevance in a TLC that aims at security, are in most of the
cases absent, and in the few best cases replaced by a specific set of uncommented tests and some
general indications about the risks.

Technology requirements could be assigned to technical roles and apply to technology choices for
the project, therefore must be set when the actual development phase starts. Here again it is possible
to identify some requirements that are commonly applicable to any kind of project, such as TC-08,
about use of secure communication protocols, and TC-09 about proven encryption techniques.
Nowadays there is an abundance of secure stacks for communication protocols and implementations
of state-of-the-art cryptographic algorithms. Especially for widespread protocols, such as TCP/IP,
thanks to the existence of established security mechanisms, such as TLS, it would be impossible for
a security-oriented project not to use them instead of the unprotected counterpart or implementing
ad-hoc custom solutions. Even if many public projects now embeds these state-of-the-art solutions,
the vast majority of them do not explicitly provide statements about the selection of the specific
solutions and indications about how to exploit at its best the implemented solution from the security
viewpoint. This often results in the integrator not understanding the importance and the reason

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 55

behind the provided solution, and in its misconfiguration (or even intentional disablement) by the
integrator.

From our viewpoint, an ideal instantiation of the TLC in an open source project would require to
publicly present the requirements, the defined procedures, and the artefacts produced as evidence
together with the source code of the design. Even in cases where this cannot be done for a specific
project, stating the adherence to the TLC, together with a clearly visible annotation of the artefacts
resulting from the application of the TLC, is a fundamental action for a project that aims at building
trust towards the stakeholders.

This concretely translates into publishing this material on the repository of the project or in other
publicly accessible locations related to the project. In the same way as nowadays it is a good practice
to accompany the source code with a suite of tests to validate it by the integrator, the next step we
strive for if to also complement with a description of the reasons behind the choices for that specific
testing strategy, and with the logs of the executions of the test for the latest version of the design.
Security mechanisms implemented in the products alone, without such an evidence of TLC best
practices, may generate a solid product but it will hardly build trust on it.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 56

Chapter 4 Component and Vulnerability Tracking

4.1 Overview

In the previous chapter we have provided an overview of the different requirements and
recommendations of multiple standards to shape the TLC proposal. The considered standards and
the phases of our TLC proposal include the maintenance of the device and its security. This is an
essential aspect, particularly for devices that stay in the field for many years. We thus dedicate this
Section to the tracking of components and vulnerabilities during device maintenance.

Component and vulnerability tracking is the process of identifying, monitoring, and managing
software and hardware components within a device, along with the associated existing security
vulnerabilities. Starting from component and vulnerability tracking it’s possible to implement an
effective and proactive vulnerability management procedure, aimed at evaluating the identified
vulnerabilities, prioritising the efforts for finding mitigations or remediations.

The combination of these processes is a crucial aspect to ensure the security of the device, reducing
the risk of potential attacks and protecting sensitive data and assets.

Nowadays, hardware and software systems are becoming increasingly complex. As a result, their
supply chain components, functionalities, and relationships are difficult to represent, especially in a
standardised format. Various methodologies have been recently proposed to represent components
used in hardware and software products, and to link them to known vulnerabilities. However, there
is often confusion around these standards and they may not always meet all necessary
requirements.

Defining an appropriate and common standard for the representation of a product is crucial to have
control over the product, its dependencies, licensing (and more) and to facilitate vulnerability
identification, monitoring, and management starting from a well-defined input.

In this Section, we examine the state-of-the-art for component and vulnerability tracking and
vulnerability management, exploring limitations as well as possible improvements.

4.2 Vulnerability Management Methodology

Component and vulnerability tracking are essential aspects of the vulnerability management
process. Vulnerability management is based on a combination of automated tools and manual
efforts. The process can be implemented as follows.

1. Component Inventory Management: in this step the target is to create and maintain an
inventory of all software (applications, libraries, operating systems, etc.) and hardware
components present in the system, gathering information about the version numbers, vendor
names, and other relevant details. Every identified component is associated with a unique
identifier that is used for tracking and referencing other components throughout the whole
process.

2. Vulnerability Tracking: in this step all the components in the inventory are scanned for known
vulnerabilities, comparing the version in use against vulnerability databases. The scan is run
periodically, tracked and documented, to maintain a record of identified vulnerabilities
(represented via unique identifiers), their descriptions, severity levels, and available
mitigations or remediations.

3. Vulnerability Assessment: in this step all the identified vulnerabilities are evaluated to define
their risk level and understand their potential impact. The assessment takes into account
factors such as the vulnerability's potential for exploitation, the effect on the system
functionality/availability, the impact on the data confidentiality and integrity. According to the
output of this evaluation, it is possible to define a priority in the remediation efforts.

4. Vulnerability Addressing: in this step the assessed vulnerabilities are mitigated or remediated
according to the defined priority. This step includes monitoring and tracking the availability of
patches or updates provided by component vendors or open source communities, applying

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 57

the necessary patches or updates, and keeping track of the actions taken to address each
vulnerability.

5. Reporting and Metrics: in this step are generated reports and metrics to track the progress
of component and vulnerability tracking efforts. This helps in assessing the overall security
posture, identifying trends, and communicating the status to relevant stakeholders.

4.3 State-of-the-art: Component Inventory

During the Component Inventory Management step, an inventory of all software and hardware
components of the system is defined. This is often referred to as Bill Of Materials (BOM).

There are different types of BOMs, including:

● Software Bill of Materials (SBOM): an inventory that lists the software components used in a
particular software system.

● Software-as-a-Service Bill of Materials (SaaSBOM): an inventory similar to SBOM, but for
software delivered as a service, and providing a logical representation of complex systems.

● Hardware Bill of Materials (HBOM): an inventory that lists the hardware components that
make up a system (e.g. processors, memory modules, mechanical housing, etc.).

To facilitate this step and the subsequent phases of the vulnerability management process, it is
beneficial to adopt a standard BOM format. Examples of these standard formats include Software
Package Data Exchange (SPDX) and CycloneDX.

Software Package Data Exchange [SPDX] is an open standard for SBOM, which allows the
representation of components, licences, copyrights and other data. It is designed for the
representation of software components and is not suitable to be reworked for the definition of an
HBOM.

On the other hand, CycloneDX [CycloneDX v1.4] is an open standard from OWASP for defining a
generic BOM, including SBOM and HBOM.

A generic BOM contains an inventory of the various individual components of a product, which in
turn can be represented using different standards, such as:

● Common Platform Enumeration (CPE),
● Software Identification (SWID) tags,
● Package URL (PURL).

Among these, the use of SWID or PURL is limited to software. On the other hand, CPEs can be used
to identify both hardware and software components, but there are some criticalities also in this case
that will be analysed later in this document.

In the ORSHIN context, the target is to create a security-focused HBOM model to represent an open
source hardware product, that can be used to define the inventory of the used components and to
track the status of their vulnerabilities.

The only format that gives the possibility to represent an HBOM is the CycloneDX format. However,
it lacks some properties for a more accurate representation and there are very few examples
available. In addition, there is no centralised tracking of HBOMs, in any format. For these reasons
and some others, which we will explain in detail in later Sections, much work still needs to be done.

4.3.1 Common Platform Enumeration (CPE)

Common Platform Enumeration (CPE) [CPE Dictionary] is a standardised scheme that can be used
to identify applications, software packages, operating systems, and hardware devices. It provides a
structured naming scheme that allows for the unique identification and categorization of these
components. CPE is defined by the National Institute of Standards and Technology (NIST) and is
part of the Common Vulnerabilities and Exposures (CVE) initiative.

4.3.1.1 Naming Scheme

The CPE naming scheme is based upon the generic syntax for Uniform Resource Identifiers (URI),
and consists of a formatted string that includes a set of fields representing different attributes of a

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 58

component. These fields are organised hierarchically in order of decreasing significance from left to
right, and separated by a colon as delimiter (“:”).

The current version, maintained by NIST, follows this format:

cpe:<cpe_version>:<type>:<vendor>:<name>:<version>:<update>:<edition>:<la

nguage>:<sw_edition>:<target_sw>:<target_hw>:<other>

● cpe_version, represents the version of the CPE definition. The latest CPE definition

version is 2.3.

● type, represents the category of the component identified by the CPE, and can have one of

the following values:

○ a for Applications,

○ h for Hardware,

○ o for Operating Systems.

● vendor, represents the person or the organisation that manufactured or created the product.

● product, represents the most common name of the component identified by the CPE.

● version, represents the specific version number of the component identified by the CPE.

● update, represents any updates, service packs, or patches applied to a specific version of

the component.

● edition, represents a specific flavour (or variations) of a component, often used to

represent the target OS/software, architecture, and/or feature set of a product.

● language, represents the language used in the specific release of the component (any valid

language tag defined by IETF RFC 4646).

● target_sw, is used to specify the target software or target environment in which the

component is used.

● target_hw, is used to specify the target hardware in which the component is used.

For example, for the microcontroller ESP32, manufactured by Espressif, the CPE associated is
cpe:2.3:h:espressif:esp32:-:*:*:*:*:*:*:*. Here, * is used as a wildcard character to

denote fields that are not specified. The fields used in this CPE are:

● cpe_version 2.3

● type hardware

● vendor espressif

● name esp32

Another example of CPE is the one representing the firmware of the ESP32, defined by
cpe:2.3:o:espressif:esp32_firmware:-:*:*:*:*:*:*:*. In this case, the field type is

set to Operating System, which is clearly not an appropriate categorization for firmware. Moreover,
note that many fields, as demonstrated in both examples, often go unused.

4.3.1.2 Applications and Usage

By providing a standardised framework for describing and identifying components, Common
Platform Enumeration (CPE) is primarily used in the field of cybersecurity and vulnerability
management to create a comprehensive inventory of software packages, operating systems, and
hardware devices within a system.

A CPE is usually associated to metadata to identify:

● the function of a product (e.g., web server, DNS server),
● the existence of product vulnerabilities,
● product configuration compliance,
● product licence usage.

This is useful in scenarios such as:

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 59

● Asset Inventory: it aids in managing software versions, ensuring compliance with security
policies by keeping track of patches and updates.

● Vulnerability Monitoring and Management: it helps in identifying and tracking known
vulnerabilities by mapping them to specific components, prioritising remediation efforts.

● Security Incident Response: during security incidents or breaches, it helps to quickly identify
the affected components and assess their potential impact.

● Interoperability and Integration: CPE enables different security tools, databases, and
platforms to communicate and exchange vulnerability information using a common naming
scheme. It facilitates interoperability and integration between various vulnerability
management solutions, making it easier to share and analyse vulnerability data.

4.3.1.3 Limitations

Although CPE is a standardised method for describing and identifying software applications,
operating systems, and hardware devices, it does have several limitations.

1. Limited Coverage: The type field of a CPE can assume as value only a, o and h, since it
primarily focuses on software applications, operating systems, and hardware devices. These
three categories are too generic and cannot be used to represent other systems components,
such as communication interfaces, protocols and firmware. Moreover, often these categories
are misused. Indeed, take as an example
cpe:2.3:o:espressif:esp32_firmware:-:*:*:*:*:*:*:*, representing the

firmware of the ESP32 [ESP32 Firmware CPE]. In this case, the firmware is tagged as
Operating System, which is not very appropriate.

2. Incomplete and Inconsistent Data: The accuracy and completeness of CPE data rely on
the information provided by vendors and maintainers. Sometimes the data may be
incomplete, inconsistent, or outdated, leading to challenges in accurately identifying and
categorising components.

3. Lack of Granularity: CPE uses a hierarchical naming scheme that may not provide sufficient
granularity. Most of the fields available in the CPE naming scheme are often not used and
substituted with an *. Typically, a component is represented using only the fields

cpe_version, type, vendor, name and version. This may not capture nuanced

differences within software versions or hardware variants, which can impact vulnerability
management and tracking accuracy.

