% ORSHIN

D2.2
Report about security requirements

Il 16 101070008
HOIETA T e]1)% 1 Hl ORSHIN
Open-source ReSilient Hardware and software for Internet of
thiNgs
MRS EIGIDEICHE 15° October, 2022
DITEV M 36 months
Programme: ‘ HORIZON-CL3-2021-CS-01

Deliverable Type:
Reference Number:
Workpackage:

Due Date:

Actual Submission Date:

Project title:

Responsible Organisation:
Editor:

Dissemination Level:
Revision:

To address Task 2.2, we present the AttackDefense Frame-
work (ADF), a framework to set abstract security and privacy
requirements into concrete policies on the ORSHIN Trusted
Life Cycle (TLC) and related devices. We show the ADF de-
sign based on a flexible, updatable, and reusable data struc-
AL (T3l ture, we call the AD object. We implement the ADF with state-
of-the-art open-source software and we will open-source our
implementation. We successfully evaluated the ADF in seven
complementary case studies demonstrating, among others,
its capabilities to drive research for ORSHIN's WP2, WP3,
WP4, and WP5.

LGOI CH ADF, Threat modeling, Requirements, TLC, OSH

Funded by the European Union under grant agreement no. 101070008. Views
and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union. Neither the European Union
nor the granting authority can be held responsible for them.

W ORSHIN

D2.2 - Report about security requirements

Editor

Daniele Antonioli (ECM)

Contributors (ordered according to beneficiary numbers)

Stefano Cristalli (SEC)
Arianna Gringiani (SEC)
Tommaso Sacchetti (ECM)
Olivier Thomas (TXP)

Clarisse Ginet (TXP)

Jesse De Meulemeester (KUL)
Marton Bognar (KUL)
Benedikt Gierlichs (KUL)
Linde Nouwen (KUL)
Volodymyr Bezsmertnyi (NXP)

Reviewers

Maria Chiara Molteni (SEC)
Frank Piessens (KUL)

Disclaimer

The information in this document is provided as is, and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The content of this document reflects only the author's view — the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

ORSHIN D2.2 PU Page |

W ORSHIN

D2.2 - Report about security requirements

Executive Summary

We present the design, implementation, and evaluation of the AttackDefense Framework
(ADF), a framework we developed to address the goals we set in Task 2.2. Specifically, ADF
can be used to map abstract security and privacy requirements into concrete policies and mech-
anisms for the ORSHIN Trusted Life Cycle (TLC) and its related open-source hardware (OSH)
devices. Moreover, we empirically show that ADF is useful in driving the research of ORSHIN'’s
technical work packages, i.e., WP3 (Models for formal verification), WP4 (Effective security au-
dits), and WP5 (Secure auth and comms).

ADF enhances and extends current best practices around threat modeling and its three steps
(i.e., system modeling, threat identification and ranking, and defense strategy). For example, it
can be used to threat model attacks and defenses, security and privacy, hardware and firmware,
processes and products, and high-level and low-level threats. None of the state-of-the-art threat
modeling solutions address all these requirements at the same time.

The ADF’s building block is the AD object, a novel, flexible, and extendible data format to
store information about a threat. Every AD object is unique and is easy to (re)use, update, and
read by machines and people. Multiple AD objects (ADs) can be combined and arranged to threat
model ORSHIN’s TLC and devices. For instance, we can create a collection of ADs representing
high- and low-level attacks and defenses in a specific scenario (e.g., loT firmware threats). Then,
we can filter the ADs based on attack surfaces and vectors, arrange them in a tree to visualize
their dependencies, create chains to represent complex exploits and map them to known threat
taxonomies.

We implemented our design with the ADF toolkit. Our toolkit is based on free and open-source
libraries (e.g., pandas and graphviz) and programming languages (e.g., Python and YAML). It
includes extendible collections of ADs covering domains relevant to ORSHIN (e.g., hardware,
software, firmware, and protocol attacks and defenses). It has parsing functions to automatically
parse ADs from popular serialization formats (e.g., YAML, TOML, JSON and XML). Moreover,
ADF contains routines to enforce the AD objects’ syntax and semantics automatically and also
threat modeling automation functions to process the object (e.g., create sets, trees, chains, and
maps). We will open source ADF with a permissive license.

We show how to use ADF in an ORSHIN-related scenario where we are asked to develop
a new secure and privacy-preserving cryptowallet using the ORSHIN TLC. We set seven ab-
stract requirements (AR) on the cryptowallet, including secure and authenticated communication,
resilience against side channel, fault injection, speculative execution, chip-level attacks, and a
trustable life cycle. These ARs cover ORSHIN’'s WP2, WP3, WP4, and WP5. Then, we explain,
based on our recent experience with ADF, how to create ADs according to the threat domain
and use them to address the ARs. Our explanation provides high-level recommendations that we
collected from the experiments described in the next paragraph.

We empirically evaluated ADF with seven case studies related to the cryptowallet scenario
discussed before, and we report remarkable results. We asked several ORSHIN members to
focus on a class of threats in their expertise domain, create a catalog of ADs and use the catalog
for threat modeling. Our evaluation generated novel insights, 169 high-quality ADs developed by
domain experts, covered a broad set of high- and low-level threats related to WP2 (TLC), WP3
(hardware, software, and firmware), WP4 (firmware, hardware), and WP5 (protocol, firmware,
and software), Moreover, our evaluation provided valuable feedback to improve ADF further.

ORSHIN D2.2 PU Page I

D2.2 - Report about security requirements * ORSHIN

Some of ORSHIN’s industrial members are already benefiting from ADF’s novel and useful
features. Texplained (TXP) created a repository of attacks and defenses related to invasive phys-
ical attacks on chips, which has never been done before. Security Patterns (SEC) translated
a state-of-the-art standard for loT secure development (i.e., ISA/IEC 62443-4-1) into ADs and
incorporated them into their threat modeling process. NXP employed the ADF to model their
pre-silicon security auditing on an existing RISC-V secure core (i.e., CV32E40S).

ORSHIN D2.2 PU Page Il

D2.2 - Report about security requirements

W ORSHIN

Table of Content

Cover I
Executive Summary]l
Table of Content Vv
List of Figures Vi
List of Tables Vil
List of Listings Vil
List of Abbreviations 1
Introduction 4
1 Background 7
1.1 ThreatModeling e 7
1.1.1 Q1: Whatare we workingon? 7

1.1.2 Q2: Whatcan gowrong? e e e 7

1.1.3 Q3: What are we goingtodo aboutit? 9

1.1.4 Q4: Didwedoagoodenoughjob?. 10

1.2 pytm: A Pythonic framework for threat modeling 10
1.3 ThreatCatalogs o . o e 13

2 ADF Design 15
2.1 Requirements e e e 15
2.2 AttackDefense (AD) Object e 17
2.3 Flatand Hierarchical ADs 18
2.4 Extending STRIDE, LINDDUN and ATree with ADF 20

3 ADF Implementation 21
3.1 Catalog e 21
3.2 Parse. e 24
3.3 Check e e e 25
3.4 Analyze e e 25

4 ADF Usage 28
4.1 Cryptowalletscenario e 28
4.2 Abstractrequirementso 29

ORSHIN D2.2

D2.2 - Report about security requirements

4.3 Creatingand Usingthe ADs 30

5 ADF Evaluation 32
5.1 ISA/IEC 62443-4-1 (AR1,WP2,SEC) 32
5.1.1 Threat modeling of process requirements with the AD framework 33

5.2 Side Channel and Fault Injection (AR2, WP3, KUL) 37
521 ADFeedback e 37

5.3 Speculative Execution (AR3, WP3, KUL) 39
5.3.1 Threat modeling speculative execution attacks 40

5.3.2 Feedback on the use of the framework 40

5.4 Presilicon Attacks (AR4, WP5, NXP) oo 41
5.4.1 Presilicon TM of the CV32E40S Secure Core with ADF 41

5.5 Physical Attacks (AR5, WP4, TXP) o 42
55.1 ADFeedback 42

5.6 BLE Prot. and Impl.-Level Attacks (AR6, WP5,ECM) 43
5.6.1 BLE TMwith STRIDEandpytm 43

5.6.2 BLETMwith ADF 45

5.7 FIDO2 (AR7,WP5,SEC) 46
571 FIDO2 TMwith STRIDE 46

572 FIDO2 TMwith ADF 50
Related Work 53
Conclusion 56
Bibliography 65
ORSHIN D2.2 PU Page V

D2.2 - Report about security requirements * ORSHIN

List of Figures

1 High-level overview of the AttackDefense Framework (ADF) 5
1.1 DFD and SD systemmodelsfor TM 8
1.2 ATreeopensafeexample L Lo 9
1.3 MITRE’s CAPEC, CWE, and CVE linked threatcatalogs 13
1.4 2021 CWE Most Important Hardware Weaknesses from [72] 13
2.1 i0S Pegasus RCE chainfrom2021 19
2.2 ADs attack surface tree for BLE Pairing o o Lo 19
2.3 Wordcloud of the attack surfaces covered by our bt.yaml catalog 19
3.1 ADF toolkit block diagram L 22
4.1 Cryptowallet block diagram (simplified) 28
4.2 ORSHIN Trusted Life Cycle (TLC) it 29
51 STRIDE layers e e e 39
5.2 FIDO2 DFD generatedby SEC L oL 47

ORSHIN D2.2 PU Page VI

D2.2 - Report about security requirements i ORSHIN

List of Tables

1.1 Selection of pytmthreats o 11
2.1 Comparison between STRIDE, LINDDUN, ATree, and ADF 20
3.1 Taxonomies currently supported by ADF'sget map 27
5.1 Evaluation results from our seven complementary case studies 33
5.2 STRIDE generated BLE threats 44
5.3 List of 18 BLE ADs used from our catalog of 46 ADsinbt.yaml 45
5.4 STRIDE generated FIDO2 threats (FO, F1) 48
5.5 STRIDE generated FIDO2 threats (F2, F3,F4,F5) 49
5.6 Instances of FIDO real-world threats with STRIDE correspondence 50

ORSHIN D2.2 PU Page VI

D2.2 - Report about security requirements * ORSHIN

Listings

2.1 AttackDefense (AD) Object writtenin YAML 17
3.1 knob_ble AD. Classification: Security, Product, Protocol, Fine-grained 21
3.2 sw_orion AD. Classification: Security, Process, Software, Fine-grained 23
3.3 linux new_bof AD. Classification: Security, Product, Software, and Fine-grained . 23
3.4 1linux_bof AD. Classification: Security, Product, Software, and Coarse-grained . . 24
3.5 Python dictionary parsed from the YAML AD in Listing2.1 25
3.6 ADdictschemaexcerpt 26
51 sm4 sec-expADexcerpt. 35
52 sm_1l.dev-proc ADexcerpt 36
5.3 High-level (coarse-grained) SPAAD 38
5.4 Specific (fine-grained) SPAAD L 38
55 ninoble AD. e e e e e e 45
5.6 blurble AD. e e e e e e 46

ORSHIN D2.2 PU Page VI

D2.2 - Report about security requirements * ORSHIN

List of Abbreviations

Abbr. Meaning

AD AttackDefense

ADF AttackDefense Framework

APT Advanced Persistent Threat

ARX Abstract Requirement X

ATree Attack trees

BIAS Bluetooth Impersonation AttackS

BC Bluetooth Classic

BLE Bluetooth Low Energy

BM Bluetooth Mesh

BoF Buffer overflow

CAPEC Common Attack Pattern Enumerations and Classifications
CIA Confidentiality Integrity Availability

CISA Cybersecurity and Infrastructure Security Agency
COSIC Computer Security and Industrial Cryptography
CKC Cyber Kill Chain

CPU Central Processing Unit

CTKD Cross-Transport Key Derivation

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

D2.X Deliverable 2.X

DFD Data Flow Diagram

DistriNet Distributed Systems and Computer Networks
DREAD Damage, Reproducibility, Exploitability, Affected users, and Discoverability
DoS Denial of Service

EC European Commission

ECC Elliptic Curve Cryptography

ECM EURECOM

ENISA European Union Agency for Cybersecurity
EoP Elevation of Privilege

FIB Focused lon Beam

EOP Elevation of Privilege

Fl Fault Injection

FIDO Fast IDentity Online

GATT Generic AT Tribute

GPT-4 Generative Pre-trained Transformer 4
IAPP International Association of Privacy Professionals

ORSHIN D2.2 PU Page 1 of 65

W ORSHIN

D2.2 - Report about security requirements

Abbr. Meaning

IC Integrated Circuit

ID Information Disclosure

IDE Integrated Development Environment

IEC International Electrotechnical Commission
ISA International Society for Automation

loC Indicators of Compromise

JSON JavaScript Object Notation

KASAN Kernel Address Sanitizer

KASLR Kernel Address Space Layout Randomization
KMSAN Kernel Memory Sanitizer

KNOB Key Negotiation of Bluetooth

KUL KU Leuven

Linkability, Identifiability, Non repudiation, Detectability, ID, Unawareness,

LINDDUN :
Non compliance
LLM Large Language Model
LTK Long Term Key
MAL Meta Attack Language
MIST Malware Information Sharing Platform
MIT Massachusetts Institute of Technology
MitM Man in the Middle
NFC Near Field Communication
NINO No Input No Output
NIST National Institute of Standards and Technology
NVD National Vulnerability Database
NYC3 New York City Cyber Command
Npm Node package manager
ORSHIN Open-source ReSilient Hardware and software for Internet of thiNgs
OSH Open Source Hardware
0SS Open Source Software
OT™M Open Threat Model

OWASP Open Worldwide Application Security Project
OpenCTI Open Cyber Threat Intelligence

PDF Portable Document Format

PDU Protocol Data Unit

PHY PHYsical layer

PIE Position Independent Executable

PMD Predictability, Manageability, Dissassociability
PaLM Pathway Language Model

PyPI Python Package Index

RA Risk Assessment

RAM Random Access Memory

RCE Remote Code Execution

RFCOMM Radio frequency communication
RISC-V Risk Five

ROM Read Only Memory
RSA Rivest Shamir Adleman
RTMP Rapid Threat Modeling Prototyping

ORSHIN D2.2 PU Page 2 of 65

W ORSHIN

D2.2 - Report about security requirements

Abbr. Meaning

RTOS Real Time Operating System

RX Requirement X

SC Side Channel

SCO Secure Connections Only

SD Sequence Diagram

SDLC Secure Development Life Cycle
SE Secure Element

SEC Security Patterns

SoC System on Chip

SMP Security Manager Protocol

SSP Secure Simple Pairing

SPA Simple Power Analysis

STIX Structured Threat Information Expression
STRIDE Spoofing, Tampering, Repudiation, ID, DoS, EoP
S&P Security&Privacy

SoK Systematisation of Knowledge
T2.X Task 2.X

TARA Threat Agent Risk Assessment

Tl Threat Identification

TLC Trusted Life Cycle

TLS Transport Layer Security

™ Threat Modeling

TMT Threat Modeling Tool

TOML Tom’s Obvious, Minimal Language
TRAM Threat Report ATT&CK Mapper
TXP Texplained

uiT Unlinkability, Intervenability, Transparency
us United States

USB Universal Serial Bus

VFI Voltage Fault Injection

WP Work Package

XML Extensible Markup Language
YAML Yet Another Markup Language

ORSHIN D2.2 PU Page 3 of 65

W ORSHIN

D2.2 - Report about security requirements

Introduction

ORSHIN'’s Deliverable 2.2 (D2.2) relates to Task 2.2 (T2.2) which focuses on two goals: (i) de-
veloping a framework to map abstract security and privacy requirements to concrete policies for
the ORSHIN trusted life cycle (TLC) and its device, (ii) use the framework to drive research on
ORSHIN'’s technical works packages, i.e., WP3 (Models for formal verification), WP4 (Effective
security audits), and WP5 (Secure auth and comms).