4. Maintenance and Updates: CPE requires regular updates to reflect changes in software
versions, product names, and other relevant information. However, keeping the CPE data
up-to-date can be a challenging task, and outdated or inaccurate information may impact its
effectiveness.

5. Lack of Standardised Taxonomy: While CPE provides a structured naming scheme, the
categorization and classification of software and hardware components are subjective and
may vary between vendors or organisations. This lack of standardised taxonomy could create
challenges in consistent interpretation and usage of CPE data.

6. Components relationships: The CPE naming scheme does not allow to represent links and
relationships among components. For example, it is not possible to define if a component is
derived from another one (e.g., a project forked from another one), if a set of components is
deployed together, or if a component implies the presence of other components (e.g., a
device containing specific hardware components). In the context of cybersecurity, knowing
these relationships is useful to perform an in-depth analysis of existing vulnerabilities and
understand whether one component is the direct source of a weakness or if it inherits it from
a linked component. Understanding if a set of components is deployed together also helps
to understand whether or not an update should involve all of them.

7. CPE database: CPE databases are strictly related to their associated vulnerabilities. This
means that if a vulnerability is discovered for a component, a new CPE (if not already defined)
is created to keep track of the vulnerability. But on the other hand, if a component has no

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 60

vulnerability found yet, it is highly improbable that a CPE would be created to represent it. As
a result, it is impossible to use CPEs to proactively identify and monitor components for
potential vulnerabilities.

4.4 State-of-the-art: Vulnerability Tracking

A vulnerability is a flaw in a software or hardware component resulting from a weakness that can be
exploited, causing a negative impact to the confidentiality, integrity, availability, or other aspects
(e.g., authenticity, privacy) of a system.

In the context of device security, it is necessary to identify and enumerate not only the hardware and
software components, but also the known vulnerabilities and the weaknesses that may affect them.

Vulnerability tracking involves monitoring known vulnerabilities associated with the software and
hardware components of a device, to ensure their timely identification and to enable the possibility
to implement an efficient vulnerability management process.

The most common method for identifying and tracking vulnerabilities is through the Common
Vulnerabilities and Exposures (CVE) system.

The CVE database is maintained by MITRE, a non-profit organisation that runs federally funded
research and development centres. MITRE collaborates with government agencies to provide
technical expertise in areas such as defence, cybersecurity, healthcare, and aviation.

The primary goal of the CVE system is to define a standardised naming and identification scheme
for publicly known vulnerabilities. It serves as a central repository of vulnerability information and is
publicly accessible to support the efforts of the cybersecurity community in securing their systems
and networks. Over time, the CVE database has grown significantly, with thousands of vulnerabilities
being assigned CVE IDs each year.

CVE may not cover all security issues of a device, since the system is collecting only known
vulnerabilities and exposures. To ensure comprehensive coverage of potential risks and
vulnerabilities in their systems, organisations should complement CVE tracking with other practices,
such as penetration testing and monitoring of vendor security advisories.

4.4.1 Common Vulnerabilities and Exposures (CVE)

The Common Vulnerabilities and Exposures (CVE) [CVE] was established in 1999 by the U.S.
Department of Homeland Security's Cybersecurity and Infrastructure Security Agency (CISA) in
partnership with the Mitre Corporation.

The CVE system provides a unique identifier, known as a CVE ID, for each reported vulnerability.
The format of a CVE ID is "CVE-YYYY-NNNNN," where "YYYY'' represents the year of the ID
creation, and "NNNNN" is a sequential number assigned to the vulnerability. By assigning unique
identifiers (CVE IDs) to vulnerabilities, the CVE system enables consistent and efficient tracking,
communication, and remediation of vulnerabilities across the cybersecurity community. In fact, within
the information provided for each CVE, it is possible to identify references for mitigations or patches
for the vulnerability.

CVE IDs are assigned by CVE Numbering Authorities (CNAs), which include major software and
hardware vendors, security research organisations and open source projects. When CNAs assign a
CVE ID to a vulnerability, it becomes a part of the CVE database and is made publicly accessible.

Security researchers, vendors, and organisations can report vulnerabilities to CNAs, who ensure
that reported vulnerabilities are valid, unique, and meet the criteria for inclusion in the CVE database.
CNAs are then responsible for assigning CVE IDs, and publishing the details of the vulnerabilities
(such as a description, severity level, affected software versions, and any available references or
patches) in the CVE database.

The CVE system has become an essential part of the cybersecurity ecosystem, widely used by
organisations and security tools to track, prioritise, and address vulnerabilities in software and
systems. By monitoring the CVE database, organisations can stay informed about newly discovered

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 61

vulnerabilities, can assess the severity and the potential impact on their systems and software, can
retrieve patches and mitigations provided by vendors or the community.

4.4.2 Common Weaknesses Enumeration (CWE)

The Common Weaknesses Enumeration (CWE) is a framework developed by MITRE which provides
a comprehensive taxonomy of the known and recurring weaknesses of software and hardware
systems. The primary goal of the CWE framework is to define a common language and a baseline
for identification, mitigation, and prevention efforts for each of the most common types of
weaknesses [CWE].

In practical terms, CWE is a list of common software and hardware weakness categories, maintained
and developed by the community. The CWE list covers a range of different scenarios, such as flaws,
faults, bugs in the code, the design, the architecture of the systems that are affected by the listed
weaknesses. Moreover, the CWE list contains suggestions and techniques that should be
implemented to avoid or mitigate the issues.

4.4.2.1 Limitations

The CWE is an enumeration system, thus it inherits some of the common limitations of this kind of
frameworks.

Although the CWE list is designed with the goal of enumerating all the common weaknesses that
arise in software and hardware system development, some weaknesses may not be included in the
database. This issue relies on the nature of frameworks like CWE, since new weaknesses are
discovered continuously and the management of the database requires heavy manual work. Such
manual work includes manual reviews and evaluations that may be impossible to automate.

The delay introduced by the manual management of the database may also indirectly affect the
frameworks that focus on the vulnerabilities, since the latter directly lean on the weaknesses. In other
words, temporary or continued absence of CWE entries easily causes inconsistencies in the other
evaluation ecosystems (e.g.: CVE).

Moreover, since defining an evaluation method for manual activities is not a trivial task and strictly
depends on the sensitivity of the evaluators, the final subjective interpretations of the weaknesses
may lead to inconsistent evaluations. The inconsistency may be introduced as erroneous,
ambiguous or incomplete classifications. For example, it is possible that two similar vulnerabilities
are linked to completely different weaknesses, depending on the evaluator(s) decision. According to
CVE-2019-15894, an attacker who uses fault injection to physically disrupt the ESP32 CPU can
bypass the Secure Boot digest verification at startup. This vulnerability is associated with CWE-755,
“Improper Handling of Exceptional Conditions”. CWE-755 is quite ambiguous, and would have been
better to select a CWE from category 1388, “Physical Access Issues and Concerns”. For example
CWE-1332 “Improper Handling of Faults that Lead to Instruction Skips”, seems more appropriate.
Other vulnerabilities associated with fault injection attacks such as CVE-2022-47549 and CVE-2022-
42961, are classified as CWE-347, a generic “Improper Verification of Cryptographic Signature”, or
not classified at all.
An additional limitation arises considering the experience required to use the system effectively. The
CWE framework requires a high level of expertise in order to be effective in practical situations; this
is mainly due to the fact that the CWE system is hierarchically complex (i.e., it is not a flat data
model), and that its content is fragmented (i.e., it has been provided by various contributors).
Understanding the content and the meaning of the CWE entries according to the specific application
scenarios is a non-trivial task. Security experts are typically involved in the evaluation process, the
system lacking a reliable tool designed to apply the conceptual contents of the database to the
practical field. In addition, the CWE entries may hardly adapt to the specific peculiarities or
implementations of the final products of each organisation.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 62

4.4.2.2 CWE-1194 – Hardware Design

In recent years, a set of hardware weaknesses has been embedded in the CWE list. The latter
weaknesses have been grouped in a dedicated category, released in 2021: CWE-1194 [CWE-1194].
The CWE-1194 is a specific view that contains all the most common weaknesses related to the
hardware, such as side channel leakages, unmanaged faults, security flaw issues, etc.

The CWE-1194 subcategories are listed below:

1194 - Hardware Design

● Manufacturing and Life Cycle Management Concerns - (1195)
● Security Flow Issues - (1196)
● Integration Issues - (1197)
● Privilege Separation and Access Control Issues - (1198)
● General Circuit and Logic Design Concerns - (1199)
● Core and Compute Issues - (1201)
● Memory and Storage Issues - (1202)
● Peripherals, On-chip Fabric, and Interface/IO Problems - (1203)
● Security Primitives and Cryptography Issues - (1205)
● Power, Clock, Thermal, and Reset Concerns - (1206)
● Debug and Test Problems - (1207)
● Cross-Cutting Problems - (1208)
● Physical Access Issues and Concerns - (1388)

Each sub-category contains the CWE related to hardware weaknesses, which are mainly submitted
and maintained by hardware experts.

4.4.2.3 CWE-1000 – Research Concepts

CWE-1000 is a specific entry within the Common Weakness Enumeration (CWE) catalogue that
contains the whole CWEs that appear in the database. As part of the comprehensive taxonomy of
vulnerabilities, CWE-1000 serves as a reference view intended to facilitate research into
weaknesses, considering their specific inter-dependencies. CWE-1000 organises the CWE entries
according to their abstractions of behaviours instead of their detection strategy.

1000 - Research Concepts (pillars)

● Improper Access Control - (284)
● Improper Interaction Between Multiple Correctly-Behaving Entities - (435)
● Improper Control of a Resource Through its Lifetime - (664)
● Incorrect Calculation - (682)
● Insufficient Control Flow Management - (691)
● Protection Mechanism Failure - (693)
● Incorrect Comparison - (697)
● Improper Check or Handling of Exceptional Conditions - (703)
● Improper Neutralization - (707)
● Improper Adherence to Coding Standards - (710)

Each element of the first level can either include base elements or groups (such as classes or
composite).

4.4.3 Common Attack Pattern Enumeration and Classification (CAPEC)

We have seen CVE items, which describe single vulnerabilities, and CWE items, which describe
generic weaknesses.
An effort to link these entities, explaining how attackers could exploit weaknesses to obtain instances
of vulnerabilities is done by MITRE initiative CAPEC [CAPEC].

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 63

Figure 19: Comparison of CVE, CWE and CAPEC. Copyright © The MITRE Corporation.

An attack pattern is the common approach to the exploitation of a weakness in a software or a
hardware component.

The Common Attack Pattern Enumeration and Classification (CAPEC) provides a publicly available
catalogue of common attack patterns that helps users understand how adversaries exploit
weaknesses in products, components or applications. Each attack pattern captures knowledge about
how specific parts of an attack are designed and executed, and gives guidance on ways to mitigate
the attack's effectiveness. Initially released in 2007 by the U.S. Department of Homeland Security,
the CAPEC List continues to evolve with public participation and contributions to form a standard
mechanism for identifying, collecting, refining, and sharing attack patterns among the cybersecurity
community.

4.5 Modern Approach for Component and Vulnerability Tracking

In this Section we present a modern and efficient approach to component and vulnerability tracking.
The goal is to establish a methodology for identifying and representing the components of a product
in an unambiguous and accessible format. Through this methodology it should be possible to define
the Bill Of Materials (BOM) of a device in a simple way, facilitating the aggregation and scaling of
information at a global level. Being able to track components in this format would then also facilitate
and automate the monitoring of their vulnerabilities.

Desirable features for a component tracking system include the following:

1. There should be the possibility to track components freely, even when there are no known
vulnerabilities, and to allow contributions from the community.

 As seen in Section 4.3.1.3- Limitations, the current situation is not ideal. We think that a
global database (centralised or distributed) should allow contribution from various sources,
including at least:

● Manufacturers/vendors wanting to track their own components, and providing
authoritative information;

● Community members wanting to add new components or add/correct information on
existing ones.