To tackle Task 2.2 we start from Threat Modeling (TM) which allows to systematically list,
prioritize, and address digital threats [106, 116, 122]. Case studies demonstrated that TM pro-
vides tangible security benefits compared to other more common, but potentially less effective,
practices, such as compliance with security standards [48, 83, 118]. TM is usually employed
to analyze the security and privacy of software systems, but we want to push its boundary to
ORSHIN-related domains, including the TLC from Task 2.1, hardware, hardware-software inter-
face, and firmware.

In Chapter 1 we review state-of-the-art TM methodologies, tools, and catalogs. As shown
on the left side of Figure 1, TM has four main steps: (1) system and attacker modeling, (2)
threat identification (3) scoring of threat risk/severity and (4) elaboration of a defense plan. We
introduce the STRIDE, LINDDUN, and ATree threat identification techniques focusing respectively
on software security, privacy, and attacker goals. Moreover, we introduce pytm, a Python tool to
automate threat modeling in specific use cases (e.g., enterprise network security), and CAPEC,
CWE, and CVE which are three popular and useful TM catalogs.

In Chapter 2 we present the design of the AttackDefense Framework (ADF), a TM frame-
work we developed to achieve Task 2.2’s two main goals. We present seven requirements (i.e.,
R1, ..., R7) for ADF, some of which are novel. For example, no current TM framework mod-
els security and privacy attacks and defenses on a process (e.g., ORSHIN TLC), and a device
(e.g., open-source cryptowallet). To address our requirements we introduce the AD object a
data structure to represent attacks and defenses in a compact, versatile, and useful way (e.qg., file
with YAML objects). An AD object has a unique name, six primary fields, and is extendible with
optional fields.

Moreover, in Chapter 2, we show how to classify AD objects (ADs) and collect them in flat
and hierarchical ways. We define four AD categories to concisely classify an AD, e.g., Security
AD vs. Privacy AD or Hardware AD vs. Software AD. We show how to collect ADs in sets (e.g.,
by attack surface), map them to standard threat taxonomies (e.g., CIA, and STRIDE), construct
trees of ADs (e.g., by attack surface and sub-surface), ADs chains (e.g., multi-step exploit chain)
and ADs wordclouds. Finally, we explain how the ADF complements STRIDE, LINDDUN, and
ATree which alone are not capable of satisfying our design requirements.

As shown in Figure 1, the ADF is not replacing the four TM phases, but is enhancing them by
providing extra information and automation. For instance, ADF provides new and valuable threat

ORSHIN D2.2 PU Page 4 of 65

W ORSHIN

D2.2 - Report about security requirements

Threat Modeling ADF
1. System model < N Catalog
(DFD, SD, ...) sw.yaml, hw.yaml, ...
2. Threat identif.
(STRIDE, ATree, Parse
LINDDUN) yaml, json, toml, ...
3. ltjlilkslsseverlty score Check
(’ lint, schema, ...
DREAD, ...)
4. Defense plan Anal
«—> yze
(pdf, doc, ...) set, tree, chain, ...

Figure 1: High-level overview of the AttackDefense Framework (ADF). Catalog collects the ADs
(e.g., Software, Hardware, Product, Process ADs). Parser semi-automatically generates ADs
from different file formats (e.g., YAML, JSON, TOML, and XML). Checker automatically enforces
the syntax and semantics of the ADs. Analyze automatically processes the ADs (e.g., sets,
maps, trees, and chains). ADF is useful in all Threat Modeling phases (i.e., System model,
Threat identification, Risk scoring, and Defense plan)

catalogs about threats related to hardware, firmware, and processes not covered by current TM
methodologies. Or, extra machine- and human-friendly functionalities, including threats’ filtering,
mapping, and chaining, that are missing from open source TM tools.

In Chapter 3 we present ADF, a toolkit implementing the ADF. The toolkit has four modules. (1)
Catalog contains the ADs that we develop in our case studies, (2) Parse is capable of extracting
ADs from YAML, JSON, TOML, and XML files and can be easily extended to parse other file types,
(3) Check automatically validates the syntax, semantics, and content of the ADs using a combi-
nation of checkers such as yamllint and Python schema, (4) Analyze provides useful functions
to automatically process ADS to generate, among others, ADs’ sets, maps, trees, wordclouds,
and chains. We will open-source our toolkit with a permissive license to let other individuals take
advantage of ADF and provide feedback.

In Chapter 4 we explain how to use the ADF assuming an ORSHIN-related scenario where
we are tasked to develop a secure and privacy-preserving cryptowallet. The cryptowallet includes
security-critical hardware (e.g., microcontroller and secure element), software (e.g., Linux) and
communication (e.g., BLE, and FIDO) components and is developed using the ORSHIN TLC.
We set seven orthogonal and relevant abstract requirements (i.e., AR1, ..., AR7) covering the
TLC and the cryptowallet’s hardware, software, firmware, and communication capabilities. Based
on our current experience with the ADF, we discuss on a high-level how to create and use ADs
catalogs to address these requirements.

In Chapter 5 we describe the results of seven case studies we run to test the ADF in domains
related to the Chapter 4. Our evaluation covers WP2 (TLC), WP3 (side channel, fault injec-
tion, and speculative execution attacks), WP4 (presilicon security auditing and invasive physical
attacks), and WP5 (protocol and implementation-level attacks on communication technologies).
We involved experts in these domains from our consortium (i.e., ECM, KUL, NXP, SEC, and TXP).
We developed seven ADs catalogs, for a total of 169 ADs. Our case studies not only empirically
confirm that ADF successfully addresses Task 2.2. But, it also generated useful feedback to fur-

ORSHIN D2.2 PU Page 5 of 65

D2.2 - Report about security requirements * ORSHIN

ther improve ADF. For example, we are already experimenting with better ways to create and use
ADs with different levels of abstraction.

The Related Work Chapter presents relevant works covering TM methodologies including
vendor-specific ones, gamification, real-world examples, automation tools, and domain-specific
extensions. Furthermore, we cover related work from threat intelligence and process security
domains.

We wrap up the deliverable with the Conclusion Chapter. We summarize ADF and its data
model based on the AD object. We explain why and how ADF addresses Task 2.2’s two main
goals. We show the synergies of the contributions between Task 2.1 and 2.2., especially the
TLC and the ADF. We report the added value generated by the ADF for industrial and academic
members of the ORSHIN consortium. We conclude with our plans for future work on the ADF.

ORSHIN D2.2 PU Page 6 of 65

W ORSHIN

D2.2 - Report about security requirements

Chapter 1

Background

In this Chapter, we provide the relevant background about threat modeling (TM). We describe
the four key questions related to TM and how they map to different methodologies (e.g., system
models, threat identification, and scoring). We describe the STRIDE, LINDDUN, and Alree (at-
tack trees) threat identification and the CVSS and DREAD scoring techniques. We present Pytm,
a Python framework to automate and aid TM. Finally, we introduce CAPEC, CWE, and CVE, the
most famous threat catalogs typically used to aid TM.

1.1 Threat Modeling

In its simplest top-down view, threat modeling (TM) must answer four questions [132]:
1. Q1: What are we working on?
2. Q2: What can go wrong?
3. Q3: What are we going to do about it?
4. Q4: Did we do a good enough job?

and we can answer these questions in four steps as shown in the left part of Figure 1.

1.1.1 Q1: What are we working on?

First, we build a system model including the system’s components, interconnections, and security
boundaries. Software systems are typically modeled with a data flow diagram (DFD), while pro-
tocols with sequence diagrams (SD). As shown on the left side of Figure 1.1, a DFD represents
with solid lines the system’s components, with dotted red lines the trust boundaries, and with
numbered arrows how the data flows across components and boundaries. Instead, as depicted
on the right side of Figure 1.1, an SD represents horizontally the parties involved in a protocol
and vertically from top to bottom the messages that they exchange.

1.1.2 Q2: What can go wrong?

Then, we need to identify threats (i.e., exploitable vulnerabilities) on our system model. We define
our attack surface which is the set of components that we want to protect (e.g., the web server).
Then, we consider different attacker models targeting our surface (e.g., remote attacks on a web

ORSHIN D2.2 PU Page 7 of 65

W ORSHIN

D2.2 - Report about security requirements

DFD SD

cleanDBevery6hours

Web Server cleanDBevery6hours SQL Database

| |
S
>
c
@
-
4

| (Nperiodically cleans DB_|
—

(1) (MPeri . H
odically cleans DB | \:si'_s:‘e""e | User enters comments (*) !

! Insert query with comments

|_ Comments contents

(2) User enters
comments (*)

(5) Comments
contents

4) Insert query
'with comments

(3) Comments saved
)

Figure 1.1: DFD and SD system models for TM. DFD on the left, and SD on the right. Both are
modeling a cloud deployment with a user, a web application, and a database server. The models
are generated using pytm [121]

Us'er Web S'erver c[eanDBe\}erthours SQL Da‘tabase

application). Each adversary model has certain goals (e.g., leaking sensitive data from the web
application) and attack vectors (e.g., SQL injection on the database server).

Threat identification (TI) is a laborious and mostly manual process. The Tl methodologies
differentiate according to the threat domains (e.g., security, privacy) and their relation (e.g., a flat
list, and hierarchical trees). Now we introduce STRIDE [69] (software security), LINDDUN [22]
(system privacy), and Attack Trees, shortened to ATree [108] (attacker goals) which are the most
popular TI methodologies. For a discussion of other relevant Tl (and TM) methodologies refer
to [113, 112].

STRIDE STRIDE was developed by Kohnfelder et al. in 1999 and adopted by Microsoft in
2002 [116] as part of its Secure Development Life Cycle (SDLC) [68] and Threat Modeling Tool
(TMT) [70]. STRIDE focuses on identifying threats violating software security, with an emphasis
on networked systems (e.g., web and cloud applications). Specifically, it covers Spoofing (i.e.,
lack of authentication), Tampering, Repudiation, Information disclosure (e.g., data breaches),
Denial of service, and Elevation of privilege threats. A STRIDE user is tasked to take a DFD (or
other system models) and for each element in the attack surface list all possible threats in each
STRIDE category. The threat listing can be semi-automated using an attack library. Microsoft has
documented its STRIDE threat modeling approach since 1999 and provided some useful lessons
learned such as the lack of threat modeling training, complexity in real-world scenarios, and the
importance of the people factor [114].

LINDDUN LINDDUN is a privacy-focused Tl methodology developed by Deng et al in 2010.
LINDDUN complements STRIDE as it uses the same reference system model (i.e., a DFD) but
produces a list of privacy threats other than software security ones. Specifically, LINDDUN targets
seven threat classes: Linkability, ldentifiability, Non-repudiation, Detection, Data disclosure, Un-
awareness, and Non-Compliance. Note that Data (Information) disclosure and Non repudiation
overlap with STRIDE, hence the two might produce overlapping threats. The LINDDUN develop-
ers also provide a reference LINDDUN threat catalog extracted from empirical experiments [134]
and LINDDUN GO, a lightweight LINDDUN version, especially useful for newcomers [135].

ORSHIN D2.2 PU Page 8 of 65

W ORSHIN

D2.2 - Report about security requirements

Open safe
MSEMfzOK
Pick Lock | | Learn Combo | |Cut Open Safe Imlnrsutp?nlalrl
SEA30K MNEEMz0K, SEM 10k, NSEA 00
Find Written zet Combo
Combo FromTarget
MEEATEE MNSEMz0k,
Threaten Blackmmail Eavesdrop Bribe
MNSEMABOK, MEEMf 100k, SEMsOk, MSEMz0k,
MSE = b spenial equipment and
SE=Spevial equprment raquired Listen to et Target to
¥ =tiostofatec Conversation State Combo
SEMfz0k, MSEMA0E,

Figure 1.2: ATree open safe example. Taken from [108]

ATree ATree is a Tl methodology proposed by Schneier in 1999. Each attack tree models a
specific attacker’s goal that is represented as the tree’s root. The sub-trees are the attacker’s
sub-goals and can be logically linked (e.g., sub-goall AND/OR sub-goal2) and annotated (e.g.,
sub-goal feasibility, requirements, and monetary cost). For instance in Figure 1.2, we show an
annotated attack tree modeling how to open a safe (root). Each sub-goal (sub-tree) is annotated
with its cost and traversing the tree provides the full cost of the attack. Note that two leaves are
in an AND relation (e.g., to eavesdrop the attacker has to listen to the conversation AND get the
safe combination). The most effective attack strategy traverses the tree using the dotted lines, it
does not require special equipment (NSE) and is worth 80K USD.

ATree differs from STRIDE and LINDDUN in several important ways. They focus on goals
other than threat classes, they produce a hierarchical representation of threats rather than a (flat)
list, and they are more scalable, as a single tree can address multiple threats. However, they
are more difficult to create and maintain because of their hierarchical structure. For example, by
missing just one sub-goal (sub-tree) a tree might become useless. Various attempts have been
made to semi-automate ATree’s generation. For example, the Meta Attack Language (MAL) can
be used to design domain-specific languages to semi-automatically generate and analyze large
attack trees [57].

1.1.3 Q3: What are we going to do about it?

The third step (left part of Figure 1 is risk/severity scoring. As for Tl, there are many ways to
compute these scores that are based on the attacker’s goal, impact, and cost. There are two
popular scoring schemes called CVSS and DREAD.