2. There should be a way to indicate whether a (hardware) component is open source.

 Specifically for the context of ORSHIN secure hardware, but also generally due to the rising
importance of open source hardware designs, we think that there should be a way to indicate
whether a particular product declares to be open source, or uses open source
subcomponents. In Chapter 1 - Definition of Open source Hardware we faced the problem of
agreeing on what it means to be open source, and also we tried to answer the question of
whether the property of being open source can be defined not only qualitatively, but also

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 64

quantitatively.
We make a proposition for a component-tracking format that will allow to specify such
information, using our own definition as an example; regardless of the actual system being
used in the future, we think that it is important to capture this open source-related information
inside BOMs.

3. There should be the possibility to specify product licences.

Licensing information is important when cataloguing components, providing information
about their allowed use. The relevance is not limited to software licences, but also applies to
hardware designs, and gets even more relevant in the context of open source, as different
open source licences greatly vary in terms of the actual permissions they concede.

4. It should be improved the specification of vendor, author, and contributor information, and
this could include a "community" vendor option, for example.

For standard products, a single "manufacturer" or "vendor" is enough, but the reality of open
source projects is more variegated. For instance, the maintainer of an open source project
may change over time, or there might not be a single entity behind the development, but
rather a "community" or a "team" composed of individuals.

Currently, this information is hardly tracked outside of the repository or web page of the
individual project, and sometimes it's not even clear from such sources; as an example,
consider an open source project on GitHub with a single owner and contributor, identified
only by its GitHub handle.

We expect that in the next few years, the catalogues for components will have to give the
possibility of specifying all this information pertaining to authorship and identification.

5. Lastly, more useful metadata, such as links to the main project page and security advisories,
could be added.

Links to security-relevant documents are always useful, such as security advisories published
by the vendor, external independent blogs describing features of the product, and so on. Due
to irregularities, it may not be possible to devise a model that perfectly fits for every possible
case, so a desirable feature for a tracking model would be to have enough flexibility to specify
both common and unexpected metadata.

To provide these features, the first step is to agree on unique and shareable identifiers for
components. A cloud infrastructure should therefore be implemented to keep track of components
in a database, observing the above properties.

It should be possible to apply for registration to the system with different types of users and roles,
which include the possibility of submitting proposals for components, submitting revisions and
updates, and approving them.

The system should have a form of consensus whereby multiple users can review and approve the
proposals of components. For example, there could be defined roles for reviewers, who can propose
changes to components or propose new ones to be added, and roles of administrators, who can
vote to approve new components or revisions (with an agreed threshold for approval).

There should be no ambiguity between components in the database: there should be no duplicates,
or at least it should be possible to identify duplicate components and perform deduplication.

After careful evaluation of the state-of-the-art (Section 4.3- State-of-the-art: component inventory,
Section 4.4- State-of-the-art: Vulnerability Tracking), we consider CycloneDX a promising format for
efficient component tracking. It already possesses most of the features we desire to model a generic
BOM, and HBOMs in particular.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 65

Moreover, through its Vulnerability Exploitability eXchange (VEX) feature, it is possible to provide
information about vulnerabilities inside BOMs, thus linking component tracking to vulnerability
tracking. Single vulnerabilities can be represented by providing their CVE identifier, along with
related metadata (if present/relevant).

With a few adaptations to facilitate context-specific information for hardware and for open source, it
is the ideal format for representing BOMs of ORSHIN secure hardware in the scope of the ORSHIN
Trusted Life Cycle.

Given these considerations, the data format we propose to be used in a hypothetical global database
for component tracking is compliant with the CycloneDX format. It can be used to represent BOMs
for single components (e.g., a library, a specific hardware module), or for more complex devices.

4.5.1 Model for Component Tracking Definition

To define our model for component tracking, we start by providing a conceptual example of the Bill
Of Materials (BOM) for a device, which we call ORSHIN Device. The proposed format follows the
CycloneDX schema [CycloneDX v1.4].

Our main focus is to model the hardware part, without also including in our BOM software
components that run on top of it. The BOM of the example ORSHIN Device will have the following
structure, in JSON format:

{

 "$schema": "http://cyclonedx.org/schema/bom-1.4.schema.json",

 "bomFormat": "CycloneDX",

 "specVersion": "1.4",

 "serialNumber": "urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79",

 "version": 1,

 "components": [

 {

 "bom-ref": "device-1",

 "type": "device",

 "name": "ORSHIN Device",

 "version": "1.0.0",

 "supplier": {

 "name": "ORSHIN",

 "url": ["https://www.orshin.com"],

 "contact": [{ "email": "orshinmember@gmail.com", ... }, ...]

 },

 "author": "ORSHIN",

 "publisher": "ORSHIN",

 "licenses": [...],

 "description": "Example of device for the ORSHIN project",

 "externalReferences": [

 {

 "type": "other",

 "url": "https://www.orshin-device.com"

 }

],

 "properties": [

 {

 "name": "orshin:view",

 "value": "1"

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 66

 },

 {

 "name": "osrhin:opensource:score",

 "value": "TBD"

 }

],

 "components": [...]

 }

],

 "dependencies": [

 {

 "ref": "device-1",

 "dependsOn": [...]

 }

]

}

The proposed schema consists of the following elements, defined by CycloneDX fo.

● The schema, bomFormat and specVersion properties, containing information about the

schema itself.
● The serialNumber, the unique identifier of the BOM, which must conform to RFC-4122.

● The version of the BOM, which is 1 by default and should be incremented whenever the

BOM is modified, either manually or through automated processes.
● The components, an array of the software and hardware components of the product

represented by the BOM.
● In addition, other properties can be specified. For example the property metadata, which

can be used to provide additional information about a BOM (e.g. authors, manufacturer,
supplier, etc.).

As concerns the components array, for each element of this list, some of the properties that can be

specified are listed below.

These properties are all derived from the CycloneDX format. In our model, we have only extended
the possible values that the type of a component can take and added ORSHIN-specific properties

in the field where CycloneDX allows custom values to be included. In particular, the fields marked
with (*) were not defined by CycloneDX or were readjusted for the purpose of adherence to the
ORSHIN context.

1. bom-ref: an optional identifier which can be used to reference the component in the BOM.

Every bom-ref must be unique within the BOM.

2. type: the type of component. For software components, CycloneDX allows a specific and

appropriate classification, while for hardware it lacks granularity. We propose the following
comprehensive list to choose from, which also allows us to model the ORSHIN views defined
in Section 2.3 – Views.

○ application: software application.

○ framework: software framework.

○ library: software library. All third-party and open source reusable components will

likely be a library. If the library also has key features of a framework, then it should be
classified as a framework.

○ container: packaging and/or runtime format, not specific to any particular

technology, which isolates software inside the container from software outside of a
container through virtualization technology.

○ operating-system: operating system.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 67

○ firmware: special type of software that provides low-level control over a device's

hardware.
○ file: computer file.

○ device (*): hardware device into the hands of the final user, which is the final

composition of parts from lower ORSHIN views.
○ chip (*): integrated circuit that combines multiple electronic components and

functionalities into a single chip (CPUs and IPs).
○ cpu (*): central process unit of a hardware component.

○ ip (*): stands for Intellectual Property, subcomponent of a system-on-module / chip

(e.g. a secure element).
○ technology-library (*): library containing the blocks to build the fundamental

bases for a hardware component.

3. name: the name of the component (a shortened, single name of the component).

4. version: the component version. The version should ideally comply with semantic

versioning but is not enforced.
5. licences: a list of licences of the component, that can be represented by a string or a more

detailed structure with id, name, text and URL properties.
6. description: a brief description for the component.

7. externalReferences: a list of sites and other information (which may also include other

BOMs) that may be relevant, but which are not included with the BOM.
8. supplier: an object describing the organisation that supplied the component, which may

often be the manufacturer, but may also be a distributor or repackager. Can include names,
URLs and email addresses.

9. author: the person(s) or organisation(s) that authored the component.

10. publisher: the person(s) or organisation(s) that published the component.

11. properties: list of properties which can be customly defined and represented in a name-

value format. This provides us the flexibility to include data not officially supported in the
CycloneDX. We define the following properties:

○ Orshin:view (*): the optional number identifying the ORSHIN view of the

component.
○ Orshin:opensource:score (*): the optional scoring value for the ORSHIN open

source evaluation of the component.
12. components: list of software and hardware components included in the parent component.

This is not a dependency tree, while it provides a way to specify a hierarchical representation
of components. Items are structured as above, i.e. can have all above properties, including
the array of components itself.

13. dependencies: array of items that define the direct dependency of a component, using

bom-ref identifiers.

We now provide some observations on the defined model, the convenience of using CycloneDX, its
advantages and disadvantages.

Aspects that we consider important for the representation of a BOM and that CycloneDX fulfils are
multiple. It offers the possibility of expressing components and subcomponents, thus representing
the inclusion relationship between them. There is the possibility of expressing links between
components, using the dependency property. An example of dependency can be the one existing
between a library defined in a repository and a derived version of it, defined in a fork of its repository.

In addition, components can be represented without using CPEs. The major improvement brought
by this alternative system is that devices, and BOMs in general, become uniquely identifiable objects,
which can be structured, searchable, linkable, all from within the CycloneDX format. With CPEs,
these features were somewhat granted by the surrounding environment (e.g. the NIST database),
but the CPE format itself could not be used for any rich, meaningful representation of these objects
(refer to Section 4.3.1.3 – Limitations for further detail).

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 68

Even if it is easy to agree on the improvement brought by this change, the CPE system remains
widespread nowadays, related databases do contain most of relevant information useful for tracking
software and hardware (and link them to vulnerabilities), and so replacing it all at once would not be
realistic. CycloneDX makes it possible for each component to also define the property cpe, providing

a way to preserve this information, and make the transition to a new tracking framework smoother.

On the other hand, CycloneDX does not have a system to enforce the definition of globally unique
identifiers; as of today, to the best of our knowledge there are no public global databases that use
CycloneDX to track components.

However, using a combination of the serial number and bom-ref fields, components in CycloneDX
can be uniquely identified and referenced [BOMLINK]. Therefore, by defining and implementing the
appropriate infrastructure, we think that this representation format is suitable for modelling BOMs of
arbitrarily complex hardware, and serve a central global reference and inventory for hardware
components.

With appropriate effort and allocation of resources from key actors, it could be possible to initiate a
transition towards this modern tracking system in the near future, and make it fully operational within
the next years.

4.5.2 Practical Example

Now we show how to use our BOM methodology on a device, which we call ORSHIN Device, with
some real components, to provide a more complete and practical example. The device is composed
by two chips:

1. NXP MIMXRT685 (see [NXP RT600 Datasheet] for details),
2. U-blox LARA-R6001 (see [U-blox LARA-R6 Datasheet] for details).

The NXP MIMXRT685 is a dual-core microcontroller from the NXP i.MX RT family. It is based on the
ARM Cortex-M33 and the Xtensa HiFi4 Audio DSP CPUs. The u-blox LARA-R6001 is a cellular
module of the LARA-R6 series. Among this series it is one of the smallest LTE Cat 1 multi-mode
solutions with comprehensive support of RAT and bands for global connectivity, including 18 LTE
FDD/TDD bands plus 3G/2G fallback in single SKU.

In order to define the BOM, it is necessary to understand which are the subcomponents of the two
chips. These can be derived by looking at the NXP MIMXRT685 and u-blox LARA-R6001 schematics
and extracting the CPUs and PINs information. The two Figures below illustrate the subcomponents
diagrams of the two chips.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 69

Figure 20: NXP MIMXRT685, source [NXP RT600 Datasheet].

Figure 21: U-blox LARA-R6001 simplified block diagram, source [U-blox LARA-R6 Datasheet].

As can be seen from the first diagram and from the schematic document, NXP MIMXRT685 is
composed of two CPUs (Cortex-M33 and Tensilica HiFi4 DSP) and several IPs (e.g. PowerQuad
and Casper coprocessors, Boot ROM unit, RAM memory, etc.).