CVSS NIST’'s CVSS (common vulnerability scoring system) [89] is the most used severity scor-
ing scheme. It is employed by the US National Vulnerability Database (NVD) to score the severity
of all currently known vulnerabilities. There are two versions of CVSS: v2.0 and v3.x. Both ver-
sions use three metric groups: Base, Temporal, and Environmental. The Base metric provides
a score from zero to ten and can be adjusted by scoring the Temporal and Environmental met-

ORSHIN D2.2 PU Page 9 of 65

W ORSHIN

D2.2 - Report about security requirements

rics. The Temporal metric model factors that are affecting the severity of a threat over time, while
the Environmental enables to re-weight the severity according to the target. The Base scores
are provided by the NVD, e.g., Low, Medium, High for v2.0. The Temporal and Environmental
scores can be computed using the NVD calculators web pages [90, 91]. Recently, CVSS v4.0
was released but its adoption is not widespread [92].

DREAD Microsoft's DREAD is a software threats scoring system focusing on Damage (e.g., loss
of data), Reproducibility (e.g., deterministic threat), Exploitability (e.g., attacker model strength),
Affected users (e.g., scale), and Discoverability (e.g., ease of threat identification) [71]. The
DREAD final score is a number from one to ten obtained by computing the arithmetic mean of
five sub-scores from one to ten. Despite being discontinued by Microsoft, DREAD is still used by
TM practitioners [122] and researchers [14].

1.1.4 Q4: Did we do a good enough job?

The fourth phase of TM starts with the creation of a defense plan. This task overlaps with Q3 but
we report it in Q4 to separate it from risk scoring. A defense plan indicates a list of countermea-
sures or fixes based on the threats produced in the previous phase. Typically, the defense plan is
a PDF document containing a summary of the first three phases and a section explaining which
threats are fixed, mitigated, and accepted as risks.

The fourth phase continues with the delivery, management, and refinement of the defense
plan. The defense plan’s mitigations should be shipped to production and the TM system should
be monitored for incidents (e.g., via secure logging functions). The defense plan should be pe-
riodically revisited and if needed updated according to multiple feedback channels, including the
security logs, bug bounties, international cybersecurity advisors, and user feedback.

1.2 pytm: A Pythonic framework for threat modeling

pytm is a Python-based framework developed by OWASP. Unlike traditional graph-based ap-
proaches, pytm introduces a novel concept called "threat modeling as a code”, which allows for
the integration of threat modeling within the development process and aims to enhance the us-
ability of the overall threat modeling process.

The framework comes with some pre-defined and extendible classes that are used to con-
struct a system model. In particular, the user writes a script instantiating Python objects for each
system component and specifies how the components are connected. Once the system model
is completed, the tool generates a visual system diagram (e.g., DFD or SQ) and automatically
identify potential threats using a threat library.

pytm’s threat library incorporates approximately 100 entries sourced from CVE, CWE, and
CAPEC databases, and provides detailed information about each potential threat. Notable at-
tributes within the threat library include the condition attribute for threat identification, the like-
lihood and severity attributes for simple evaluation of the threats, and the mitigation attribute,
which suggests countermeasures to address the identified threats. A selection of pytm threats is
covered in Table 1.1.

The ability to add controls to mitigate threats within the model empowers users to apply
countermeasures, generate an updated model, and subsequently update the threat model by

ORSHIN D2.2 PU Page 10 of 65

D2.2 - Report about security requirements

W ORSHIN

no longer considering the threats mitigated by the applied countermeasures. This approach
aligns with the continuous threat modeling paradigm, where the process is conducted continu-
ously rather than as a one-time assessment.

Table 1.1: Selection of pytm threats

ID Threat description

INPO1 Buffer Overflow via Environment Variables

INPO2 Overflow Buffers

INPO3 Server Side Include (SSI) Injection

CRO1 Session Sidejacking

INPO4 HTTP Request Splitting

CR02 Cross Site Tracing

INPO5 Command Line Execution through SQL Injection

INPO6 SQL Injection through SOAP Parameter Tampering

SC01 JSON Hijacking (aka JavaScript Hijacking)

LBO1 API Manipulation

AAO01 Authentication Abuse/ByPass

DS01 Excavation

DEO1 Interception

DEO2 Double Encoding

API01 Exploit Test APls

ACO1 Privilege Abuse

INPO7 Buffer Manipulation

AC02 Shared Data Manipulation

DO01 Flooding

HAO1 Path Traversal

ACO03 Subverting Environment Variable Values

DO02 Excessive Allocation

DS02 Try All Common Switches

INPO8 Format String Injection

INPO9 LDAP Injection

INP10 Parameter Injection

INP11 Relative Path Traversal

INP12 Client-side Injection-induced Buffer Overflow

AC04 XML Schema Poisoning

DO03 XML Ping of the Death

AC05 Content Spoofing

INP13 Command Delimiters

INP14 Input Data Manipulation

DEO3 Sniffing Attacks

CR03 Dictionary-based Password Attack

API02 Exploit Script-Based APls

HAO02 White Box Reverse Engineering

DS03 Footprinting

AC06 Using Malicious Files

HAO03 Web Application Fingerprinting

SC02 XSS Targeting Non-Script Elements

ACO07 Exploiting Incorrectly Configured Access Control Security Levels
ORSHIN D2.2 PU Page 11 of 65

D2.2 - Report about security requirements

W ORSHIN

ID

Threat description

INP15
HAO4
SCO03
INP16
AA02
CR04
DO04
DS04
SC04
CRO05
ACO08
DS05
SCO05
INP17
AA03
AC09
INP18
CRO06
AC10
CRO7
AAO4
CRO08
INP19
INP20
AC11
INP21
INP22
INP23
DOO05
AC12
AC13
AC14
INP24
INP25
INP26
INP27
INP28
INP29
INP30
INP31
INP32
INP33
INP34
INP35
DE04

IMAP/SMTP Command Injection

Reverse Engineering

Embedding Scripts within Scripts

PHP Remote File Inclusion

Principal Spoof

Session Credential Falsification through Forging
XML Entity Expansion

XSS Targeting Error Pages

XSS Using Alternate Syntax

Encryption Brute Forcing

Manipulate Registry Information

Lifting Sensitive Data Embedded in Cache
Removing Important Client Functionality
XSS Using MIME Type Mismatch
Exploitation of Trusted Credentials
Functionality Misuse

Fuzzing and observing application log data/errors for application mapping
Communication Channel Manipulation
Exploiting Incorrectly Configured SSL
XML Routing Detour Attacks

Exploiting Trust in Client

Client-Server Protocol Manipulation

XML External Entities Blowup

iFrame Overlay

Session Credential Falsification through Manipulation
DTD Injection

XML Attribute Blowup

File Content Injection

XML Nested Payloads

Privilege Escalation

Hijacking a privileged process

Catching exception throw/signal from privileged block
Filter Failure through Buffer Overflow
Resource Injection

Code Injection

XSS Targeting HTML Attributes

XSS Targeting URI Placeholders

XSS Using Doubled Characters

XSS Using Invalid Characters

Command Injection

XML Injection

Remote Code Inclusion

SOAP Array Overflow

Leverage Alternate Encoding

Audit Log Manipulation

ORSHIN D2.2

PU Page 12 of 65

W ORSHIN

D2.2 - Report about security requirements

AT

QuwE CAPEC

_,/(apecmitne. org
Figure 1.3: MITRE’s CAPEC, CWE, and CVE linked threat catalogs

owe.mitra srg

1.3 Threat Catalogs

TM can be aided by a threat catalog, which is a collection of known threats represented using
a data format (e.g., XML). There are several catalogs of interests. Here we describe MITRE'’s
CAPEC [78], CWE [80] and CVE [79] which are three popular and linked collections of attack
techniques, weaknesses, and vulnerabilities. Their logos are depicted in Figure 1.3.

CAPEC Mitre’s CAPEC (Common Attack Pattern Enumerations and Classifications) contains
attack patterns extracted from real-world threats. An attack pattern describes the adversary’s ap-
proach to exploit known weaknesses and the challenges that they might face. Each CAPEC entry
has the following fields: unique ID, in the form CAPEC-nnn (where n is @ numeric digit), descrip-
tion, likelihood, severity, relationship, execution flow, prerequisites, skills required, consequences,
mitigations, related weaknesses (CWE), taxonomy mappings, and content history. At the time of
writing (2023-06-02) there are 559 CAPEC entries. For example, CAPEC-668 [77] models our
prior research on the KNOB Bluetooth attacks [9, 7], while CAPEC-667 [76] models the BIAS
ones [6].

CWE Mitre’s CWE (Common Weakness Enumeration) collects known software and hardware
weakness types in a taxonomy. Weakness is defined as a software, firmware, hardware, or ser-
vice component flaws that could enable a vulnerability given certain assumptions. Each CWE

CWE-1189 Improper Isolation of Shared Resources on System-on-a-Chip (SoC)
CWE-1191 | On-Chip Debug and Test Interface With Improper Access Control
CWE-1231 |Improper Prevention of Lock Bit Modification

CWE-1233 | Security-Sensitive Hardware Controls with Missing Lock Bit Protection
CWE-1240|Use of a Cryptographic Primitive with a Risky Implementation

CWE-1244 |Internal Asset Exposed to Unsafe Debug Access Level or State

CWE-1256 ‘Improper Restriction of Software Interfaces to Hardware Features

CWE-1260 | Improper Handling of Overlap Between Protected Memory Ranges

CWE-1272 | Sensitive Information Uncleared Before Debug/Power State Transition
CWE-1274 |\Improper Access Control for Volatile Memory Containing Boot Code
‘CWE-1277 ‘Firmware Not Updateable

‘CWE-lSOO ‘Improper Protection of Physical Side Channels

Figure 1.4: 2021 CWE Most Important Hardware Weaknesses from [72]

ORSHIN D2.2 PU Page 13 of 65

W ORSHIN

D2.2 - Report about security requirements

has the following fields: unique ID, in the form of CWE-nnnn, description, relationship, modes of
introduction, consequences, demonstrative examples, observed examples (CVE), membership,
notes, taxonomy mappings, related attack patterns (CAPEC), references, content history. Cur-
rently, there are 933 CWE entries. Related to ORSHIN, in 2021 MITRE released the list of most
important hardware weaknesses [72] which includes chips’ open debug ports and improper iso-
lation of components (see Figure 1.4 for the full list with related IDs). MITRE also maintains a list
of top 25 CWE related to software [73].

CVE Mitre’s CVE (Common Vulnerabilities and Exposures) is a standard format to store, dis-
cover, analyze and correlate vulnerabilities. Each CVE has these entries: unique ID, in the form of
CVE-yyyy-nnnnn, description, references, assigner, creation record, and other legacy fields. At
the time of writing, there are 204528 CVE records in the NVD database (also known as CVE List).
This is a staggering number that has been exponentially growing in the last three years. Related
to the previous CAPEC example covering our prior Bluetooth research work, the KNOB vulnera-
bilities are tracked with CVE-2019-9506 [93], while the BIAS ones with CVE-2020-10135 [94].

ORSHIN D2.2 PU Page 14 of 65

W ORSHIN

D2.2 - Report about security requirements

Chapter 2

ADF Design

This chapter presents the design of the proposed ADF. We outline the seven key requirements in
Section 2.1 that the framework aims to fulfill. To address these requirements, we introduce the
AD in Section 2.2 as a fundamental building block of the framework. We explain the AD fields,
types, and their use in flat and hierarchical arrangements. Furthermore, we highlight how the AD
objects enhance and extend TM with STRIDE, LINDDUN, and ATree.

2.1 Requirements

Our threat modeling framework should address key requirements to satisfy the goals we set in
Task 2.2, i.e., set security and privacy requirements on the TLC and its related device. We need
a framework that integrates attacks and defenses, considers security and privacy trade-offs, and
covers hardware and firmware threats. Moreover, it should incorporate product and process
(i.e., life cycle) aspects, include fine-grained and coarse-grained threats, and offer usability for
machines and humans.

R1: Attacks and Defenses Our objective is to integrate attacks (threats) and defenses (mitiga-
tions) into the threat modeling process to enhance the understanding of threats beyond the tradi-
tional focus on the attacker. The threat modeling framework can provide a more comprehensive
context around threats by considering attacks and defenses. This approach enables listing fine-
grained and coarse-grained threat mitigation strategies, identifying critical attacks with(out) known
defenses, exploring alternative defensive strategies for a specific attack, evaluating defense-in-
depth options, and determining the minimum number of defenses required to address a set of
threats.

R2: Security and Privacy Addressing security and privacy (S&P) threats is of utmost impor-
tance in the threat modeling process. Considering the trade-offs between security and privacy
is critical, as they are intrinsically intertwined. However, existing approaches often treat security
and privacy separately, leading to overlooked trade-offs. It is essential to integrate the analysis
of security and privacy aspects jointly. For instance, we could model a scenario to explore the
competing goals of confidentiality and integrity (security) vs. repudiability and traceability (pri-
vacy). By considering security and privacy in tandem, the threat modeling framework can provide
a comprehensive understanding of the potential trade-offs and their implications.

ORSHIN D2.2 PU Page 15 of 65

W ORSHIN

D2.2 - Report about security requirements

R3: Hardware and Firmware There is a need to broaden the scope of threat modeling to
cover hardware and firmware threats, which are relevant but often neglected areas in the threat
modeling process. We will cover traditional threat modeling areas like network and software
security. However, fulfilling this requirement, we aim to extend the framework coverage to novel
domains, including invasive and non-invasive physical attacks targeting hardware and firmware.
Furthermore, we want to address threats at the intersection of hardware and software, such as
side-channel attacks, fault injection attacks, and micro-architectural threats.

R4: Product and Process Our objective is to incorporate both the threat modeling of a specific
product, such as a cryptowallet, and the process involved in its development and maintenance,
such as ORSHIN’s Trusted Life Cycle (TLC) outlined in D2.1. Presently, existing threat modeling
frameworks only focus on analyzing the product itself, often overlooking the consideration of the
underlying process. However, we can significantly enhance our coverage of unknown but relevant
threat classes by addressing this gap. For instance, this approach enables us to defend against
hardware and software supply chain attacks (e.g., SolarWinds [131] and Supermicro [109]).

R5: Fine- and Coarse-grained We aim to include fine-grained and coarse-grained threats in
our threat modeling process. Fine-grained threats encompass real-world attack and defense
instances, such as a disclosed buffer overflow targeting our cryptowallet. On the other hand,
coarse-grained threats refer to generic attack techniques, such as the buffer overflow attack class.
By integrating threats at different levels of abstraction, we can significantly enhance our threat
modeling analysis. For instance, we can automatically generate hierarchies of threats, including
trees, chains, and graphs. Furthermore, we can create collections of threats using various rep-
resentations such as tables, sets, and maps. These flat and hierarchical representations can be
constructed using a generic filter, such as a specific attack surface, vector, or attacker model.