On the other hand, the LARA-R6001 schematic is documented with less detail and it is more complex
to extract information regarding its subcomponents. However, it is possible to determine that it
consists of a cellular base-band processor, which should be the MDM9207-1 by Qualcomm
(composed, in its turn, by a Cortex-A7 CPU), an RF transceiver, a Flash memory and Power
Management Unit.

The CPUs and IPs of the two chips of the device are in turn composed of different technology
libraries. In the case of our example, the underlying technology libraries are not open source, so the
representation of this information is not applicable here. In addition, we decided not to report in detail
all IPs and all properties of the device under consideration, in order to keep the example easy to

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 70

understand (from the pictures above all known components that are part of the considered chips can
be found).

The BOM of the ORSHIN Device example will represent the components as outlined in the following
picture.

Figure 22: The BOM of the ORSHIN device example.

Therefore, the BOM of the ORSHIN Device will have the following scheme.

{

 "$schema": "http://cyclonedx.org/schema/bom-1.4.schema.json",

 "bomFormat": "CycloneDX",

 "specVersion": "1.4",

 "serialNumber": "urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79",

 "version": 1,

 "components": [

 {

 "type": "device",

 "name": "ORSHIN Device",

 ...

 "components": [

 {

 "type": "chip",

 "name": "NXP MIMXRT685",

 "description": "Main application processor",

 ...

 "properties": [

 {

 "name": "orshin:view",

 "value": "2"

 },

 {

 "name": "orshin:opensource:score",

 "value": "TBD"

 }

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 71

],

 "components": [

 {

 "type": "cpu",

 "name": "Cortex-M33",

 "description": "Arm Cortex-M33 core",

 "properties": [

 {

 "name": "orshin:view",

 "value": "3"

 },

 {

 "name": "orshin:opensource:score",

 "value": "TBD"

 }

]

 },

 {

 "type": "cpu",

 "name": "PowerQuad",

 "description": "Hardware accelerator for fixed and floating point

 DSP functions",

 "properties": [

 {

 "name": "orshin:view",

 "value": "3"

 },

 {

 "name": "orshin:opensource:score",

 "value": "TBD"

 }

]

 },

 {

 "type": "cpu",

 "name": "Casper",

 "description": "Crypto/FFT engine",

 "properties": [

 {

 "name": "orshin:view",

 "value": "3"

 },

 {

 "name": "orshin:opensource:score",

 "value": "TBD"

 }

]

 },

 {

 "type": "cpu",

 "name": "Cadence Tensilica Xtensa HiFi4",

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 72

 "description": "DSP processor core",

 "properties": [

 {

 "name": "orshin:view",

 "value": "3"

 },

 {

 "name": "orshin:opensource:score",

 "value": "TBD"

 }

]

 },

 ...

]

 },

 {

 "type": "chip",

 "name": "U-blox LARA-R6001",

 "description": "LTE interface module",

 "properties": [

 {

 "name": "orshin:view",

 "value": "2"

 },

 {

 "name": "orshin:opensource:score",

 "value": "TBD"

 }

],

 "components": [

 {

 "type": "chip",

 "name": "MDM9207-1",

 "description": "Cellular base-band processor",

 "properties": [

 {

 "name": "orshin:view",

 "value": "2"

 },

 {

 "name": "orshin:opensource:score",

 "value": "TBD"

 }

],

 ...

 "components": [

 {

 "type": "cpu",

 "name": "Cortex-A7",

 "description": "Arm Cortex-A7 core",

 "properties": [

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 73

 {

 "name": "orshin:view",

 "value": "3"

 },

 {

 "name": "orshin:opensource:score",

 "value": "TBD"

 }

]

 },

 ...

]

 },

 ...

]

 }

]

 }

]

}

This representation is intended to be a baseline example of the proposed format for representing an
HBOM. It should be clear from this example and from what is described in this Section how to extend
and complement it.

Other than the specific properties of the HBOM format, we also think that a relevant role in the
evolution of component and vulnerability tracking will be played by the related infrastructure, for
which we have outlined the desired properties.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 74

Chapter 5 Conclusion and Next Steps

In this deliverable we have reported part of the research of WP2, particularly focusing on the work
related to Task 2.1, Trusted Life Cycle methodology.

This methodology aims at providing developers and maintainers of the open source community with
practical help for exploring and expanding the cyber security dimension of their projects, and
particularly the embedded/IoT/IIoT projects which employ open source hardware.

We took inspiration from state-of-the-art standards and embraced the open source philosophy,
discharging any security-by-obscurity practice. At the beginning of an open source project, the
developers can use the TLC as a reference for shaping its cyber security dimension, and for creating
the required evidence that the project is adhering to certain security requirements.

The methodology has been detailed with the user/adopter of open source projects in mind; we put
ourselves in the shoes of the user that would like to select an open source project, and who would
like to have indications on whether the cybersecurity dimension has been considered when initiating
a development, and if it is still considered and maintained over time after the product has gone to
market.

There are two additional and important outcomes from our research. First, we have worked to clarify
the definition and meaning of "open source hardware". Despite being extensively used, this
terminology does not yet have a universally accepted definition. Before our research, the closest
effort to having such a definition is represented by the Open Source Hardware (OSHW) Definition
1.0 [OSHWA 2023]; however, the property that are used to characterise open source in that
document are not easy to measure, do not differentiate between different types of hardware, and
are generally oblivious of the technical context.

We tried to make an improvement to the state-of-the-art, by providing a definition for open source
hardware covering all these missing properties. After differentiating hardware developments based
on their level of abstraction, we study relevant properties that affect their ability to effectively be
"open source", initially from a qualitative perspective, then also from a quantitative point of view,
providing a practical way to calculate a score for how "open source" a component effectively is.
Finally, we provide examples on how such a system can be applied to real-world use cases.

On the other hand, there is a growing research in finding vulnerabilities in software, firmware and
hardware. Which has an impact on the projects that are using components coming from other open
source projects or from commercial providers, like silicon manufacturers. The adopter of the open
source project would like to see from the maintainers an effort for tracking components and the
associated vulnerabilities over time. This is a fundamental aspect. Some projects are doing it via
release notes, this is a good start but remains hard to follow. We define a modern method adopting
the CycloneDX and expanding it to the open source hardware dimension. We also provide guidance
on the next steps that would need to be executed by key actors in order to advance the adoption of
this model.

Our proposal for the ORSHIN Trusted Life Cycle is flexible and allows adopters to customise it based
on their needs. Our list of security requirements should be considered as a base from which a project
can immediately benefit from.

The next steps that we envision for our TLC mainly concern the involvement of interested
stakeholders; we think that, more than a theoretical contribution to the state-of-the-art, our approach
could also practically constitute a first step in consolidating secure life cycles for previously
unexplored contexts, namely the ones of hardware and open source.

By adopting our classification and scoring system for open source hardware, manufacturers will be
able to both measure their effectiveness when trying to adhere to open source initiatives, and at the
same time they will be able to provide a sort of scorecard to interested parties for measuring how
"open source" their products are.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 75

By using our definition for the TLC phases and requirements, manufacturers who wish to initiate
hardware developments with open source components will be able, for the first time, to adopt a
methodology for defining and implementing context-aware process requirements in such areas.

Finally, if key actors in the area of component and vulnerability tracking agree on our proposal for
implementing a global database for allowing the community to track information related to Bill Of
Materials in an efficient way, overcoming the limitation of the current de facto standard system, it will
be possible to evaluate the benefits of a framework that is more open, coherent, and hardware-
friendly than what is available today.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 76

List of Abbreviations

Abbreviation Translation

AC Access Control

ADF AttackDefense Framework

API Application Programming Interface

ASIC Application Specific Integrated circuit

BOM Bills Of Materials

BSIMM Building Security in Maturity Model

CAD Computer Aided Design

CAPEC Common Attack Pattern Enumeration and Classification

CCM Cloud Controls Matrix

CCTV Closed-Circuit Television

CISA Cybersecurity and Infrastructure Security Agency

CLASP Comprehensive, Lightweight Application Security Process

CNA CVE Numbering Authorities

CoM Computer on Module

CPE Common Platform Enumeration

CPU Central Processing Unit

CSA Cloud Security Alliance

CVE Common Vulnerability and Exposures

CWE Common Weakness Enumeration framework

DevSecOps Development Security Operations

DFM Design for Manufacturing

DFSG Debian Free Software Guidelines

DFT Design for Testability

DNS Domain Name System

DSP Digital Signal Processing

EDA Electronic Design Automation

ENISA European Union Agency for Cybersecurity

ETSI European Telecommunications Standard Institute

FDD/TDD Frequency Division Duplex/Time Division Duplex

FIDO Fast Identity Online

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 77

Abbreviation Translation

FPGA Field Programmable Gate Array

GB GigaByte

HBOM Hardware Bills Of Materials

HDL Hardware Description Language

HW Hardware

IACS Industrial Automation Control Systems

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IETF Internet Research Task Force

IIoT Industrial Internet of Things

IOC Indicator Of Compromise

IoT Internet of Things

IP Intellectual Property

ISA International Society of Automation

ISMS Information Security Management System

ISO International Organization for Standardization

IT Information Technology

JSON JavaScript Object Notation

KPI Key Performance Indicator

LTE Long Term Evolution

LTS Long Time Support

NDA Non Disclosure Agreement

NIST National Institute of Standards and Technology

OS Operation System

OSHW Open Source Hardware

OSHWA Open Source Hardware Association

OWASP Open Worldwide Application Security Project

P0, P1, P2, ... Property 0, Property 1, Property 2, …

PCB Printed Circuit Board

PIN Personal Identification Number

PURL Package URL

RAM Random Access Memory

RAT Radio Access Technology

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 78

Abbreviation Translation

RF Radio-Frequency

RFC Request For Comments

ROM Read-Only Memory

RTL Register Transfer Level

SA System and Services Acquisition

SaaSBOM Software-as-a-Service Bill of Materials

SAMM Software Assurance Maturity Model

SBOM Software Bills Of Materials

SDK Software Development Kit

SDLC Secure Development Life Cycle

SI System and Information Integrity

SIEM Security Information and Event Management

SKU Stock Keeping Unit

SMM Security Maturity Model

SoC System on a Chip

SoM System on Module

SP Special Publication

SPDX Software Package Data Exchange

SW Software

SWID Software Identification

TCP/IP Transmission Control Protocol/Internet Protocol

TLC Trusted Life Cycle

TLS Transport Layer Security

TS Technical Specification

UK United Kingdom

UMC United Microelectronics Corporation

URI Uniform Resource Identifiers

URL Uniform Resource Locator

USB Universal Serial Bus

V0, V1, V2, V3 View 0, View 1, View 2, View 3

VA Vulnerability Analysis

VEX Vulnerability Exploitability eXchange

WP Work Package

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 79

Bibliography

Kelty 2016

C. M. Kelty, "The Cultural Significance of free Software - Two Bits", Duke University Press, 2016.

Free Software Foundation 2017

Free Software Foundation, "Categories of Free and Nonfree Software", 2017. [Online].
Available: https://www.gnu.org/philosophy/categories.html.en.

Baker 2011

R. J. Baker, "CMOS: Circuit Design, Layout, and Simulation", John Wiley & Sons, 2011.

OSHWA 2023

OSHWA, “Open Source Hardware (OSHW) Definition 1.0”, visited 2023. [Online].
Available: https://www.oshwa.org/definition/.

Open Source Initiative

Open Source Initiative, “Open Source Definition”, 2007. [Online].

Available: https://opensource.org/osd/.

Debian Social Contract 2023

Debian org, “The Debian Free Software Guidelines (DFSG)”, 2020. [Online].

Available: https://www.debian.org/social_contract#guidelines.

CERN OSH 2023

CERN, “CERN Open Hardware Licence”, visited 2023. [Online].

Available: https://cern-ohl.web.cern.ch/.

CERN OHL 2020

CERN, “CERN OHL version 2. An Introduction and Explanation”, 2020.

Available:
https://ohwr.org/project/cernohl/wikis/uploads/0be6f561d2b4a686c5765c74be32daf9/CERN_OHL_
rationale.pdf

MIT LICENCE

Open Source Initiative, "The MIT License", visited 2023. [Online].

Available: https://opensource.org/license/mit/

APACHE LICENCE 2023

APACHE software foundation, “APACHE LICENSE, VERSION 2.0”, visited 2023. [Online].

Available: https://www.apache.org/licenses/LICENSE-2.0

https://www.gnu.org/philosophy/categories.html.en
https://www.oshwa.org/definition/
https://opensource.org/osd/
https://www.debian.org/social_contract#guidelines
https://cern-ohl.web.cern.ch/
https://ohwr.org/project/cernohl/wikis/uploads/0be6f561d2b4a686c5765c74be32daf9/CERN_OHL_rationale.pdf
https://ohwr.org/project/cernohl/wikis/uploads/0be6f561d2b4a686c5765c74be32daf9/CERN_OHL_rationale.pdf
https://opensource.org/license/mit/
https://www.apache.org/licenses/LICENSE-2.0

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 80

GPL 2022

GNU Operating System, “Licenses”, 2022. [Online].

Available: https://www.gnu.org/licenses/licenses.en.html

CCLICENCES

Creative Commons, “About CC Licenses”. [Online].

Available: https://creativecommons.org/about/cclicenses/

GNU 2021

Free Software Foundation, "GNU Operating System", visited 2023. [Online].

Available: https://www.gnu.org/

OSHWA CERT

OSHWA, “Open Source Hardware Association”, 2023. [Online].

Available: https://certification.oshwa.org/

CPE Dictionary

Official Common Platform Enumeration (CPE) Dictionary, 2023. [Online].

Available: https://nvd.nist.gov/products/cpe

Howard 2006

M. Howard, S. Lipner, “The Security Development Lifecycle”, Microsoft Press, 2006.

Geer 2010

D. Geer, “Are Companies Actually Using Secure Development Life Cycles?”, 2010.

Raspberry About

Raspberry Pi Foundation, “About”, visited 2023. [Online].

Available: https://www.raspberrypi.com/about/

Raspberry Products

Raspberry Pi Foundation, “Products”, visited 2023. [Online].

https://www.raspberrypi.com/products/

USB Armory

With Secure, “USB Armory”, visited 2023. [Online].

Available: https://www.withsecure.com/en/solutions/innovative-security-hardware/usb-armory

USB Armory Mk II

With Secure, “USB Armory Mk II”, visited 2023. [Online].

Available: https://www.crowdsupply.com/f-secure/usb-armory-mk-ii

Toradex Apalis

https://www.gnu.org/licenses/licenses.en.html
https://creativecommons.org/about/cclicenses/
https://www.gnu.org/
https://certification.oshwa.org/
https://nvd.nist.gov/products/cpe
https://www.raspberrypi.com/about/
https://www.raspberrypi.com/products/
https://www.withsecure.com/en/solutions/innovative-security-hardware/usb-armory
https://www.crowdsupply.com/f-secure/usb-armory-mk-ii

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 81

Toradex, “Apalis arm family”, visited 2023. [Online].

Available: https://www.toradex.com/computer-on-modules/apalis-arm-family

OWASP SAMM

Open Web Application Security Project, "OWASP SAMM", visited 2023. [Online].

Available: https://owasp.org/www-project-samm/

CycloneDX v1.4

Open Web Application Security Project, "CycloneDX v1.4 JSON Reference", visited 2023. [Online].

Available: https://cyclonedx.org/docs/1.4/json/

BOMLINK

Open Web Application Security Project, "CycloneDX BOM-Link", visited 2023. [Online]

Available: https://cyclonedx.org/capabilities/bomlink/

PRECURSOR

Sutajio Kosagi, Precursor, visited 2023. [Online]

Available: https://www.crowdsupply.com/sutajio-kosagi/precursor

SPDX

Linux Foundation, "SPDX Project", visited 2023. [Online].

Available: https://spdx.dev/

CVE

Common Vulnerabilities and Exposures

Available: https://www.cve.org/About/Overview

NXP RT600 Datasheet

NXP RT600 Product data sheet Rev. 2.0, 1 April 2022.

Available https://www.nxp.com/docs/en/data-sheet/DS-RT600.pdf

U-blox LARA-R6 Datasheet

U-blox LARA-R6 series single or multi-mode LTE Cat 1 modules with Secure Cloud data sheet, 09
Feb 2023.

Available https://content.u-blox.com/sites/default/files/LARA-R6_DataSheet_UBX-21004391.pdf

CWE

The MITRE Corporation, "Common Weakness Enumeration", visited 2023. [Online]

Available: https://cwe.mitre.org/

CWE-1194

"CWE VIEW: Hardware Design", visited 2023. [Online]

Available: https://cwe.mitre.org/data/definitions/1194.html

https://www.toradex.com/computer-on-modules/apalis-arm-family
https://owasp.org/www-project-samm/
https://cyclonedx.org/docs/1.4/json/
https://cyclonedx.org/capabilities/bomlink/
https://www.crowdsupply.com/sutajio-kosagi/precursor
https://spdx.dev/
https://www.cve.org/About/Overview
https://www.nxp.com/docs/en/data-sheet/DS-RT600.pdf
https://content.u-blox.com/sites/default/files/LARA-R6_DataSheet_UBX-21004391.pdf
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/1194.html

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 82

CAPEC

The MITRE Corporation, "Common Attack Pattern Enumerations and Classifications", 2023. [Online]

Available: https://capec.mitre.org/

ISO 27001

ISO, “ISO 27001:2022”, 2022.

ISO 27002

ISO, “ISO 27002:2022”, 2022.

CLS CSA Singapore

CSA Singapore Government, “Cybersecurity Labelling Scheme”. [Online]
Available: https://www.csa.gov.sg/our-programmes/certification-and-labelling-
schemes/cybersecurity-labelling-scheme

STRIDE

Microsoft Corporation, "The STRIDE Threat Model", 2009. [Online]

Available: https://learn.microsoft.com/en-us/previous-versions/commerce-
server/ee823878(v=cs.20)

Code of Practice for Consumer IoT Security

UK Government, "Code of Practice for Consumer IoT Security", 2018. [Online]

Available: https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security

ESP32 Firmware CPE

The CPE used by NIST to represent ESP32 firmware. [Online]

Available: https://nvd.nist.gov/products/cpe/detail/143A95B6-D13D-434A-AD4A-
3F0C4FCD6122?namingFormat=2.3&orderBy=CPEURI&keyword=cpe%3A2.3%3Ao%3Aespressif
%3Aesp32_firmware%3A-%3A*%3A*%3A*%3A*%3A*%3A*%3A*&status=FINAL

Home Assistant

Project Home Assistant, "Raspberry Pi", visited 2023. [Online]

Available: https://www.home-assistant.io/installation/raspberrypi/

https://capec.mitre.org/
https://www.csa.gov.sg/our-programmes/certification-and-labelling-schemes/cybersecurity-labelling-scheme
https://www.csa.gov.sg/our-programmes/certification-and-labelling-schemes/cybersecurity-labelling-scheme
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security
https://nvd.nist.gov/products/cpe/detail/143A95B6-D13D-434A-AD4A-3F0C4FCD6122?namingFormat=2.3&orderBy=CPEURI&keyword=cpe%3A2.3%3Ao%3Aespressif%3Aesp32_firmware%3A-%3A*%3A*%3A*%3A*%3A*%3A*%3A*&status=FINAL
https://nvd.nist.gov/products/cpe/detail/143A95B6-D13D-434A-AD4A-3F0C4FCD6122?namingFormat=2.3&orderBy=CPEURI&keyword=cpe%3A2.3%3Ao%3Aespressif%3Aesp32_firmware%3A-%3A*%3A*%3A*%3A*%3A*%3A*%3A*&status=FINAL
https://nvd.nist.gov/products/cpe/detail/143A95B6-D13D-434A-AD4A-3F0C4FCD6122?namingFormat=2.3&orderBy=CPEURI&keyword=cpe%3A2.3%3Ao%3Aespressif%3Aesp32_firmware%3A-%3A*%3A*%3A*%3A*%3A*%3A*%3A*&status=FINAL
https://www.home-assistant.io/installation/raspberrypi/

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 83

Appendix A - List of process requirements for the TLC

GO-01 Governance | Training and Awareness

Title Define a team strategy for specific security training

Description Ensure that all personnel participate in awareness-raising activities and

training, focusing on how to apply security in a TLC process. These

activities must be customised depending on roles and responsibilities in the

TLC. Security knowledge must be a requirement before starting any TLC

project. The training should include information about best practices to

ensure a safe work environment, security roles and responsibilities within

the project phases, and security tasks, as well as security policies,

standards, applicable regulations and legislation.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

GO-02 Governance | Training and Awareness

Title Promote security awareness

Description Include security activities to raise awareness among the team (courses,

simulations, talks, etc.) about how to address security during the

development process. If the entire team is sensitised to security, it will be

easier to implement the necessary measures to achieve a process as

secure as possible.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

GO-03 Governance | Training and Awareness

Title Assess the security skills to be updated

Description A team must stay up to date with the latest security knowledge and

certifications of its members, by means of activities, exams, certifications,

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 84

etc. At least once a year this information must be updated.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

GO-04 Governance | Training and Awareness

Title Allocate resources to stay up to date with security topics

Description Appoint resources and promote the implementation of monitoring, tracking

and update activities by means of threat intelligence in order to be aware of

the status of current vulnerabilities and new types of attacks that may affect

your projects. Along with security lessons learned, this information must be

centralised in a repository. The result of these tasks will help to prevent

future security issues.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

GO-05 Governance | Roles and Privileges

Title Establish security roles and privileges within the development project

Description Ensure that development teams work alongside security teams by means of

the definition, identification and allocation of functions, responsibilities and

tasks in relation to security in all phases of development. This measure

ensures that security is addressed when required.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

GO-06 Governance | Roles and Privileges

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 85

Title Implement a separation of duties in the work team

Description It is essential to ensure a proper separation of duties during the

development process, implementing security controls in order to prevent

security impacts. Without a separation of duties, people could carry out

fraudulent activities in any phase by leveraging their privileges. The goal is

to avoid the possibility of users having admin rights or inadequate profiles

for critical tasks.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

GO-07 Governance | Roles and Privileges

Title Protect the process against privilege abuse

Description The integrity of the development process must be guaranteed. Implement

security measures to access project resources so as to prevent any team

member (insider, third-party) with privileges from disabling security controls,

establishing or modifying policies and guides, collecting sensitive data, etc.

Perform audits periodically to ensure the integrity of information.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

GO-08 Governance | Roles and Privileges

Title Allocate resources for process monitoring

Description Designate a person to perform, review and put forth improvement actions for

the business continuity plan: safeguarding critical points that may slow down

or compromise the development process (TLC), like the unavailability of

third-party services, the uncontrolled access to sensitive locations where

information is stored, the lack or expiry of licences involved in the TLC, etc.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 86

Installation

Maintenance

Retirement

GO-09 Governance | Security Culture

Title Consult with security experts to improve the process

Description Engage internal or external security support to complement, support, or

cover security aspects and to contribute during specific activities, such as:

- Use of external penetration testers during the testing phase to provide

different perspectives, adding robustness to the process.