R6: Reusable and Updatable Our framework should be reusable as much as possible to pre-
vent the duplication of threat modeling exercises, even across different teams and organizations.
Additionally, the framework must be updatable, allowing new attacks and defenses to be incorpo-
rated as they become available. We aim to consistently and incrementally add threats over time,
such as when an old threat is patched or reintroduced, or new threats are identified. Similarly, we
want to cover threats in different contexts, such as when a new feature is introduced in a product,
which may introduce potential new threats. For instance, when we update the firmware of our
cryptowallet to address the previously mentioned buffer overflow (BoF) vulnerability, we desire
the ability to reuse the existing threat model and incorporate new BoF threats associated with the
latest firmware version.

R7: Machine and Human friendly We seek a framework that offers seamless usability for ma-
chines and humans, minimizing friction. By employing languages and tools that machines and
humans understand, we can enhance the framework’s effectiveness. Humans should be able to
read, write, analyze, and share attack and defense strategies without any hindrances. Moreover,
the framework should accommodate users with varying expertise in threat modeling, including de-
velopers, DevSecOps professionals, and threat modeling experts. Simultaneously, the framework
should enable machines to process these attacks and defenses, generating valuable outputs such
as interactive and portable reports and visualizations. It should also facilitate intelligent storage
of these outputs, leveraging techniques such as version control, CI/CD pipelines, standardized
formats, interoperability, and machine-checkable data formats.

ORSHIN D2.2 PU Page 16 of 65

W ORSHIN

D2.2 - Report about security requirements

Listing 2.1: AttackDefense (AD) Object written in YAML

ad_name:
Primary fields
a: attack
d:
policyl: [mechl, mech2]
policy2: [mechl, mech2]

surf: [surf, subsurf, subsubsurf, ...]

vect: [vectorl, vector2, ...]
model: [modell, model2, ...]
tag: [tagl, tag2, ...]

Optional fields

risk: [scorel, score2, ...]
year: 2023

cve: ["123", "456", ...]

cwe: ["123", "456", ...]
capec: ["123", "456", ...]
vref: ["vendor-refi", ...]

2.2 AttackDefense (AD) Object

To fulfill the seven requirements outlined in Section 2.1, we introduce the AttackDefense (AD)
object as a fundamental component of the AttackDefense Framework (ADF). Hereafter, we refer
to a single AD object as AD, while we use ADs for multiple objects. Each AD object contains
information about an attack and its associated defenses, effectively addressing the objectives of
integrating attacks and defenses (R1) and modeling various threat domains, including security,
privacy, hardware, firmware, product, and process (R2, R3, R4). Furthermore, the AD object
facilitates threat modeling at different levels of granularity (R5) across different temporal and
spatial contexts (R6). Finally, the AD object supports serialization in multiple languages while
mapping to a standardized Python dictionary format that ensures portability, interoperability, and
ease of storage or processing, satisfying the requirements for usability by both machines and
humans (R7).

Listing 2.1 illustrates the creation of an AD object using the YAML (Yet Another Markup Lan-
guage) serialization language, which is both human and machine-readable. Although ADs can
be constructed using other serialization languages such as TOML (Tom’s Obvious, Minimal Lan-
guage) and JSON (JavaScript Object Notation), we opt for YAML due to its enhanced readability.
Each AD object is represented as a YAML object and consists of a uniqgue name (ad_name), pri-
mary fields (six), and optional fields. These fields are structured as key-value pairs and can
accommodate various data types, including dictionaries, lists, strings, and integers.

The AD has six primary fields:

* a contains a string describing an attack with an arbitrary level of abstraction (e.g., attack
instance or attack class).

+ d stores a dict of sub-dicts to model different defense strategies for an attack. In particular,
each sub-dict encodes a high-level policy string (e.g., policy1) and a list of concrete mech-
anisms strings (e.g., [mechl, mech2]) to satisfy the policy. The sub-dicts can be ordered
according to some criteria (e.g., from the most effective to the least effective defense).

ORSHIN D2.2 PU Page 17 of 65

D2.2 - Report about security requirements * ORSHIN

» surf is an ordered list of strings describing the attack surface (i.e., target). The list is
ordered such that each element narrows down the attack surface from the broadest to the
most specific (later we explain such ordering with a concrete example).

» vect is a list of strings containing the attack vectors (i.e., techniques) related to a.
» model stores the adversary models capable of performing a in a list of strings.

* tagis a list of strings storing useful metadata, such as the AD type, security-privacy trade-
offs, and other technicalities.

The AD supports optional fields to augment its effectiveness. An ADF user can add whatever
field, next we present some examples that we employed:

» risk is a list of strings storing risk scores associated to a, including CVSS v3 and v2.
* year is an int storing the year when a was first discovered or demonstrated.

* cve, cwe, and capec are lists of strings storing a’s common vulnerabilities (CVE), weak-
nesses (CWE), and attack pattern (CAPEC) identifiers.

 vref is a list of vendor reference strings associated to a, including security advisories iden-
tifiers from Linux [37] and Android [46].

We classify ADs in four categories: (1) Security or Privacy (2) Product or Process (3) Hard-
ware or Software or Firmware or Protocol (4) Fine-grained or Coarse-grained. As a result, a
properly built collection of ADs achieves unprecedented threat coverage. For instance, they can
cover high-level and low-level security and privacy attacks and defenses on products’ hardware,
software, firmware, and protocols, plus their life cycles.

2.3 Flat and Hierarchical ADs

A collection of ADs (i.e., a YAML file) can be (automatically) processed to produce flat and hier-
archical ADs combinations. These combinations are useful, among others, to visualize, adapt,
and measure TM coverage.

Flat (set, maps) By filtering ADs based on relevant AD field values, we can create sets (un-
ordered lists) of ADs. This allows us to select ADs associated with specific attack surfaces (e.g.,
Linux) or techniques (e.g., Buffer Overflow). Additionally, we can map a collection of ADs to
established threat taxonomies such as CIA (Confidentiality, Integrity, Availability), STRIDE, and
LINDDUN. For instance, we can create three sets of ADs, each addressing a letter of the CIA
acronym. Utilizing basic set operations, we can examine intersections between ADs and merge
them as needed.

Hierarchical (chains, trees, wordclouds) Hierarchical collections of ADs can be created to
represent ordered relationships. This is particularly relevant for modeling modern exploits that
often involve a chain of attacks exploiting multiple vulnerabilities. Such scenarios can be repre-
sented using a chain (vector) of ADs. For example, the Pegasus Remote Code Execution (RCE)
exploit on iOS from 2021 [52] can be modeled using a chain of four ADs, where the first three rep-
resent the Trident iOS vulnerabilities CVE-2016-4655, CVE-2016-4656, and CVE-2016-4657 to
get root privileges (see boxed ADs in Figure 2.1), and the fourth represents the remote privileged
read exploit for iIMessage CVE-2019-8646 (see ellipse AD in Figure 2.1).

ORSHIN D2.2 PU Page 18 of 65

W ORSHIN

D2.2 - Report about security requirements

Trident CVE-2016-4655 Trident CVE-2016-4656 Trident CVE-2016-4657 iMessage CVE-2019-8646

Figure 2.1: iOS Pegasus RCE chain from 2021

BLE Pairing
BLE Pairing CTKD BLE Pairing Association

blur ble bluemirror ble

BLE Pairing Entropy negotiation

knob_ble

BLE Pairing Key agreement

invcurve_ble

nino_ble

Figure 2.2: ADs attack surface tree for BLE Pairing

Fine-grained and coarse-grained ADs can be visualized using a free structure (directed
acyclic graph). This visualization is particularly useful when considering the surf field, as it
allows the placement of the attack surface as the root of the tree, constructing the tree based on
sub-surfaces. For instance, Figure 2.2 depicts a tree of ADs related to protocol-level threats in
BLE pairing. Each BLE pairing phase, such as entropy negotiation and CTKD (Cross-Transport
Key Derivation), is represented as a sub-tree, with the ADs being the leaves of the tree.

The coverage of a specific AD field can be effectively visualized using wordclouds created
from ADs. A wordcloud represents a string of text by displaying words in varying sizes, propor-
tional to their frequency within the string. For instance, we can generate a wordcloud (Figure 2.3)
to examine the attack surface of a Bluetooth ADs catalog, considering both protocol-level and
implementation-level aspects. In the generated wordcloud, the size of each word corresponds
to its frequency. Consequently, surface-level words (e.g., BC and BLE) appear larger than sub-
surface words (e.g., Pairing, Session), and sub-surface words appear larger than sub-sub-surface
words (e.g., Entropy negotiation, CTKD), aligning with our expectations.

L 1nux Session

Flouride

Figure 2.3: Wordcloud of the attack surfaces covered by our bt .yaml catalog

ORSHIN D2.2 PU Page 19 of 65

D2.2 - Report about security requirements * ORSHIN

Table 2.1: Comparison between STRIDE, LINDDUN, ATree, and ADF. Legend: @: supported,
©: partially supported, O: not supported. Overall, ADF complements and extends STRIDE,
LINDDUN, and ATree

Requirement STRIDE LINDDUN ATree ADF

R1: Attack & Defense

R2: Security & Privacy

R3: Hardware & Firmware
R4: Product & Process

R5: Fine-gr. & Coarse-gr.
R6: Reusable & Updatable
R7: Machine-fr. & Human-fr.

CHONCEORONC N/
CHONCEORON N/
SHON NON N N
0000000

2.4 Extending STRIDE, LINDDUN and ATree with ADF

Table 2.1 shows how STRIDE, LINDDUN, ATree, and ADF satisfy the seven requirements set in
Section 2.1 (i.e., R1, ..., R7). STRIDE, LINDDUN, and ATree identify either attacks or attacker
goals, while ADF put attacks and defenses in context. STRIDE focuses on software security,
LINDDUN on privacy, whereas ADF and ATree cover both. STRIDE and LINDDUN cannot handle
hardware and firmware attacks, whereas ADF and ATree address these critical areas (especially
for ORSHIN). Only ADF covers both the product and its life cycle (e.g., TLC from Task 2.1),
whereas STRIDE, LINDDUN, and ATree are only concerned with the product.

Continuing with the comparison in Table 2.1, STRIDE and LINDDUN provide high-level at-
tacks, while ADF and ATree have the capability to represent both high-level and concrete ones
and their relations (i.e., Fine-grained and Coarse-grained ADs). STRIDE, LINDDUN, and ATree
are known to be hard to reuse and update (even within the same TM team), while ADF is built on
the AD obiject, a reusable, flexible, and updatable data structure. While STRIDE, LINDDUN, and
ATree are human-friendly, they are often difficult to process and analyze by machines. In contrast,
ADF is designed to be both machine and human-friendly.

We note that a TM practitioner can use ADF together with STRIDE, LINDDUN, and ATree as
it complements them. For example, the ADF supports by-design mapping functions capable of
generating ADs sets based on the STRIDE and LINDDUN taxonomies as detailed in Section 2.2.
Our goal is not to replace these Tl techniques and their associated methodology. But, to enhance
TM as a whole by offering better coverage, usability, and automation.

ORSHIN D2.2 PU Page 20 of 65

W ORSHIN

D2.2 - Report about security requirements

Chapter 3

ADF Implementation

In this Chapter, we describe the relevant details of ADF, a toolkit we developed to implement ADF
(presented in Chapter 2). Figure 3.1 shows the toolkit’s block diagram with its four modules:
Catalog, Parse, Check, and Analyze and their related libraries. The modules map to the ADF
block diagram presented in the left side of Figure 1 and address the seven requirements set in
Section 2.1. We will open-source our toolkit with a permissive license (e.g., MIT license) to let
others use and improve it. We now describe each toolkit module in detail. The files and folders
mentioned below are relative to the toolkit folder in our repository.

3.1 Catalog

Catalog contains the developed ADs and is located within a dedicated subfolder in the GitHub
repository. These ADs are written in YAML, a language that extends JSON and supports various
convenient data types, including integers, strings, lists, dictionaries, and objects. YAML provides
features such as auto-indentation, compliance with backward-compatible versioning, and the abil-
ity to include comments. It is widely supported by popular programming languages, which offer
YAML libraries. Moreover, YAML is developer-friendly, as it has various integrations with devel-
oper tools. For instance, the most popular IDEs provide automated YAML completion, linting,
checking, and formatting. In the following paragraphs, we present concrete implementations of

Listing 3.1: knob_ble AD. Classification: Security, Product, Protocol, Fine-grained

knob_ble:

a: KNOB entropy downgrade attack on BLE pairing

d:
Mutually auth entropy negotiation: [Auth entropy with BLE pairing keyl]
High key entropy: [Disallow entropy values lower than 16]

surf: [BLE, Pairing, Entropy negotiation]

vect: [Entropy downgrade, Key brute forcel]

model: [Proximity, MitM]

tag: [Protocol, SMP]

risk: [cvss3_high, cvss2_medium]

year: 2019
cve: ["9506"]
cwe: ["310", "327"]

capec: ["668"]

ORSHIN D2.2 PU Page 21 of 65

W ORSHIN

D2.2 - Report about security requirements

Analyze Parse Catalog
STRIDE @ Python Stdlib| | [T YA 0 ﬁ
(©) LINDDUN LibYAML = b

"l PyYAML
B hviz "l xmltodict

matp(®tlib -l omli Check
CLE
@ownsp

TOP10

Figure 3.1: ADF toolkit block diagram with its four modules: Analyze, Parse, Catalog, and Check
and related libraries

YAML ADs from Catalog and classify them based on the four categories introduced in Section 2.2.

Listing 3.1 shows how we implemented knob_ble, an AD to model the KNOB attack on
BLE [7]. The attack involves an adversary in BLE proximity with the victims (model) targeting
the entropy negotiation phase of BLE pairing (narrowing down surf). The adversary MitM the
victims, downgrades the pairing key entropy and brute-forces the key (vect). KNOB is effective at
the protocol level, attacking the Security Manager Protocol (SMP) (tag). Also, the KNOB attack
was discovered in 2019 (year), it is associated to CVE-2019-9506 (cve), CWE-310 and CWE-
327 (cwe), CAPEC-668 (capec), and high CVSSv3 risk and medium CVSSv2 risk (risk). We
can defend against KNOB either by mutually authenticating the entropy negotiation protocol or
forbidding low values for the key entropy (d)

One of the unique features of the ADF is its capability to establish security and privacy re-
quirements for a process (e.g., ORSHIN TLC). The implementation of the AD named sw_orion
presented in Listing 3.2 addresses a severe and known process supply chain attack on the Win-
dows SolarWinds Orion Platform. This attack involves a remote attacker circumventing signature
checks to disseminate malicious software updates to a vast number of Windows PCs. This attack
can be addressed by properly authenticating software updates with valid certificates.

Another ADF useful feature is the possibility to effortlessly integrate new threats into the cat-
alog. Let’s assume that in 2030 we are notified about a newly disclosed and critical vulnerability
affecting the Linux kernel and we want to include it in our catalog. The new threat enables privi-
leged and proximity-based code execution (PPCE), exploiting a kernel-space stack-based buffer
overflow (BoF) in the RFCOMM module of the Linux Bluetooth stack. It was scored as critical
with CVSSv3 and assigned CVE-2030-0007.

Listing 3.3 shows how we model the new threats with an AD called 1inux_new_bof of type Se-
curity, Product, Software, and Fine-grained. We put a short and self-contained attack description
in a. In the field d we list two defenses. First, we recommend employing a memory-safe program-
ming language (a policy) and we select Rust [30] (a concrete mechanism) because it is supported
by Linux. As an alternative mitigation strategy, we suggest sanitizing kernel-space memory (pol-
icy) with the Kernel Address Sanitizer (KASAN) [26], a dynamic memory testing tool for the Linux

ORSHIN D2.2 PU Page 22 of 65

W ORSHIN

D2.2 - Report about security requirements

Listing 3.2: sw_orion AD. Classification: Security, Process, Software, Fine-grained

sw_orion:
a: SolarWinds Orion codesign auth bypass
d:
Auth software supply chain: [Update and revoke code signing certs]
surf: [Windows, SolarWinds, Orion Platform]
vect: [Software mod, Malware distr]
model: [Remote]
tag: [SChain, SUNBURST, SUPERNOVA]
risk: [cvss3_critical, cvss2_high]

year: 2020
cve: ["10148"]
cwe: ["287", "288"]

kernel, aiming to find out-of-bounds and use-after-free bugs. We set surf to a list of strings
progressively narrowing down the attack surface: from Linux to its Bluetooth RFCOMM (Radio
frequency communication) subsystem. The vect is a stack-based BoF to achieve privileged code
execution in kernel space from user space. The model is proximity-based as the adversary needs
to be in Bluetooth range. We tag the AD with BT (Bluetooth), Impl (implementation-level flaw),
and Linux414 (affected Linux version). The remaining AD fields are self-explanatory.

Notably, 1inux new bof’s defenses are ordered by effectiveness and cost, the first one fixes a
by design, but is expensive since it requires rewriting some Linux kernel code. The other defense
is cheaper, but it is only a mitigation that enables spotting the bug in the C code. Overall, we
do not mandate a specific defense ordering as it is context specific. For instance, an AD might
include complementary defenses where an ordering is unfeasible.

A catalog also includes coarse-grained ADs useful to represent threats’ classes (e.g., an at-
tack technique) in a single object. In Listing 3.4 we show how to implement a coarse-grained
AD, named linux bof, to represent a generic BoF attack on the Linux kernel. The a field states
a high-level attack description, d lists the defense mechanisms that we combine to protect the
Linux kernel stack and the heap against BoFs. Here, other than recommending to use Rust and
KASAN, we add other defenses such as the Kernel Memory Sanitizer (KMSAN) [27] to find unini-
tialized values, musl [85, 84] to reduce libc’s attack surface and use a hardened memory allocator,
Kernel Address Space Layout Randomization (KASLR) which require a Position Independent Ex-
ecutable PIE kernel built, and CPU NX bit to avoid executing code on the stack. In this case, since

Listing 3.3: 1linux new bof AD. Classification: Security, Product, Software, and Fine-grained

linux_new_bof:
a: Linux kernel PPCE via stack-based BoF on Bluetooth stack
d:
Memory safe PL: [Rust]
Sanitize memory: [KASAN]
surf: [linux, net, bluetooth, rfcomm]
vect: [Stack BoF]
model: [Proximity]
tag: [BT, Impl, Linux414]
risk: [cvss3_criticall
year: 2030
cve: ["0007"]

ORSHIN D2.2 PU Page 23 of 65

W ORSHIN

D2.2 - Report about security requirements

Listing 3.4: 1linux bof AD. Classification: Security, Product, Software, and Coarse-grained

linux_bof:
a: Stack or heap based BoF on Linux
d:

Memory safe PL: [Rust]
Sanitize memory: [KASAN]
Hardened memory allocator: [musl]
Randomized memory layout: [KASLR]
Non executable stack: [NX]

surf: [Linux]

vect: [Stack BoF, Heap BoF]

model: [Proximity, Remote]

tag: [Impl]

it is a coarse-grained and thus more generic AD, the defenses are not ordered by effectiveness,
but complementary. The attack surface is Linux, the vectors are stack or heap-based BoFs, the
model is proximity or remote, and the tag is Impl. Optional fields, such as risk, year, and cve
are not filled as an attack class applies to multiple threats with different associated risks, years,
and CVEs.

Note that, similar coarse-grained ADs can be created to model BoF attacks against other
components or other threat classes.

3.2 Parse

Parse, implemented in the parse. py file, extracts ADs from YAML, TOML, JSON, and XML files,
transforming them into Python dictionaries. For instance, the YAML AD presented in Listing 2.1
converts into the AD dictionary in Listing 3.5. The module can be easily extended to handle other
file formats, such as XLS and CSV. However, we recommend using YAML, JSON, or TOML due
to their enhanced writability and readability.

We implemented the parser as a high-level function that invokes specialized parsing functions
based on the file extension specified in the path argument. These functions generate a dictionary
representation of the ADs. For instance, the _parse_yaml function receives a YAML file containing
ADs (as illustrated in Listing 2.1), parses the file using PyYAML [29] with CSafeLoader, which is
a secure and efficient parser from LibYAML [25]. The output is a dictionary with nested sub-
dictionaries, as demonstrated in Listing 3.5. Similarly, we implemented other specialized parsing
functions to handle TOML, JSON, and XML files. Some parsers utilize the Python standard library
(e.g., json and tomlib), while others employ dedicated Python modules (e.g., xmltodict [13]).

To ensure the correctness of the parsers, we implemented a series of tests using the pytest
library. The testing code, contained in parse_test.py, verifies the flawless operation of all spe-
cialized parsers and confirms that they produce the same Python dictionary representation (AD_-
PARSE_TEST from ad.py) when parsing identical sets of ADs from YAML, TOML, JSON, and XML
files. The testing files are in the template folder. The tests can be executed with the command
make test-parse.

ORSHIN D2.2 PU Page 24 of 65

W ORSHIN

D2.2 - Report about security requirements

Listing 3.5: Python dictionary parsed from the YAML AD in Listing 2.1

ad_name = {
Primary fields
"a": "Attack 1",
"d": {"policyl": ["mechl", "mech2"], "policy2": ["mechl", "mech2"]},
"surf": ["surf", "subsurf", "subsubsurf"],
"vect": ["vectorl", "vector2"],
"model": ["modell", "model2"],
"tag": ["tagl", "tag2"],
Optional fields
"risk": ["scorel", "score2"],
"year": 2023,
"cve": ["123", "456"],
"cwe": ["123", "456"],
"capec": ["123", "456"],
"vref": ["vendor-refl"],
+
3.3 Check

Check is implemented in check.py and automatically validates the syntax and semantics of
the ADs. It uses syntax-based checkers on the file containing the ADs, and semantic-based
ones on the Python dictionary that is parsed from the ADs file. Check has a top-level func-
tion (check(path; Path, words=None) -> dict) that calls the relevant syntax and semantics
checkers based on the path file extension. Parsing is accomplished using the Parse module
presented in Section 3.2.

The validation is performed in two main steps: (1) syntax checking using yamllint [136] with
its default configuration to avoid duplicate ad names and wrong indentations, and (2) semantic
checking using a custom function that enforces a certain schema with specific types and allowed
values on the parsed dictionary.

Listing 3.6 shows an excerpt of our ADs dict schema implemented using the schema [60]
Python package. ad name is a lowercase alphanumeric regex, a is a non-empty string, d is a
dictionary of dictionaries where the top level keys are strings (policy) and the bottom values are
lists of strings ([mechl, mech2]). surf is a list of strings with specific values that we enforce with
a lambda checking that the strings are inside the words["surf"] list. Using a wordlist is useful
to keep consistency among ADs, especially when different teams are working on the same ADs.
Moreover, it helps to keep track of what is covered (e.g., the surf wordlist contains all the surfaces
covered by our ADs). Finally, year is an int between a sensible range.

We automatically test Check with check_test.py. This script runs the check function on the
YAML, TOML, JSON, and XML template ADs files in the template folder. To run the tests use
make test-check.

3.4 Analyze

Analyze is implemented in analyze.py and provides useful automation to process a (checked)
dictionary of ADs. Internally, it uses pandas [28], matplotlib [36], and graphviz [23, 24] to produce

ORSHIN D2.2 PU Page 25 of 65

W ORSHIN

D2.2 - Report about security requirements

Listing 3.6: AD dict schema excerpt

Regex (r" " [a-z0-9_]*$"): {
Primary fields
"a": And(str, lambda a: len(a) > 0),
"d": And(Schema({str: [strll})),
"surf": And(Schema([strl),
lambda surf: (len(surf) > 0) and
len(set (surf) - set(words["surf"])) == 0,

)

Optional fields
Optional ("year"): And(int,
lambda year: (1980 <= year <= 2030) or year == 0),

its outputs. These are free and powerful open-source libraries. Currently, Analyze can generate
ADs sets, maps, trees, wordclouds, and chains to perform flat and hierarchical analyses, and now
we describe how.

Analyze’s entry point is get_dataframe, a function loading ADs from a file and returning an
ADs DataFrame, which is a table-like data structure. Each DataFrame’s row contains an AD, with
the index corresponding to the ad name, and the columns containing the AD fields such as a, d,
and surf.

The function get_set generates collections of ADS using key-value filters. It allows the cre-
ation of sets based on attributes such as surf, model, and tag, which is useful to identify ADs of
interest based on high-level requirements, such as retrieving all ADs related to a specific technol-
ogy or attack technique. The get_set function is also used internally to perform other set-based
analyzes.

The get_map function returns sets of AD based on known security and privacy taxonomies.
Table 3.1 lists the taxonomies that we currently support, including those related to security (e.g.,
STRIDE, CIA), privacy (e.g., LINDDUN, UIT, and PMD), web (e.g., OTT17, OTT21), software
and hardware Weaknesses (e.g., CWETH21, and CWETS22). For example, given an ADs file
properly tagged with STRIDE categories, we can automatically extract six tables of ADs, one for
each category, by filtering them using the AD tag column (field). We note that adding a new
taxonomy is straightforward, i.e., extending the taxonomies dictionary.

Analyze is capable of generating trees of ADs based on the surf and tag fields. For example,
Figure 2.2 shows a tree of protocol level (tag = Protocol) ADs related to BLE (surf = [BLE,
...]). As explained in Section 2.2, surf is an ordered list of strings narrowing down the attack
surface. The get_surf_tree takes advantage of this ordering to automatically build a tree. In
particular, it roots the tree to surf and creates branches for sub-surf and sub-sub-surf. Then each
AD is placed as a leaf according to its surf list.

Analyze’s get_wordcloud function outputs ADs wordclouds based on a field using Python’s
wordcloud [35] and matplotlib [36] packages. For example, Figure 2.3 shows an attack surface
wordcloud computed from the bt . yam1 file discussed in Section 3.1. Internally, the function takes
an AD dataframe and a column key, collects all the columns value in a list, and then uses a
Counter data structure from the collections library to count the occurrences of each value.
This is better than counting each string as a word, as some words in the cloud contain multiple

ORSHIN D2.2 PU Page 26 of 65

W ORSHIN

D2.2 - Report about security requirements

Table 3.1: Taxonomies currently supported by ADF’s get_map. UIT refers to a privacy taxonomy
from International Association of Privacy Professionals (IAPP) [47], PMD to a privacy taxonomy
from NISTIR 8062 [88], OTT to the OWASP Top Ten Web Application Security Risks [99], CKC
to the Cyber Kill Chain by Lockheed Martin [67], CWETH21 to the top ten hardware CWE from
2021 [72], and CWETS22 to the top twenty-five software CWE from 2022 [73]

Taxonomy Keywords
STRIDE Spoofing, Tampering, Repudiation, ID, DoS, EoP

CIA Confidentiality, Integrity, Availability

uiT Unlinkability, Intervenability, Transparency

PMD Predictability, Manageability, Dissassociability

LINDDUN Linkability, Identifiability, Non repudiation, Detectability, ID, Unawareness, Non compliance
oTT21 Broken access control, Cryptographic failure, Injection, Insecure design, Security misconfigu-

ration, Vulnerable and outdated component, Identification and authentication failure, Software
and data integrity failure, Security logging and monitoring failure, Server-side request forgery

OoTT17 Injection, Broken authentication, Sensitive data exposure, XML external entities, Broken ac-
cess control, Security misconfiguration, Cross-site scripting, Insecure deserialization, Using
components with known vulnerabilities, Insufficient logging and monitoring

CKC Reconnaissance, Weaponization, Delivery, Exploitation, Installation, Command and control,
Actions on objectives

CWETH21 1189, 1191, 1231, 1233, 1240, 1244, 1256, 1260, 1272, 1274, 1277, 1300

CWETS22 787, 79, 89, 20, 125, 78, 416, 22, 352, 434, 476, 502, 190, 287, 798, 862, 77, 306, 119, 276,
918, 362, 400, 611, 94

strings (e.g., “Feature exchange” counts as a single word in the cloud).

Analyze’s get_chains function generates a chain of ADs, given an ADs dataframe and a
target AD using graphviz. For instance, Figure 2.1 shows the iOS Pegasus RCE from 2021
represented as a chain of four ADs. Internally, the function creates a Digraph with strict=False
to avoid double edges and rankdir = LR to draw from left to right. Then, it selects from the
dataframe the ADs with the same attack surface and sub-surface of the target AD via the surf
column. Next, it tries to build a chain by attack vector looking at the vect column. In particular, if
an AD vect field is a subset of another, it means that the two are chainable.