- Use of specific expert in security tools to control access to the process

resources, increasing the confidentiality and integrity throughout all phases

- Use of a coach to bring security into the TLC phases, etc.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

GO-10 Governance | Security Culture

Title Monitor and respond to the supporting security incidents

Description Allocate resources to monitor, operate and respond to alarms generated by

events resulting from the loss or poor performance of the infrastructures that

support the TLC, which are essential for correct functioning. This would be

the case of communications slowing down or being lost, as well as the loss

or unavailability of data repositories, be they owned or through a cloud

service, etc.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

PR-01 Process | Third-Party Management

Title Implement a supply chain management plan

Description During a TLC process, components or services are outsourced to a third-

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 87

party (external supplier). A supply chain management plan should be

implemented and integrated into this process to ensure the integrity of the

TLC.

This plan should include information related to security frameworks to be

used, risk management, third-party acquisition management, purchasing

contract definition, etc.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

PR-02 Process | Third-Party Management

Title Assess the software and hardware dependency process

Description Ensure a proper management of third parties and dependencies of the

software and hardware development using risk management and integrating

security requirements in contracts, ensuring the visibility and traceability of

components, documenting all components and subcomponents acquired,

managing incidents, scanning dependencies, etc.

Public vulnerability databases must be consulted when choosing a third-

party software/hardware and dependencies must be checked periodically or

every time they are updated. An open source update plan for IoT must be

considered and followed, monitoring and managing third-party

vulnerabilities.

Contract with third parties involved in the TLC should include a clear liability

distribution.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

PR-03 Process | Third-Party Management

Title Verify third-party software, hardware and services

Description Verify that the component provided by third parties meets the TLC security

requirements or can guarantee having followed an equivalent process for

secure development.

It is advisable to check that the requirements have been met at least every

time a delivery occurs.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 88

Phases Implementation

Evaluation

PR-04 Process | Third-Party Management

Title Disseminate a communication procedure to request external support

Description Establish a procedure for the team to know the steps to be taken in the

event of requiring support from external providers to face events or incidents

concerning cloud services, testing services, etc., indicating at least the

person of contact in charge of the service, the request model and

communication channel, incident follow-up and management, the

remediation, documentation updates, version, etc.

Phases Installation

Maintenance

PR-05 Process | Operations Management

Title Define an Incident Management plan

Description Provide guidance for the definition and allocation of roles, responsibilities

and activities to be implemented by the teams in the event of security

incidents.

Security incidents pose a higher impact as the TLC process reaches the last

stages, so it is crucial to manage it following an established resolution

process. This process should contain at least:

- Incident detection and registration.

- Classification and initial support.

- Research and diagnosis.

- Solution and service restoration.

- Extract security guidance from incident for next generation

- Incident closure.

- Monitoring, follow-up and communication of the incident.

Maintain, to the greatest extent feasible, a full inventory of third party

components and dependencies, and track vulnerabilities, patches, and

updates to those components to preserve security.

An Incident Management Plan should be defined and periodically updated.

Phases Installation

Maintenance

PR-06 Process | Operations Management

Title Define a Change Management plan

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 89

Description A Change Management Plan should be defined to manage any changes

that may take place during the TLC process. This entails ensuring control

over the budget, schedule, scope, communication, and resources. The main

focus is to minimise the impact a change throughout the process could have

on the different assets: business, team, users, and other important

stakeholders.

Change management is a highly important activity both in the development

and integration phases (changes may affect the requirements) as well as in

the maintenance and retirement, during updates, patches or functionalities

changes.

The plan should detail a procedure containing at least:

- Identification and formal request.

- Impact analysis and assessment.

- Validation.

- Planning and testing.

- Implementation.

- Monitoring, follow-up and communication of the change.

Phases Design

Implementation

Evaluation

Installation

Maintenance

Retirement

PR-07 Process | Operations Management

Title Implement Vulnerability and Patch Management

Description Develop a process for vulnerability and update management as well as for

vulnerability disclosure from external and internal parties to reduce the risk

of system failures, especially in operation. This process must encompass

identification and patching processes and the communication process with

the relevant stakeholders when a vulnerability is discovered. This guide

should document the process and controls to be carried out by the project

team, such as:

- Vulnerability discovery/disclosure

- Identification of the affected asset

- Development of the solution or patch

- Testing, solution compliance

- Patch implementation, update

- Update follow-up

Phases Design

Implementation

Evaluation

Installation

Maintenance

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 90

PR-08 Process | Operations Management

Title Implement Configuration Management

Description Configuration management focuses on maintaining the integrity of the

system, ensuring that uncontrolled changes are implemented during the

deployment and maintenance phases of the TLC process. It must be

configured in a restrictive way to guarantee maximum resistance against

malicious or unintentional attacks.

Phases Installation

Maintenance

PR-09 Process | TLC Methodology

Title Establish a Control Access and Authorisation policy

Description The access to resources and processes should be protected to prevent

users without authorisation from accessing restricted resources (e.g. data

repository, password storage, test reports, etc.) at any stage of the TLC

process.

By establishing user access privileges, it is possible to ensure the

confidentiality, integrity and availability of data and process:

- Only authorised persons (based on their privileges) will be able to access

restricted resources.

- The control access will make it possible to identify and audit the accesses

that have taken place, establishing internal security controls.

Phases Implementation

Evaluation

Installation

Maintenance

PR-10 Process | TLC Methodology

Title Define security metrics

Description Implement security metrics, which should be defined and tracked in order to

verify that the specified security requirements have been fulfilled during the

development process.

Checking the security metrics should be a necessary requirement to:

- Evaluate the security maturity and identify actions to improve the process

(SMM).

- Reassure quality for all TLC phases.

- Assess the status of an ongoing process.

- Track potential risks.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 91

- Discover process issues before they become critical.

- Evaluate the ability of the project team to control the quality of products.

- Update the security metrics during the whole TLC process

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

PR-11 Process | TLC Methodology

Title Define and document the TLC process

Description Define security guides establishing the performance of security tests during

the different phases of development, defining best practices such as the

generation of use cases, the performance of penetration tests during

development, the use of tools, the performance of security tests at the end

of the process, etc.

It is recommended to execute this process in every iteration (sprint) or when

a modification is implemented.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

PR-12 Process | Secure Deployment

Title Define a disposal strategy

Description A plan for the withdrawal of the solution at the end of the life cycle must be

considered. The plan must include measures to formally retire stored data

according to the needs (organisational, data privacy, regulatory compliance)

including third-party components and the communication to the

stakeholders. To ensure the disposal process, an audit log must be

maintained.

Phases Maintenance

Retirement

PR-13 Process | Secure Deployment

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 92

Title Establish process for TLC vulnerabilities follow-up, monitoring and updates

Description Establish a procedure to inform of new published vulnerabilities (e.g.

establishing mechanisms to receive feedback from the security research

community) that may affect the development life cycle (including those that

affect third party components), so that they can be taken into account in all

phases. This information measure can help the organisation not to incur into

known errors, and to take them into account as security requirements in the

requirements phase of the TLC for future developments.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

PR-14 Process | Secure Deployment

Title Implement a testing strategy

Description Define a testing strategy and ensure accuracy of testing processes for the

development.

This strategy should contain considerations such as test scope definition,

criteria to be used, quality control points, procedures to solve errors, etc.,

Testing must be initiated as soon as possible in the development process,

with standard development-oriented testing activities, such as security

requirements testing, vulnerability assessment, penetration testing.

Testing may continue even after production, by regularly repeating tests and

performing other activities such as active piracy monitoring, and red teaming

Phases Implementation

Evaluation

Installation

Maintenance

Retirement

PR-15 Process | Secure Deployment

Title Define a secure deployment strategy

Description Define effective and secure deployment strategy, weighing the options in

terms of the impact of change on the targeted systems, and the end-users.

It must be considered that only qualified personnel must have access to the

deployment environment, audit systems for all deployments establishing

versions control, acceptance threshold, person who conducted it, etc.

Phases Installation

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 93

Maintenance

PR-16 Process | Security Design

Title Provide a secure framework

Description Adopt a security framework encompassing the necessary requirements in

order to define and provide guides and policies to be implemented

throughout the Trusted Life Cycle process. Known frameworks minimise

risks and threats that could affect the process. Define a secure framework to

ensure in-depth defence and observe security by design considering the

entire life cycle of the solution and comprising the design, maintenance, and

retirement phases.

Phases Threat Modelling and Risk Assessment

Design

Maintenance

Retirement

PR-17 Process | Security Design

Title Apply least privilege principle

Description Ensure that user and software privileges are strictly limited to features

required to carry out the operations. Limiting permissions and rights in the

tasks to be performed is an important activity during the TLC process,

gaining greater relevance in the Design and Testing phases.

Privileges must have a resilient configuration against unauthorised changes,

and must be in line with authorisation and access control policies.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

PR-18 Process | Security Design

Title Verify security controls

Description Allocate a project resource (i.e. a data repository) to centralise security

control management activities (security control updates, tracking,

monitoring) to be carried out during the TLC process. Verify that the security

controls implemented are accessible, controlled regularly, safe, and

reusable, avoiding duplicates and ensuring they are efficient, reliable, and

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 94

based on international best practices. It is recommended to review and

update them periodically, at least once a year or upon every important

change (new technologies, project's lessons learned, etc.).

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

PR-19 Process | Security Design

Title Perform a design review

Description During the Design phase of the TLC process, solutions must be reviewed,

by a team which is independent from the designers, from the point of view of

security, ensuring that security requirements, which have been previously

defined, have been met, identifying the attack surface, carrying out a threat

modelling, providing security mechanisms, and scheduling periodic reviews

throughout the development process based on milestones. It is

recommended to execute this process in every iteration (sprint).

Phases Design

PR-20 Process | Security Design

Title Specify security requirements

Description Establishing security requirements prior to development makes it possible to

implement security functionalities that ensure compliance with standards

and laws and avoid known vulnerabilities. The definition of these security

requirements makes it possible to industrialise the security standards that

apply to different developments, complying with a series of standard security

controls, making it possible to fix past problems, and helping to prevent

future flaws.

Some best practices would be the performance of security and requirement

compliance assessments, the specification of requirements based on known

risks, the definition of requirements in agreement with providers, the

implementation of security user stories, and the performance of security

audits. They must be reviewed periodically, at least every time known best

practices and regulations are updated, or each time a security issue is

discovered

Phases Threat Modelling and Risk Assessment

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 95

PR-21 Process | Security Design

Title Perform a risk assessment

Description Identify risks throughout the development process, at every level (system,

hardware, software, network, etc., analysing the sources, data storage,

applications or third parties. As part of the analysis, make sure that the data

to be protected are reliable, and that there are measures in place to prevent

the unauthorised access, loss, destruction or manipulation thereof. A

security risk assessment should include:

- The analysis of the potential risk if the security of each of the following

components were compromised: sources, storage, sensitive data,

applications, data stores, cloud services.

- The analysis of data classification mechanisms and data security

capabilities in order to protect sensitive data from unauthorised use, access,

loss, destruction or sabotages.

- The analysis of the potential for trusted insiders to misuse their privileged

access to data.

Based on these analyses, implement best practices for the mitigation of

each potential security threat.

This process must be periodically reviewed, at least once a year.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

PR-22 Process | Security Design

Title Implement Threat Modelling

Description In the design phase, it is necessary to study the architecture and the design

of the system by means of threat modelling techniques. Threat modelling

thoroughly identifies key assets thus far hidden, as well as their associated

risks. Through this technique, developers can focus their efforts on

subsequent phases, applying tools oriented to the uncovered risks.

Developers should regard the following aspects as best practices:

- Building and maintaining threat models for each application, defining the

profile of potential attackers by means of the architecture.

- Building and maintaining abuse case models per project, establishing

threat assessment systems. Explicitly evaluate the risk of third-party

components and generate threat models with security controls.

Phases Design

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 96

PR-23 Process | Security Design

Title Implement data classification

Description Data are a critical asset from the point of view of security.

Based on the classification of information (status, use, owner, risk, etc.),

assign a level of sensitivity to the data in the risk assessment phase to

establish

the corresponding protection measures throughout the TLC process

(ensuring the privacy of data at rest by means of encryption, preventing

unauthorised access by means of control access, etc.).