ORSHIN D2.2 PU Page 27 of 65

W ORSHIN

D2.2 - Report about security requirements

Chapter 4

ADF Usage

In this Chapter, we show how to use the ADF to map abstract security (and privacy) requirements
into concrete recommendations. Specifically, we introduce a reference scenario where we are
tasked to develop a new secure and privacy-preserving cryptowallet with the ORSHIN TLC. Then,
we set seven abstract requirements on the cryptowallet and the trustworthiness of its life cycle.
Finally, we show how to use the ADF to address these requirements by creating and processing
ADs.

4.1 Cryptowallet scenario

We assume a scenario where we are developing a cryptowallet, an embedded device providing
privacy and security critical features (e.g., storing cryptocurrency private keys and performing
cryptocurrency transactions) with the TLC. Our goal is to map abstract security and privacy re-
quirements on the cryptowallet and its life cycle into concrete recommendations using the ADF.

Figure 4.1 shows a simplified block diagram of our cryptowallet. It has a Secure Element
(SE) connected via a secure bus to a general-purpose microcontroller (Micro). The microcon-
troller runs a Linux-based OS. The SE runs on a separate chip with a dedicated real-time oper-
ating system (RTOS) and performs the most sensitive operations (e.g., generation and storage
of keys, signing and verifying the transactions). The SE and the Micro employ secure boot via a
boot ROM. The cryptowallet supports Bluetooth Low Energy (BLE) for wireless connectivity, and
Universal Serial Bus (USB) for wired connections. Moreover, it can be used as a Fast IDentity
Online (FIDO) authenticator for two-factor and single-factor (i.e., passwordless) authentication [2].

We develop the cryptowallet employing the Trusted Life Cycle (TLC) proposed in Task 2.1.
Figure 4.2 shows the TLC phases. During Threat Modeling and Risk Assessment (TM and RA)

Wireless
SE BLE ——>

Secure
Bus
Wired

Micro 4—Pp USB —>

Figure 4.1: Cryptowallet block diagram (simplified)

ORSHIN D2.2 PU Page 28 of 65

D2.2 - Report about security requirements * ORSHIN

Pre-deploy feedback

TM and RA |—p| Design | ———p|Implementation|——p| Evaluation

\ Post-deploy !
L feedback :
_____________ JI
Retirement |[¢——— Maintenance [¢—— Installation
» i
N_”
Mitigations

Figure 4.2: ORSHIN Trusted Life Cycle (TLC) used as a reference life cycle for our cryptowallet.
TLC has seven phases connected by solid lines. Dotted lines represent mitigations, and pre- and
post- deployment feedback.

we come up with the product and process security and privacy requirements for our cryptowallet
(presented later in Section 4.2). During Design, we design the hardware, software, and protocol
aspects of our cryptowallet based on functional requirements and the ones set in the TM and
RA phase. All the parts are implemented in the Implementation phase. During Evaluation, we
perform extensive hardware and software testing including presilicon hardware and software test-
ing (e.g., fuzzing, SC, and FI). Evaluation provides useful pre-deployment feedback that we can
use to refine any of the first three TLC phases. The cryptowallet will be deployed during Instal-
lation and then managed during Maintenance, including firmware updates, and disposed during
Retirement. For more information about the TLC refer to ORSHIN Deliverable 2.1 (D2.1).

4.2 Abstract requirements

Now we are in the TM and RA phase of the TLC and we want to address process related security
issues, such as the ones discussed in the ISA/IEC 62443-4-1 standards [56]. For instance, we
want to avoid bad development and access control practices during Design, Implementation, and
Evaluation. Moreover, we want to cope with product-specific security and privacy threats related
to the cryptowallet’s software, hardware, firmware, and communication protocols.

In this simplified but realistic scenario we set seven abstract requirements (AR):
AR1: The TLC should follow the ISA/IEC 62443-4-1 standards
AR2: The SE should be resilient against side channel (SC) and fault injection (Fl) attacks
ARS3: The Micro should be resilient against speculative execution attacks
AR4: The SE should be resilient against relevant presilicon attacks
AR5: The SE should be resilient against physical hardware attacks
AR6: The BLE module should be resilient against protocol and implementation-level attacks

AR7: The FIDO2 module should be resilient against generic and device-specific attacks

ORSHIN D2.2 PU Page 29 of 65

W ORSHIN

D2.2 - Report about security requirements

4.3 Creating and Using the ADs

To address the seven AR we need to create (or reuse) dedicated ADs catalogs. We think that the
best approach is to involve domain-expert knowledge for each AR. Within the ORSHIN consor-
tium we come up with the following ARs assignment:

« SEC works on AR1 (ISA/IEC 62443-4-1) and AR7 (FIDO)
» KUL works on AR2 (SC and Fl) and AR3 (Speculative)

* NXP works on AR4
« TXP works on AR5
« ECM works on AR6 (BLE)

Since the ADF is novel we had to create the ADs catalogs from scratch. But, in the future we
envision high-quality and open-source ADs catalogs that are usable and extendible by experts
and non-experts. To simplify the description in the next paragraphs we use the creation and
usage of the AD catalog to address AR6 (BLE).

(Presilicon auditing)
(

Physical hardware)

While creating the ADs for an AR, is paramount to properly select the attack surfaces. For
AR6 we focused on the BLE attack surface and ignored attacks on Bluetooth Classic (BC) and
Bluetooth Mesh (BM). However, we also included cross-transport BLE threats, such as the BLUR
attacks [8], as they enable exploiting BLE from BC. Moreover, we decided to TM protocol-level
and implementation-level threats on BLE while ignoring relevant surfaces (e.g., iOS or Android
bugs since our BLE module runs a custom RTOS).

Once the attack surfaces are properly set we need to select their relevant threats to be mod-
eled with the ADs. There are several ways to list these threats. A team might start from an
(old) list of attacks already in their TM. For AR6, we looked at real-world and impactful attacks
described in the academic and industrial literature and at high-risk CVEs (some of which are still
unpatched). We came up with a list of attacks and then created an AD for each of them. In
the process, we decided to cover also Bluetooth Classic (BC) and Bluetooth Mesh (BM) but we
ignored them when working on ARG.

One challenging aspect of AD creation is having consistent terminology among the ADs,
especially when a team is collaboratively creating a catalog. Inconsistent terminology slows down
ADs creation and might introduce subtle errors, such as ADs duplication. For AD6, we used an
allow list strategy to mitigate these risks. We enforced that the words in the surf, vect, model,
and tag ADs fields were in our allow list. The allow list was incrementally updated while creating
new ADs and now acts as a valuable self-documenting resource. For example, by looking at
our attack surface allow list we can quickly assess our attack surface coverage. Note that our
allow list support single- and multi- strings words, like “Pairing” or “Key agreement” as shown in
Figure 2.3.

A high-quality ADs catalog is all we need to build our defense plan. Within AR6, our ADs
are based on real-world and specific vulnerabilities. Each AD provides high-level policies and
concrete mitigations, allowing us to quickly identify the best mitigation plan. For example, by im-
plementing all protocol-level defenses in our ADs catalog, we achieve authenticated, confidential,
and integrity-protected communication and even defense-in-depth. Whenever a new protocol-
level threat is discovered we can update our ADs catalog and refine our defense plan. A similar
reasoning holds for implementation-level threats.

We recommend adopting an iterative and incremental approach when creating and using

ORSHIN D2.2 PU Page 30 of 65

W ORSHIN

D2.2 - Report about security requirements

ADs. Often, the first version of an AD improperly models an attack and/or a defense or overlooks
an important threat aspect. In our experience with AD6, we had to review the Bluetooth ADs
multiple times. For example, by using attack trees and wordcloud visualizations as in Figures 2.2
and 2.3, we discovered holes in our threat coverage. Also, when creating AD chains we realized
that multiple defenses per AD might be needed.

ORSHIN D2.2 PU Page 31 of 65

W ORSHIN

D2.2 - Report about security requirements

Chapter 5

ADF Evaluation

We evaluated the ADF in seven complementary real-world setups related to the seven abstract
requirements introduced in Section 4.2 (i.e., AR1, ..., AR7). We took full advantage of SEC,
KUL, NXP, TXP, and ECM from the excellent ORSHIN consortium. We asked each partner to
use ADF to threat model a cryptowallet attack scenario and address one or more ARs within their
expertise. Overall, we evaluated traditional TM domains, such as software and protocol security,
but also less explored and critical ones, including the TLC, pre-silicon testing, invasive physical
attacks, and microarchitectural threats.

Table 5.1 summarizes the results of our seven case studies. The columns show in order
the TM domain, the addressed AR, the related consortium member, the associated ORSHIN
work package (including WP3, WP4, and WP5), the covered domains (e.g., hardware, software,
process, and product), the produced ADs (169), and their related YAML files in the toolkit
directory.

We are satisfied with the results of our evaluation for several reasons. Firstly, we conducted
field testing of the ADF from various perspectives, involving users with diverse backgrounds.
This allowed us to assess its effectiveness and usability across different scenarios. Secondly,
our threat modeling activities covered many threats, including specific vulnerabilities affecting
individual software components as well as generic attacks and attack techniques applicable to
multiple components. During the evaluation of the ADF, we identified certain limitations, which we
successfully addressed by reviewing the AD object data model. For instance, we enhanced the
capabilities of the ADF by introducing the ability to specify multiple entries in the d field, enabling
the modeling of complementary or alternative defense strategies.

Our evaluation generated high-quality ADs that will be used as blueprints and shared with
the community. Sharing our ADs catalogs will be particularly valuable to ADF beginners and
security professionals unfamiliar with threat modeling (e.g., hardware and embedded systems
developers). In the following sections, we present in detail each case study.

5.1 ISA/IEC 62443-4-1 (AR1, WP2, SEC)

In this case study, SEC employed the ADF to TM the secure life cycle specified in the ISA/IEC
62443-4-1 standard that can be used to develop our cryptowallet (i.e., AR1). SEC developed
40 ADs in seven YAML files, stored in the 62443 folder. ISA stands for International Society for
Automation, and IEC for International Electrotechnical Commission. We now report verbatim the

ORSHIN D2.2 PU Page 32 of 65

W ORSHIN

D2.2 - Report about security requirements

Table 5.1: Evaluation results from our seven complementary case studies. We take advantage
of our diverse consortium of academic and industrial experts (SEC, KUL, NXP, TXP, and ECM).
We cover all the technical work packages (i.e., WP2, WP3, WP4, and WP5). We cover hardware
(HW), software (SW), firmware (FW), protocols (PT), life cycles (LC), security (SE), and privacy
(PR) threats. The AR column shows abstract requirements defined in Section 4.2. We developed
a total of 169 ADs.

Domain AR Mem. WP Coverage ADs ADs files
62443-4-1 1 SEC 2 LG, SE 40 62443/*.yaml
SC FI 2 KUL 3 HW,SE,FW 9 sc-fi.yaml
Spec. Exe. 3 KUL 3 HW,SW, SE 8 microa.yaml
Presilicon 4 NXP 4 HW, SW, FW, SE 8 presil.yaml
Physical 5 TXP 4 HW,FW, SE, PR 26 physical.yaml
Bluetooth 6 ECM 5 SW,FW,PT, SE, PR 46 bt.yaml
FIDO2 7 SEC 5 HW,SW,FW,PT,SE 21 fido*.yaml

SEC report prepared by Stefano Cristalli.

5.1.1 Threat modeling of process requirements with the AD framework

This section describes the application of the ADF to the threat modeling of process requirements.
As our use case, we consider the translation of the requirements of international standard ISA/IEC
62443-4-1 regarding the Secure Development Life Cycle of secure components.

The ISA/IEC 62443 standard is divided into four tiers, each having multiple work documents.
The requirements for the Secure Development Life Cycle are described in the work document
ISA/IEC 62443-4-1 (tier 4, part 1), and are divided into eight practices, i.e., categories for grouping
requirements:

1. Security management

Specification of security requirements
Secure by design

Secure implementation

Security verification and validation testing
Management of security-related issues

Security update management

© N o o~ WD

Security guidelines

In total, we developed 40 ADs that map to the requirements described in the eight practices.
We named each AD according to the requirement that it maps to (e.g., sm-1-development_pro-
cess). We directed our primary effort towards rewriting the requirements in the form of threats/mit-
igations, so we leveraged the AD primary a and d fields. Additionally, we enriched the description
of the requirements by using the surf, vect, and tag fields.

The first relevant observation is about the extreme flexibility of the ADF. ADs were designed
to allow the modeling threats related to the product (e.g., related to technical features) but also

ORSHIN D2.2 PU Page 33 of 65

W ORSHIN

D2.2 - Report about security requirements

related to the process (e.g., that impact the processes of design and development of the product)
related to design and development.

We can apply the same distinction to the requirements, thus obtaining the product require-
ments (to select the technical features related to product threats) and process requirements (to
implement a secure development life cycle that is protected against process threats).

While threat modeling as a discipline does consider process requirements (e.g., supply-chain
attacks and malicious insiders), in reality, most threat modeling frameworks, methodologies, and
attack libraries focus only on product requirements. Consider, for instance, the STRIDE approach
to threat modeling: it is evident that its six threat categories mainly apply to product threats.

The lack of threat modeling applied to process requirements means that even consolidated
sets of process requirements (such as the ones coming from the ISA/IEC 62443-4-1 standard)
are not mapped to threat models. Instead, they are fixed in their specification and not flexible
depending on their application context. Some sets of requirements are specifically derived from
a threat model, like the best practices described by Good Practices for Security of 10T from the
European Union Agency for Cybersecurity (ENISA). However, even so, while more justified, once
established, they still lack the flexibility for evaluating only a subset of them, depending on the
context.

The AD framework is flexible enough to model products and process requirements correctly.
We think that once a good number of consolidated AD items will have been made their application
could change how process requirements are conceived.

To show the practical benefits of threat modeling process requirements with ADF, we have
translated the process requirements contained in ISA/IEC 62443-4-1, namely specifying them in
the AD format from an abstract point of view. Moreover, leveraging our experience as a company
that is ISA/IEC 62443-4-1 certified, we have provided an example of what a concrete application
of the requirements may look.

The main benefit of using ADF is that it offers a new way of thinking about process require-
ments. Specifically, it forces us to think of requirements in terms of threats that the requirement
mitigates, thus uncovering the threats themselves (usually hidden when mechanically evaluating
a list of process requirements).

As an example, consider the SM-4: Security expertise requirement:

A process shall be employed for identifying and providing security training and as-
sessment programs to ensure that personnel assigned to the organizational roles
and duties specified in 5.3, SM-2: Identification of responsibilities have demonstrated
security expertise appropriate for those processes.

Our translation of SM-4 to an AD looks like Listing 5.1. First, we point the attention to the
a field, the threat the requirement addresses. In this case, it refers to the possibility of having
inadequate security expertise in the product team. From the start, this makes very clear the
purpose of the requirement.

Next, consider our decomposition of the requirement prescriptions into three items in the d
field:

1. We want to define which level of security expertise is required (without, it is impossible to
evaluate whether the expertise is sufficient or not).

2. We need a way to assess the security expertise so that we know if there are any gaps

ORSHIN D2.2 PU Page 34 of 65

D2.2 - Report about security requirements * ORSHIN

Listing 5.1: sm_4_sec-exp AD excerpt

sm_4_sec_exp:
Insufficient security expertise of the product team

QP

Define the required level of security expertise of the product team:

[II‘.."]

Assess the current level of security expertise of team members: ["..."]
Provide adequate security training so that the security expertise of the
product team matches the required level: ["..."]

surf: [Processes, Expertisel
vect: [Unclear definition, Lack of competence]
tag: [Processes, Security expertise, Roles, Responsibilities]

between the desiderata and the actual situation.
3. We want to address any gaps by providing adequate security training.

The full-text form of the requirement contained all the information mentioned above; how-
ever, it was implicit and required careful analysis to extract and comprehend. By structuring the
requirement using the AD format, it became easier to ensure that all aspects were adequately
addressed. This approach also prompted considerations regarding the definition of security ex-
pertise and the level of specificity required for product-specific requirements. While our internal
processes are well-established and certified, we discovered that our internal documentation might
be ambiguous. Through a meticulous examination guided by the AD format, we recognized this
as an opportunity to enhance our internal documentation and improve clarity in defining the re-
quired level of security expertise.

Introducing the logical structure of ADs in the modeling process requirements has the ad-
vantage of revealing hidden hierarchical structures and uncovering links and references among
individual requirements. In the context of ISA/IEC 62443-4-1, while the Practices already offer
some level of grouping for the requirements, it is common to find requirements from different
Practices that reference common themes. Additionally, some requirements may contain direc-
tives that are later more precisely specified in other requirements. By utilizing the AD format,
these connections and relationships among requirements become more apparent, allowing for
a comprehensive understanding of the requirement set and facilitating better specification and
organization.

As an example, consider the SM-1: Development Process requirement:

A general product development/maintenance/support process shall be documented
and enforced that is consistent and integrated with commonly accepted product devel-
opment processes that include, but are not limited to: a) configuration management
with change controls and audit logging; b) product description and requirements def-
inition with requirements traceability; c) software or hardware design and implemen-
tation practices, such as modular design; d) repeatable testing verification and val-
idation process; €) review and approval of all development process records; and f)
life-cycle support

This is the very first requirement introduced by ISA/IEC 62443-4-1, and lays the foundation
for the setup of a Secure Development Life Cycle. However, most of its sub-points are later better
specified by other requirements; for example, the d directive (i.e., repeatable testing verification
and validation process) is exhaustively handled by the specific requirements of Practice 5, which

ORSHIN D2.2 PU Page 35 of 65

W ORSHIN

D2.2 - Report about security requirements

Listing 5.2: sm_1_dev-proc AD excerpt

sm_1_dev-proc:
Undefined development/maintenance/support processes

QP

Implement config mgmt with change control and audit logging: ["Redmine"]
Require product desc and reqs def with req traceability:: ["Redmine"]
Define design practices: [Addressed in @sd-4-secure-design-best-
practices]
Define implementation practices: [Addressed in @si-2-secure-coding-
standards]
Implement repeatable testing and validation processes: [Addressed in
Q@svv —*]
Enforce review and approval of all development process records: [
Addressed in @sm-12-process-verification]
Implement life-cycle support: ["..."]

surf: [Processes]

vect: [Unclear definition]

tag: [Processes, Requirements, Design, Implementation, Testing, Review,
Vulnerability management, Maintenance]

is entirely dedicated to testing. We think that this hierarchical connection should be highlighted,
and the AD model gives us a chance to specify links of this sort.

In Listing 5.2, we present our proposal for modeling the requirement SM-1 with an AD object.
We have decided to link other requirements explicitly when appropriate. For instance, we have
specified "Addressed in @svv-*" as our response to point d cited above. We use the notation
"@” to indicate a reference to another AD item and the ™*” symbol as a wildcard, so "@svv-*”
means "all the ADs starting with the prefix svv-", which are all ADs mapping to the requirements
of Practice 5.

The possibility of categorizing information based on metadata, such as the fields surf, vect
and tag makes it possible to have a clearer understanding of the context of the requirements.
In Practice 1, we see both requirements that inherently refer to the threat of having “unclear
definition” of some processes/procedures, and ones that instead implicitly model some damage
to assets, either due to human error or accidental causes, or to malicious action. Thinking about
threat modeling, the possibility of distinguishing between these two classes is valuable. Being
able to isolate all and only threats that require an attacker makes it possible to understand which
items are of higher priority, leaving the implementation of process improvements for a second
iteration. The same reasoning holds for many other practical categorizations, for example filtering
all the requirements that reference the threat model becomes as simple as filtering using the tag
"Threat model” in the ADs.

Given our experience with other threat modeling approaches, we feel that the AD framework
provides a logical and structured way to consolidate information about threats. Although the
framework does not provide an enumeration strategy, it is easy to see how a rich library of ADs
could serve as a database for other methodologies (e.g., STRIDE) or directly as an attack library,
in any case providing highly-detailed threat descriptions. Its flexibility allows for selection, filtering,
extension, and customization of the threat set depending on the context, making it the ideal tool
for producing context-specific threat sets. Its ability to effectively model process threats make
it possible to have a definition of Secure Development Life Cycles (SDLC) that can be adapted
based on the context (e.g., software SDLC VS industrial SDLC for high-security crypto chips).

ORSHIN D2.2 PU Page 36 of 65

W ORSHIN

D2.2 - Report about security requirements

5.2 Side Channel and Fault Injection (AR2, WP3, KUL)

In this case study KUL (COSIC) employed the ADF to TM side channel and fault injection attacks
on a generic cryptowallet secure element (i.e., AR2) and constructed 9 ADs (i.e., sc-fi.yaml).
We now report verbatim the KUL report, prepared by Jesse De Meulemeester and Linde Nouwen.

5.2.1 AD Feedback

We considered the ADF from the perspective of physical side-channel (SC) and fault injection
(FI) attacks. Threat modeling for these types of attacks is complex as existing methodologies
are defined from a software perspective. For instance, STRIDE starts from a data flow graph
where all intended information flows are considered. The key to physical attacks, however, is that
these attacks may target information flows that the designer did not intend to be recoverable. This
makes them incompatible with these types of methodologies.

In this section, we construct some ADs by considering physical side-channel and fault injec-
tion attacks. The resulting list of ADs can then be used when threat modeling a device. Imple-
menting the relevant defenses listed in the ADs can make a device more resilient against these
types of attacks.

Generating AD list

AD Structure The structure of ADs provides sufficient detail to describe physical attacks, while
still being simple to construct and easy to read. A property that is crucial to model physical
attacks is the ability to specify multiple policies and countermeasures per policy (i.e., AD d field)
This is especially useful as countermeasures against these types of attacks may either not exist,
or there may exist multiple different ones, each with its benefits and downsides. Similarly, a
countermeasure may exist but may not be practical within the considered application. Allowing
the AD creators to specify multiple policies and countermeasures is thus a good addition when
considering physical attacks.

Another useful property is the ability to specify AD optional fields. For instance, we added
a defense reference (dref) field to our ADs that references certain sources for the specified
countermeasures. This can provide more context about the effectiveness and performance of the
countermeasures when threat modeling using the ADF.

An interesting property of the ADF is the ability to create structured representations based on
the different fields in the AD, such as surf, or vect. This, however, requires that the keywords
used are coherent across ADs, which when ADs are constructed by different individuals may not
always be the case.

Abstraction level One less obvious point from the perspective of physical attacks is the ap-
propriate abstraction level. Side-channel attacks, for instance, can be described on various ab-
straction levels, ranging from broad descriptions of one type of attack to specific ones describing
a precise attack on an exact target. The AD allows modeling threats with different abstraction
levels, but deciding which one to use might be challenging.

For example, we will use a simple power analysis (SPA) attack against the square and multiply
implementation of RSA. This problem can be captured at different abstraction levels in an AD. For

ORSHIN D2.2 PU Page 37 of 65

W ORSHIN

D2.2 - Report about security requirements

Listing 5.3: High-level (coarse-grained) SPA AD

spa_nct:
a: SPA attacks on non-constant-time implementations
d:

Constant time implementation: []
surf: [Implementation]
vect: [SCA]
model: [Physical, passive]
tag: [Implementation, Side channel, SPA]

instance, going down in level of abstraction, one could think of SPA attacks on non-constant time
implementations, SPA attacks on RSA, and SPA attacks on square and multiply.

There are pros to both having a high-level description of the attacks and having a more de-
tailed description. As in Listing 5.3, a broader description allows us to describe more generalized
attacks, making it potentially more useful for threat modeling as a broader surface is described.
In contrast, a broader description makes it more difficult to describe specific countermeasures.

In terms of concrete defenses, having a detailed AD description, as in Listing 5.4 allows for
much more fine-grained defense descriptions. However, this approach has the disadvantage of
requiring many more AD entries. A similar attack to Listing 5.4 is, for instance, a SPA attack
against the double and add algorithm in elliptic curve cryptography (ECC). A broader AD would
capture both but would be able to provide less relevant (i.e., attack-specific) countermeasures.

Thread modeling using ADs

Methodology vs Catalog system The current idea is to use ADs as the input of the threat
modeling system rather than as the outputs. However, there are some potential problems with
this approach. For example, it does not allow to model any attacks not currently present in the AD
database. It may also make it more difficult to find all the relevant threats for a specific use case,
as there is yet to be a methodology to do this. Furthermore, the AD system still has the challenge
of creating a hierarchy among the threats. The latter is solved partially by the threat chaining.

Abstraction level The person creating the ADs decides the abstraction level of the described
attacks, as we noted above. Since the AD database is used as input for threat modeling, the
specificity of the threats following this methodology will depend on the creator of the database
entries rather than the person following the methodology.

Listing 5.4: Specific (fine-grained) SPA AD

spa_sm:
a: SPA attacks on square and multiply
d:
Constant-time implementation: [Square and multiply always, Montgomery
ladder]

surf: [Crypto algorithm, RSA, Exponentiation, Private key]
vect: [SCA]

model: [Physical, passive]

tag: [Implementation, Side channel, SPA]

ORSHIN D2.2 PU Page 38 of 65

D2.2 - Report about security requirements * ORSHIN

Complete circuit knowledge

General chip layout

Signal flow diagram

Data flow diagram

Figure 5.1: STRIDE layers

STRIDE layered extension

The threat modeling idea we were working on was to modify STRIDE to work for various types of
threats rather than only software-related ones. Currently, STRIDE starts from a data flow diagram.
However, this diagram usually only shows data flows that the manufacturer had envisioned, which
makes it impractical to model hardware-related threats. Meanwhile, the STRIDE categories could
be used for hardware and software-related threats.

Our idea was to have different layers to use STRIDE on. For example, in one layer, we could
rely only on the data flow diagram to model threats. We could add physical access in another
layer, yet the chips and internal workings remain a black box for the attacker. In the final layer,
the attacker could have full knowledge of the circuit and use it for an invasive attack. In a layer
between the data flow diagram one and the full circuit knowledge one, a signal flow diagram
could be used to indicate the power line, the electromagnetic radiation, and the clock signal (and
potentially also others) for side-channel attacks and fault injection. The higher the layer used in
the threat modeling, the higher the capabilities of the hypothetical attacker during the modeling
exercise.

Figure 5.1 shows a potential set of layers. Only the data flow diagram is used to model
threats at the lowest layer. In this layer, we assume that the attacker has no physical access
and can only see the data flow that the manufacturer envisioned. In the second layer, we add a
signal flow diagram, and we assume that the attacker can measure the electromagnetic radiation
and read and modify specific signals, such as the clock and power signal. Now side-channel
and fault injection-related threats can be modeled. The threat modeling process progressively
incorporates attackers with increasing expertise in the subsequent layers. Ultimately, in the final
layer, the attacker can reverse engineer the entire chip and execute various invasive attacks.

This threat modeling approach offers flexibility in its implementation. It allows for two ap-
proaches: constructing the threat model layer by layer or focusing on a specific layer. For in-
stance, one can effectively model software-related threats by solely considering the data flow
diagram layer. Additionally, modifying specific layers to enhance the modeling capabilities or in-
troducing additional layers to expand the range of attacks that can be included or excluded during
the modeling process is possible. This adaptability enables customization of the threat modeling
approach to suit specific requirements and objectives.

5.3 Speculative Execution (AR3, WP3, KUL)

In this case study KUL (DistriNet) employed the ADF to TM speculative microarchitectural attacks
and some related covert channels that can target a cryptowallet microprocessor (i.e., AR3). The
ADs can be found in microa.yaml. We now report verbatim the KUL report, prepared by Marton

ORSHIN D2.2 PU Page 39 of 65

W ORSHIN

D2.2 - Report about security requirements

Bognar and Frank Piessens.

5.3.1 Threat modeling speculative execution attacks

The purpose of this case study is to evaluate how well the threats related to speculative execution
attacks and the underlying microarchitectural side channels can be documented in the ADF. Start-
ing from the description of speculative execution attacks in the original Spectre paper [62] and
a classification tree [15], we constructed ADs for the various Spectre variants, along with some
cache attacks that can be used to transmit secrets from the transient domain to the architectural
domain.

5.3.2 Feedback on the use of the framework

In our overall experience with the framework, we found it to be highly beneficial. The ADF ex-
hibits a flexible data format with well-chosen and self-explanatory fields, making it easy for ma-
chines and humans to process. The use of the YAML format proved to be a suitable choice. As
demonstrated in this case study, the construction of a catalog of ADs shared similarities with the
utilization of checklists in threat modeling. We believe that developing an AD catalog can con-
tribute to achieving completeness and reproducibility in threat modeling activities. However, we
encountered several challenges while using the ADF framework. Firstly, when modeling attacks
such as speculative execution attacks and microarchitectural attacks, we faced the issue of deter-
mining the appropriate level of abstraction. These attacks can be described as general classes,
specific variants, or instances tailored to particular processor architectures. The framework lacks
clear guidance on selecting the optimal level of abstraction, and thus we had to make somewhat
arbitrary choices. Future experiences with the framework may help establish guidelines to assist
AD writers. Secondly, we contemplated the broader application of the ADF framework beyond
the specific class of Spectre attacks we examined. We pondered how to effectively model attack
classes documented in academic literature within the ADF framework. We believe that docu-
menting such attack classes in the ADF enhances the comprehensiveness of the catalogs and
facilitates access to academic research findings for practitioners. Instead of reading the entire pa-
per, practitioners can rely on the ADF and associated tools to assess the applicability of threats
or attacks to their products.