Phases Threat Modelling and Risk Assessment

Design

PR-24 Process | Security Design

Title Ensure that the hardware requirements derived from software requirements

are considered

Description Bear in mind that, as part of the functional requirements, it is essential to

take into account the implications for hardware derived from software

security requirements. Implement controls during the Requirements phase

in order to associate/map software security requirements and hardware

requirements and ultimately fulfil them. For instance, associate secure boot

mechanisms with the use of chips/modules supporting this technology

(Root-of-Trust), identifying hardware needs based on the communication

protocol chosen in order to determine the power source depending on

consumption, etc.

Phases Threat Modelling and Risk Assessment

PR-25 Process | Internal Policies

Title Establish a communication plan for security measures

Description Develop a communication plan targeted at all persons involved in the

development process (specially third-parties) in order to report on the

security measures that must be observed for a proper development, such as

applicable regulations, security frameworks and methodologies to be used,

security best practices, etc. This plan must be reviewed, validated and

disseminated in the team at least once a year.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 97

Installation

Maintenance

PR-26 Process | Internal Policies

Title Control the process against information disclosure

Description Ensure that process information is not disclosed or tampered with by any

stakeholder throughout the life cycle without prior authorisation, as it could

result in a compromise of intellectual property, a breach of regulatory

compliance, reputational losses, etc. Security measures should be

considered such as role-based access control, authorisation, permission

assignment, non-disclosure clauses in the contracts, etc.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

PR-27 Process | Internal Policies

Title Verify and ensure the availability of updated security documents

Description Ensure the availability of security policies, procedures, guides, applicable

regulations and requirements for developers. Throughout the process, a

centralised repository must be accessible. Organisations have to implement

change management to guarantee the integrity of data and avoid

introducing errors in the process.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

PR-28 Process | Internal Policies

Title Plan an alternative for unavailability cases

Description Distribute your resources so as to not centralise security knowledge in a

single resource, be it internal or through a third party, with a view to avoiding

cases of unavailability that may bring the TLC process to a standstill in any

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 98

of the phases. This would be the case, for instance, when there is only one

security pentesting specialist during the Testing phase.

This measure focuses on providing an alternative for TLC critical points

(resources redundancy).

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

TC-01 Technology | Access Control

Title Implement authorisation

Description Implement access control in the infrastructure to ensure that the system

verifies that users and applications have the right permissions allocated to

their roles to access system resources. This can be done by means of the

least privilege principle and a strategy regarding authorisation policies,

controls, and design principles for different categories of data.

If a password is being used for authentication, the asset should force the

user to change the password at first use. Furthermore, typed characters

should be masked.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Installation

Retirement

TC-02 Technology | Access Control

Title Secure storage of users' credentials

Description Ensure that user credentials of infrastructures are secured.

Passwords must always be hashed with a salt. Password bolts are often

used to hardcode credentials for system communications, so that the

system has to request the credentials before accessing a resource. This

measure prevents access to sensitive functionalities and data (e.g. source

code).

Phases Installation

Maintenance

TC-03 Technology | Access Control

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 99

Title Deploy physical protection for systems

Description Systems and their corresponding hardware must be protected against

unauthorised modification attempts and direct access, as well as other

dangers (fire, water, cooling issues, etc.). Physical access must be

controlled and unused physical interfaces must be disabled or inaccessible.

Removing unnecessary items helps to reduce the attack surface.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Installation

Maintenance

TC-04 Technology | Access Control

Title Implement Key management and authentication mechanisms (e.g. FIDO)

Description Ensure the secure management of service credentials for your TLC

systems. They must be temporary and single-use, and the right

communication privileges have to be allocated for the different service

credentials (e.g. user credentials vs. System credentials).

Phases Design

Installation

Maintenance

TC-05 Technology | Access Control

Title Control the physical access to the critical facilities

Description Implement a physical access control system with authorization mechanisms

to identify users and their privileges. This system should be monitored and

provide event logs for all accesses, including unauthorised access attempts.

The access to physical facilities storing information concerning the TLC or

systems that support the process (repositories, network equipment,

documentation files, etc.) must be adequately protected. This measure can

be stipulated in contracts with external providers concerning the control of

facilities containing information about the service hired. Additionally, a CCTV

surveillance system could be configured to communicate with an alarm

system (e.g. SIEM) and send signals alerting to unauthorised access

attempts.

Phases Threat Modelling and Risk Assessment

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 100

TC-06 Technology | Third-Party Software

Title Use third-party components that are patched for latest known vulnerabilities

Description Ensure that your TLC model enforces the use of the latest versions of third-

party components to safeguard their integrity. The most costly and extensive

attacks have been caused by this issue. Check the versions of your

dependencies at least quarterly once the software or hardware under

construction is in production.

Phases Design

Implementation

Evaluation

Maintenance

TC-07 Technology | Third-Party Software

Title Use known secure frameworks with long-term support

Description For the foundation technologies of the software under development, use and

verify known software security frameworks from third party providers

supplying LTS (Long Time Support) or similar.

Some software have associated security flaws, so it is essential to make

sure that these components can be trusted in the long term.

These components should be chosen considering if they are maintained by

a private organisation or an active group, if security patches are available in

a short time when a vulnerability is disclosed and if developers can be

contacted if a vulnerability is identified.

Phases Design

Implementation

TC-08 Technology | Secure Communication

Title Use secure communication protocols

Description Ensure that security-relevant communications are always encrypted.

Additionally, it is also recommended to implement mechanisms to

authenticate communications.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 101

TC-09 Technology | Secure Communication

Title Use proven encryption techniques

Description Security-relevant data must be encrypted, both at rest and in transit, using a

recognised encryption algorithm. However, even resilient algorithms are not

efficient if they are not properly used (e.g. sufficient key length). It is

necessary to use an initialisation vector and to guarantee a minimum level

of entropy. It is highly recommended to apply hashes to protect electronic

signatures. These measures apply both to original data and to any existing

backups.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

TC-10 Technology | Secure Code

Title Implement secure coding practices

Description In the TLC process, secure coding practices must be implemented during

different phases, including at least:

- Proven strong authentication mechanism to access the software (e.g. two-

factor authentication, minimum password length, secure transfer, secure

connection, secure credential management, etc.).

- Handling all errors and anomalous conditions that can compromise of

sensitive information about the application

- Parameterisation of queries by binding the variables in the corresponding

languages to prevent code injections in the query language, and

- Validation of input and output for forms’ submissions such as with respect

to language, characters, etc. (e.g. whitelisting mechanisms). These should

be addressed in the TLC to ensure the design, implementation and testing

take this into account.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

TC-11 Technology | Secure Code

Title Provide audit capability

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 102

Description Your TLC model must ensure that the software under development (and IoT

systems) include non-repudiation features (design, implementation, testing,

etc.). High-value functionalities must be tracked to control critical aspects of

the software. This could be mandatory, or highly advisable for regulatory

compliance.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

TC-12 Technology | Secure Code

Title Follow the principles of security by design and by default

Description Many decisions are made during the design phase, when the final

functionality of the solution is devised, including access verifications. These

decisions apply to the entire scope of the TLC, implemented in the

implementation/development phase, and tested before and after the

production environment. The fail-safe principle must be taken into account

to prepare the device for errors, anticipate potential disruptions of the

service, and respond appropriately to ensure recovery. The principle of least

privilege must also be observed to prevent unnecessary or unauthorised

accesses. This set of measures is aimed at safeguarding data from being

compromised.

Implement strong user authentication by enforcing the change of passwords

upon first use, and the periodic renewal of passwords (e.g. at least once in

90 days to every 6 months) and session / time lockout upon multiple failed

authentication attempts (password, or other).

Phases Design

Implementation

Evaluation

TC-13 Technology | Secure Code

Title Implement software development techniques

Description Use development techniques that make application architecture more

flexible. Modular architectures provide great benefits, not only during the

operation to speed up updates or identify and troubleshoot, but during

development. Developing large and indivisible blocks implies having a large

team and making it difficult to define the scope. However, using techniques

such as microservices, a large block can be broken down into several to

make the development agile, increase flexibility and scalability, facilitate the

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 103

definition of scopes and functionalities, and decrease errors.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

TC-14 Technology | Secure Code

Title Verify production code

Description Ensure that production code comes with secure compiler options and does

not contain forgotten debug code or debug symbols.

In the production environment, security is crucial and it must be carefully

controlled by ensuring not only the integrity of the tools but the person's

competence conducting these activities.

Phases Implementation

Evaluation

TC-15 Technology | Security Code

Title Ensure security for patches and updates

Description Patches must be carefully managed and deployed to prevent additional

issues with update capabilities. It is necessary to ensure that all IoT

elements can be updated and patched, and developers enable notifications

of updates and security patches so that users can receive them for having

information if, when and how patch software. The installation of security

patches and updates should be user-friendly (e.g. automatic or in a few

clicks). Update mechanisms include secure/encrypted delivery of updates,

validation of signatures on the device before installing the patch (secure

boot), etc.

 Secure over-the-air updates should be considered through a secure

mechanism that is cryptographically signed. This must be considered for all

IoT systems, as well as for the software under construction already in

production (patching as soon as possible for critical vulnerabilities). This

measure prevents CVEs exploited by threat agents, and potential legal

consequences may arise if due diligence is not in place to keep the systems

in a well-fit state.

Phases Maintenance

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 104

TC-16 Technology | Secure Code

Title Implement measures against rogue code and fraud detection

Description Ensure malicious code is adequately managed (perform manual reviews,

protect the code repository against tampering, etc.) in your TLC model.

Validate the application source code and third-party libraries (e.g. lack of

backdoors, time bombs), and that the application does not grant

unnecessary permissions. This measure includes the review of all changes

before the deployment of the change.

Phases Implementation

Evaluation

TC-17 Technology | Secure Code

Title Implement anti-tampering features

Description There must be logical tamperproof measures in IoT systems, that is,

measures to monitor and ensure that the most critical assets (e.g. code)

have not been tampered with (e.g. code-signing). Tampering could ease the

access to sensitive functionalities or data for threat agents, and allow the

insertion of rogue code in the software under construction.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

TC-18 Technology | Security Reviews

Title Apply secure code review

Description Ensure that your TLC model includes source code reviews. Code reviews

can be manual or automated. Good practices recommend performing it

manually for each candidate release (i.e. a member of the development

team reviews what another team member has developed to ensure quality

and share knowledge about the development with the team). This is the only

tool available to detect malicious code. Automated code reviews are

commonplace and more cost- effective compared to manual ones.

Phases Implementation

Evaluation

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 105

TC-19 Technology | Security Reviews

Title Perform an attack surface analysis

Description Carry out this activity during the design phase to detect any potential threats

resulting from weaknesses. Ensure that your TLC model includes this

activity to provide value in other phases. It ensures the control of what is

susceptible to be misused in the software under development, as well as of

potential entry points. It helps to avoid unauthorised activities and data

leakages.

Phases Design

TC-20 Technology | Security Reviews

Title Perform IoT SDLC tests

Description Ensure that your TLC model makes software, firmware, and hardware

undergo testing prior to production to ensure it has no vulnerabilities before

deployment. This can be done by means of an audit, and it should be

performed at least, annually or for each candidate release.

Phases Evaluation

Installation

Maintenance

TC-21 Technology | Security Reviews

Title Design a contingency plan

Description Take into consideration contingency plans designed to be integrated into the

TLC. Some activities of the contingency plan, such as the development of

contingency planning policy and completion of the business impact analysis,

must be executed in the initial phase of the TLC. However, all the activities

of the contingency plan are involved in all the phases but the last one, since

once the system is operational, the contingency planning becomes a core

part of continuous supervision and other ongoing security management

tasks.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 106

TC-22 Technology | Security Reviews

Title Monitor requirements to ensure the SDLC success

Description Implement a system to monitor the requirements agreed by contracts.

During the TLC, a partial or full breach of compliance with a requirement is a

critical aspect. It would entail an increase in the project vulnerabilities and

might even lead the project to fail. It is essential to perform a correct follow-

up of the level of compliance reached by the requirements. To this end, key

compliance indicators can be used (regarding quality, result required, scope,

etc.) by means of a requirement matrix.

Phases Threat Modelling and Risk Assessment

TC-23 Technology | Security of SDLC Infrastructure

Title Ensure secure Logging and Monitoring Implementation

Description The components and systems within the development and production

infrastructure have to generate high-quality logs, containing information

related to security events, and preventing the inclusion of sensitive

information. Logs have to be monitored (if possible, in real time using

automatic systems), reviewed and analysed by security staff.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Installation

Maintenance

TC-24 Technology | Security of SDLC Infrastructure

Title Implement physical detection systems

Description Deploy detection systems to control the critical physical environment

(workplace, server rooms, etc.) where the TLC infrastructure supports as

temperature control, fire/smoke detection, alimentation loss, etc.) in order to

avoid the loss of essential support for the TLC such as organisation

network, external communication, external services as cloud, internet,

surveillance, etc. Deploy backup systems for critical points.

Phases Threat Modelling and Risk Assessment

TC-25 Technology | Security of SDLC Infrastructure

Title Define a mitigation plan for physical damages

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 107

Description Implement a procedure describing the steps to be taken in order to mitigate

the damages that could be caused to the systems where data are stored

during the TLC process (communication systems, network equipment,

servers, disks, data repositories, computers, etc.), as well as the spaces

where they are hosted, to prevent them from being compromised due to a

fire, flood, electric shock, etc. It is also important to have a redundant

system in place to provide support and prevent alterations in the TLC

process.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

TC-26 Technology | Security of SDLC Infrastructure

Title Use whitelists for allowed applications

Description Whitelist-based monitoring makes it possible to strengthen the security of

connections and servers by controlling the applications. Only authorised

applications can be run, thus preventing the execution of unauthorised

software or malware.

Whitelists must be periodically updated in order to include the latest

applications, software has to be patched and tested to verify their

functionality, etc.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

TC-27 Technology | Security of SDLC Infrastructure

Title Audit the access to the TLC infrastructure

Description Collect security logs to audit access to the TLC resources, such as access

to information in servers, files, data stored in physical rooms, etc.

Regardless of whether the accesses are physical or logical, they have to be

analysed with security tools (e.g. SIEM) to register the events (access to

information, downloads, modifications, erasure attempts, etc.), identify

users, and monitor the correct functioning of the process in order to

generate alarms if security is compromised. These logs must be stored in a

safe location and erased once the period of time stipulated by the industry

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 108

elapses (e.g. erasure of financial data after 5 years).

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

TC-28 Technology | Security of SDLC Infrastructure

Title Implement an identification protocol in your facilities

Description Disseminate among internal and external employees of the organisation a

policy on how to adequately identify themselves in the facilities, and on how

to act and where to go if they detect unauthorised individuals attempting to

access the facilities of the organisation for malicious purposes such as

sabotage, industrial espionage, or the theft of confidential information.

Phases Threat Modelling and Risk Assessment

TC-29 Technology | Secure Implementation

Title Enforce the change of default settings

Description Security does not end once the hardware is produced. During the operation

it is necessary to enforce the end users to safely utilise the device.

Therefore, mechanisms must be established during the TLC process to

ensure it, namely: not allowing operation with password and user by default,

ensuring that passwords have a minimum level of security (length,

characters, etc.), including functions to manage user passwords (e.g.

enforcing change cycles every 90 days, etc.), closing the user session after

an inactivity time, locking the access out after multiple authentication fails,

enable user notifications of updates, etc.

Phases Installation

Maintenance

TC-30 Technology | Secure Implementation

Title Use substantiated underlying components

Description Choose well-supported underlying components that do not require

customizations that may lead to losing security oversight and use proven

tools to apply security hardening practices.

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 109

Phases Implementation

Evaluation

TC-31 Technology | Secure Implementation

Title Provide secure configuration options for end users

Description Ensure that the TLC process addresses the provision of adequate measures

in order to include different setting options for end-users upon first usage of

an IoT solution to enable a continuous improvement of security, such as, for

instance, the ability to disable features or functionalities that are not going to

be used or to add automatic security check mechanism.

Phases Installation

Maintenance

TC-32 Technology | Secure Implementation

Title Implement interoperability open standards

Description Whenever possible, implement technologies based on open standards to

ensure that communication and integration between different devices is

secure and reliable.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

TC-33 Technology | Secure Implementation

Title Enable devices to advertise their access and network functionality

Description By enabling devices to advertise their intended and supported functionality,

the threat surface can be significantly reduced. An indicative practical

example involves the use of IETF RFC 8520 on Manufacturer Usage

Description Specification.

Phases Design

Implementation

The following requirements are introduced by us as context-specific for ORSHIN:

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 110

ORSHIN-HD-01 Process | Hardware design

Title Create a design milestone schedule

Description Define a schedule of relevant milestones for various steps of hardware

design, according to the specific technological needs that emerge from the

hardware production process.

For instance, the manufacturing of a silicon IP requires access to highly

specialised semiconductor fabrication plants, also called foundries, and this

forces the need to plan milestones in advance and to strictly adhere to the

timeline. Failure to adequately meet the milestone schedule can result in

inefficient management of very expensive resources, leading to unexpected

costs and delays.

Phases Design

Implementation

Evaluation

Installation

Maintenance

ORSHIN-HD-02 Governance | Hardware design

Title Implement role management for milestone schedule

Description Identify appropriate roles for milestone management and sign-off.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

ORSHIN-HD-03 Process | Hardware design

Title Create a resource/performance evaluation strategy

Description Define a strategy for evaluating the resource/performance ratio, according to

industry-standard criteria and market consensus.

Phases Design

Implementation

Evaluation

ORSHIN-HD-04 Process | Hardware design

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 111

Title Implement a testing-oriented design approach

Description Insert dedicated testing logic in the product that allows efficient testing and

debugging of root causes for issues when prototyping.

Testing logic can be separated from the product's functionalities (i.e. can be

non-necessary for implementing the product essential functions).

Phases Design

Implementation

Evaluation

ORSHIN-HD-05 Process | Hardware design

Title Monitor and measure the production yield

Description Define metrics that can be monitored and measured during the whole

production cycle, in order to identify weaknesses and critical points, and to

plan remediations

Phases Installation

Maintenance

ORSHIN-HD-06 Technology | Hardware design

Title Apply hierarchical and modular design approach

Description Apply a hierarchical modular approach to design, by recursively dividing

systems into modules, reuse regular modules when possible, and define

well-formed interfaces between modules and sub-systems.

Phases Design

ORSHIN-HD-07 Process | Hardware design

Title Design/implementation transparency

Description Design the product so that it is possible to map the implementation onto the

design through reverse engineering, in a simple way that maximises

transparency and minimises friction.

The goal is twofold: ensuring that the design has not been altered in the

implementation (e.g. for inserting backdoors), and that it is easy to evaluate

the product security, in particular certifying that it does not rely on "security-

through-obscurity".

Phases Design

Implementation

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 112

Evaluation

ORSHIN-HD-08 Process | Hardware design

Title Hardware/software co-design

Description Ensure that communication between the hardware and software project

teams is facilitated and encouraged, in order to have a coherent product

development without the creation of "silos".

Phases Design

Implementation

ORSHIN-HD-09 Process | Hardware design

Title Implement a design to facilitate fuzz testing

Description Design the product to permit and facilitate its own testing through fuzzing

techniques; also, provide information and tools to support the fuzzing of the

interfaces of the design.

A prerequisite for this is having clear specification for software/hardware

protocols that are to be tested with techniques on the various interfaces of

the product.

Phases Design

Implementation

Evaluation

ORSHIN-HD-10 Technology | Hardware design

Title Side-channel protection

Description Ensure that the design of the product and its implementation take into

account the threat of side-channel attacks, and ensure appropriate

resistance against them, with a level that is compliant with the product's

threat modelling.

Phases Design

Implementation

Evaluation

ORSHIN-HD-11 Technology | Hardware design

Title Fault-injection protection

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 113

Description Ensure that the design of the product and its implementation take into

account the threat of fault-injection attacks, and ensure appropriate

resistance against them, with a level that is compliant with the product's

threat modelling.

Phases Design

Implementation

Evaluation

ORSHIN-HD-12 Technology | Hardware design

Title Evaluate design tools

Description Investigate design tools to make sure synthesis or other stages of the

processing do not insert weaknesses inside the design.

Phases Design

Evaluation

ORSHIN-HD-13 Process | Hardware design

Title Make sure that board layout does not exposes weakness

Description Evaluate layout in terms of attacker physical access. (Critical signal routing /

removal of test pads on final hardware / etc)

Phases Implementation

Evaluation

ORSHIN-HD-14 Process | Hardware design

Title Create a cycle taking into account evaluation and design

Description Plan security testing at each step of the process (design, layout, physical

implementation and go back in the process according to fix the issues).

Define testing strategies for different stages of the production of a hardware

design (design, layout, netlist).

Phases Design

Implementation

Evaluation

ORSHIN-HD-15 Technology | Hardware design

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 114

Title Instruction Modification Protection

Description For CPU developments, instructions coherency should be checked. Use of

an instruction trap for "undefined" opcodes should be put in place.

Phases Design

Implementation

Evaluation

ORSHIN-HD-16 Technology | Hardware design

Title Instruction Flow Modification Protection

Description For CPU developments, instruction flow modification being the basis of

extraction attacks, checking its coherency seems a legitimate feature

Phases Design

Implementation

Evaluation

ORSHIN-OS-01 Process | Open source

Title Use online repositories to share open source hardware project

Description Ensure a clear way of sharing open source hardware projects files, through

the use of an online repository (like GitHub or GitLab). All files (design, bill-

of-materials, assembly instructions, code, etc) should be version controlled

where possible. Most online repositories also include issue trackers, which

are a good way to keep track of the bugs in and future enhancements, in a

way that others can view and comment on.

As an alternative to an online repository, an online CAD tool (like Upverter)

or a site like Thingiverse can be used.

Reference: https://www.oshwa.org/sharing-best-practices/

Phases Design

Implementation

Evaluation

Installation

Maintenance

ORSHIN-OS-02 Process | Open source

Title Licence open source hardware project designs and derivative works

Description Apply an open source licence to the hardware design files and other

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 115

documentation. In this way, ensure to make clear the ways in which third-

parties should use the project designs. In particular, the licence shall allow

modifications and derived works, and shall allow them to be distributed

under the same terms as the licence of the original work.

Reference: https://www.oshwa.org/sharing-best-practices/

Phases Installation

Maintenance

ORSHIN-OS-03 Governance | Open source

Title Establish official communication channels for open source hardware

projects

Description Establish official communication channels, such as mailing lists, web

forums, blogs and public meetings, for discussions, announcements and

other relevant communications about open source hardware projects.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

ORSHIN-OS-04 Governance | Open source

Title Implement role management for open source-related aspects

Description Identify appropriate roles for management of open source-related aspects,

such as the definition and updating of open source licenses, the monitor of

the product's use with respect to said licenses, etc.

Phases Threat Modelling and Risk Assessment

Design

Implementation

Evaluation

Installation

Maintenance

Retirement

ORSHIN-OS-05 Process | Open Source

Title Selection of tools for hardware design

Description Use free and open source software design (CAD) tools where possible. If

D2.1 – Report about trusted life cycle design methodology for OSH

ORSHIN D2.1 Public Page 116

that’s not feasible, try to use low-cost and/or widely-used software

packages.

Ref: https://www.oshwa.org/sharing-best-practices/

Phases Design

Evaluation

ORSHIN-OS-06 Process | Open Source

Title Selection of third-party components

Description To make it easier for others to replicate and modify the hardware, when

possible it is better to prefer the use of free and open source third-party

components, as opposed to proprietary technology.

Phases Design

Evaluation