More specifically, we considered capturing the attack classes documented in survey papers
or systematization-of-knowledge papers, for instance the well-known papers:

» “SoK: Eternal War in Memory” [119], a paper that gives a rigorous overview of all memory
safety attacks such as code corruption attacks, control flow hijacking attacks (including
things such as return-oriented-programming attacks) and data-only attacks.

» “A Systematic Evaluation of Transient Execution Attacks and Defenses” [15], a paper that
gives a rigorous overview of the entire class of transient execution attacks, including the
Spectre attacks considered in this case study, but also including other transient execution
attacks, such as Meltdown-type attacks.

We found that, in general, it is not obvious how to maintain the structure that these papers
bring into the class of attacks in the AD description. For instance, [119] provides what they call an
attack model of memory corruption attacks (see Figure 1 in [119]) where they structure attacks in
stages and consider different variants of these stages. Defense techniques can then be mapped
on this model in a principled way. Even if ADF supports various ways of structuring information

ORSHIN D2.2 PU Page 40 of 65

W ORSHIN

D2.2 - Report about security requirements

about attacks and defenses, we found it hard to see how all the information captured in the attack
model of [119] could be maintained in ADF. Hence, an interesting question for further research
on ADF might be how to enrich the underlying data model further.

For the paper on transient execution attacks [15], a similar comment applies. That paper
also provides a structured classification tree (See https://transient.fail/ for an up-to-date
version of that classification tree.) While our rendering of Spectre attacks in ADF matches very
well with one level of that classification tree (the level corresponding to the microarchitectural
buffer used in the attack), higher levels in the tree could likely be represented as tags in the ADs.
How to represent all information, including that at the lowest levels, is less obvious. Of course,
one could choose to represent all the leaves of the classification tree as ADs, but that seems to
lead to an explosion of ADs which might also not be desirable.

In summary, while ADF works very well for specific attacks on a concrete product, the precise
representation of more abstract attack classes with their properties may need more research.
Finally, for completeness, we report some of the more minor questions or unclarities we encoun-
tered while doing this case study:

« It was unclear how to document best that a given surface/vector makes the attack easier
but is not required (e.g., controlling the PHT for Spectre-PHT).

« It was not entirely clear what to use tags for: it can be used for metadata, but there was little
guidance on what meta-data would be relevant or required (which might also be application-
specific).

5.4 Presilicon Attacks (AR4, WP5, NXP)

In this case study, NXP employed the ADF to TM pre-silicon testing of CV32E40S, a RISC-V
secure core that might be employed by a cryptowallet (i.e., AR4) Furthermore, NXP constructed
8 ADs (i.e., presil.yaml). We now report verbatim the NXP report prepared by Volodymyr
Bezsmertnyi.

5.4.1 Presilicon TM of the CV32E40S Secure Core with ADF

We took the secure RISC-V core CV32E40S as an example of the usage of ADF for the threat
modeling of the core design. We noticed directly during the threat modeling that it is possible
to analyze even generic designs like the secure core using ADF. During the pre-silicon stage,
we do not consider physical defenses such as shields and sensors, since they cannot be tested
without a silicon die. The attack vectors that can be tested during the pre-silicon stage are limited
compared to a real application of a fully defined system on chip with precisely specified hardware
and software components. However, we managed to identify the most important application-
agnostic attack vectors on the secure core. For example, in presil.yaml, the timing info,
bus_tampering, dfa, and data_extraction ADs can be seen as generic for any core and hence
can be reused during the TM of a concrete product, where more information about hardware and
software is available.

As another exercise, we added more components and specified a System on Chip (SoC)
sample. The SoC features RAM, non-volatile memory storing a firmware image, ROM containing
code of a secure bootloader and cryptographic keys, a serial interface, a peripheral bus, and
the secure core CV32E40S. This SoC is still generic but can be a foundation for other SoC

ORSHIN D2.2 PU Page 41 of 65

https://transient.fail/

W ORSHIN

D2.2 - Report about security requirements

designs like crypto wallets and smart cards. New defensive policies also arose since some critical
components have been added to the design. The framework’s flexibility allows for specifying
the policies on different abstraction levels. For more concrete applications, the analysts would
need to identify security-relevant assets and goals, critical functionality, and estimate attacker
knowledge/capabilities and risks.

The framework brings the following advantages for the threat modeling in the pre-silicon
phase:

» Having all attack objects specified, we can compile a list of defensive mechanisms that
require implementation and derive a task list.

» By introducing risk factors as an optional field, the attacks can be ordered or grouped by
a risk metric which allows for prioritizing the testing effort and efficiently distributing the
workload.

« For future usage, it makes sense to develop tools for constructing, visualizing, and analyzing
attacks using standardized keywords for vectors, surfaces, models, policies, and tags. This
would enable efficient and usable ways of working with the framework.

» Due to the objects’ file format and hierarchical structure, we can build trees and attack
chains and extract required defenses against more sophisticated attacks with multiple stages.
This can be achieved by embedding the attack name a of the object into the model field of
the attack object of the next stage in a complex multi-stage attack scenario. For example,
the object code_exe is a prerequisite for the dfa object, so together, they form an attack
chain.

5.5 Physical Attacks (AR5, WP4, TXP)

In this case study, TXP employed the ADF to TM invasive physical attacks on a cryptowallet
(i.e., AR5), which are impactful but typically neglected by TM, and constructed 26 ADs (i.e.,
physical.yaml). We now report verbatim the TXP report prepared by Olivier Thomas.

5.5.1 AD Feedback

The ADF offers a systematic approach to documenting properties related to attacks and their
mitigations, serving as a valuable resource for design teams, evaluators, and design reviewers.
Particularly in the context of physical attacks, where public information is limited, the existence of
a comprehensive database of known attacks and guidelines becomes highly advantageous.

By incorporating ADs into a database, accessibility to the provided information is enhanced,
regardless of the user’s level of expertise in the field. Designers can utilize ADs to architect
their designs effectively, enabling them to create targeted guidelines for various aspects of their
designs. This facilitates easy access to information for the different teams involved in a project.

The utilization of the AD database can vary depending on the specific context. In the case
of physical attacks, ADs can assist in assessing the required protections based on the elements
that need safeguarding and the types of attackers to be defeated. The policy and attack surface
are primary indicators for IC designers during their threat modeling tasks. Identifying what needs
protection is insufficient; understanding the attack type and vector describes the attacker’s capa-
bilities. With this information, known attacks can be identified, and appropriate mitigations can be

ORSHIN D2.2 PU Page 42 of 65

W ORSHIN

D2.2 - Report about security requirements

implemented.

For instance, in ROMs and boot ROMs, preventing access to physical adversaries (e.g., prob-
ing and imaging attacks) is crucial. The AD database contains four entries showcasing different
attack types and their mitigations. By extracting information from the policy and attack surface,
designers can determine the expertise attackers should possess. Less capable attackers may
attempt to extract binary data using images of physical bits, which can be countered by imple-
menting proper scrambling schemes within the ROM itself.

Encryption can be employed to enhance security against attackers capable of reverse en-
gineering the ROM’s scrambling circuitry. When implemented correctly with a ROM external
decryption circuit, attackers are forced to utilize fully invasive techniques, significantly reducing
the pool of potential attackers. Dedicated countermeasures can be implemented if the application
necessitates protection against highly skilled invasive attackers (e.g., for long IC lifetimes).

This example highlights the need for a comprehensive attacker classification system that
could be incorporated as an additional tag within the framework. The database’s flexibility in
adding tags addresses the evolving nature of security considerations.

The database also describes attack techniques such as Focused lon Beam (FIB) modifica-
tion, which should ideally be prevented altogether. These techniques represent attack paths that
can lead to various possibilities depending on the target. In the case of FIB modification, multiple
mitigations are presented to significantly raise the bar for potential attackers.

Furthermore, listing potential attacks and attack vectors based on the attack surface proves
valuable. For instance, instruction corruption corresponds to several unique ADs that link to
different attack vectors and various mitigations. Suppose semi- or fully invasive attacks are not
feasible due to restricted access to the IC. In that case, the circuit must be protected solely against
Voltage Fault Injection (VFI), which might require the implementation of power filtering and glitch
detectors.

The examples mentioned above demonstrate the effectiveness of the AD database in aiding
designers during the early stages of threat modeling. Thus, we strongly recommend its utilization.

5.6 BLE Prot. and Impl.-Level Attacks (AR6, WP5, ECM)

In this case study, ECM focused on Bluetooth’s protocol-level and implementation-level threats on
a cryptowallet (i.e., ARB). First, they tried threat modeling it using STRIDE and pytm and encoun-
tered some limitations (e.g., generic or out-of-scope threats). Then, ECM employed the ADF and
constructed 46 Bluetooth ADs (i.e., bt .yaml) using as a main reference the awesome-bluetooth-
security list [40], and TM the cryptowallet BLE module against protocol-level and implementation-
level threats that are relevant and complementary. We now report verbatim the ECM report,
prepared by Tommaso Sacchetti and Daniele Antonioli.

5.6.1 BLE TM with STRIDE and pytm

We wanted to investigate the efficacy of the STRIDE methodology in threat modeling and its appli-
cability in identifying vulnerabilities in a hardware token that implements the Bluetooth Low Energy
(BLE) protocol. Additionally, we tried to use the novel open-source threat modeling tool pytm from
OWASP (Open Worldwide Application Security Project) [121]. The following paragraphs present

ORSHIN D2.2 PU Page 43 of 65

W ORSHIN

D2.2 - Report about security requirements

Table 5.2: STRIDE generated BLE threats. S, T, I, D, and E stands for Spoofing, Tampering,
Information disclosure, DoS, and EoP

Threat Cat. Mitigation

Device MAC address spoofing S Implement strong authentication mechanisms, such as
mutual authentication and encryption, to ensure device
authenticity.

Malicious packet or code injection T Employ cryptographic measures, such as digital signa-
tures or message authentication codes, to detect tam-
pering and ensure data integrity.

Unauthorized access to sensitive | Apply encryption to protect data confidentiality, and en-
information force proper access controls to limit data exposure
Packet flooding D Employ adaptive algorithms to dynamically adjust re-

source allocation based on demand
Device takeover through vulnera- E Regularly update firmware and apply security patches
bility exploitation to address known vulnerabilities. Implement secure
communication protocols and encryption to protect
against privilege escalation.

a quick introduction to BLE, a summary of the encountered challenges and issues during the
execution of the task.

BLE is a wireless communication protocol for low-power devices to establish short-range con-
nections. It operates in the 2.4 GHz frequency band and is specifically optimized for applications
that require low energy consumption. BLE enables efficient data transfer between devices, bal-
ancing transmission range, data rate, and power consumption. It provides reliable and secure
communication while minimizing energy usage. BLE is the de-facto standard technology for low-
power communications, and it is supported by several crypto wallets (e.g., Ledger Nano X).

Our evaluation of the STRIDE methodology revealed its limited emphasis on implementation
and protocol-specific threats. The methodology primarily focuses on high-level threats that may
not directly address the unique characteristics of the specific device under analysis. In the context
of our case study, we found that STRIDE’s high-level approach was insufficient for our needs.
It did not provide the depth and granularity required to effectively identify and assess threats
that may arise in the BLE component. An example of threats identified by STRIDE is shown in
Table 5.2. These threats are too generic and do not cover concrete and relevant attacks, such as
KNOB [7] or BLUR [8].

pytm was also problematic as its usage with communication protocols has significant limita-
tions. pytm’s pre-defined classes are not covering protocols and related chip/firmware. Moreover,
pytm’s threat library does not include protocol-level and implementation-level threats on BLE. We
tried to extend pytm to address this gap by introducing an additional abstraction layer above the
existing objects. Unfortunately, the framework primarily focuses on web-related or client-server,
making it challenging to adapt effectively to other scenarios, especially to Bluetooth protocol-level
or implementation-level threats. However, we believe that pytm could be expanded to support
new threats. We will further investigate this possibility even if, after a brief analysis, we see that
our ADF has a different level of granularity and details that make it difficult to be compatible with

pytm.

ORSHIN D2.2 PU Page 44 of 65

D2.2 - Report about security requirements * ORSHIN

Table 5.3: List of 18 BLE ADs used from our catalog of 46 ADs in bt.yaml. Here we report the
AD name, a field, a part of the tag field. For the full ADs please look at bt . yaml

ad_name a tag
sco_ble Downgrade attacks on BLE SCO [137] Impl
sweyntooth ble_1 Link Layer Length Overflow [45] Impl
sweyntooth ble 2 Link Layer LLID Deadlock [45] Impl
sweyntooth ble_3 BLE Crafted packet buffer overflow [45] Impl
sweyntooth ble 4 Key Size Overflow [45] Impl
sweyntooth ble_b Zero LTK Installation [45] Impl
blesa ble BLE reconnection spoofing [133] Impl
bleedingbit ble_1 Malformed packet BoF in BLE beacons parsing [111] Impl
frankenstein ble_1 Heap overflow in BLE PDUs parsing [104] Impl
knob_ble Key Negotiation of Bluetooth (KNOB) [7] Proto
blur_ble BLUR Cross-Transport Key Derivation attacks [8] Proto
nino_ble MitM on BLE SSP [51] Proto
bluemirror_ble Reflection attack on passkey entry [21] Proto
invcurve ble Invalid Curve Attack [12] Proto
pairing meth _conf ble Method confusion attack [127] Proto
crackle ble BLE Key Derivation [105] Proto
injectable PHY packet injection [17] Proto
gatt _fp ble GATT Fingerprinting and Tracking [18] Proto

5.6.2 BLE TM with ADF

In our case study, we are interested in the protocol-level and implementation-level threats affecting
BLE in the context of the cryptowallet. Currently, in our bt.yaml catalog, there are 18 ADs for
BLE, nine of them are protocol-level threats, while nine are implementation-level. Table 5.3 shows
the list of BLE ADs with their type. We note that bt.yaml can also be used to TM Bluetooth
Classic (BC) and Bluetooth Mesh (BM).

Using ADs, we can address implementation-level and protocol-level threats on BLE, regard-
less of their level of abstraction. For example, we can model a concrete attack like No Input No
Output (NINO) that is a MitM attack on BLE SSP (Secure Simple Pairing) protocol. This attack is
specific to BLE and currently is not identified by STRIDE or pytm.

We use the AD in Listing 5.5 to model NINO. The AD, among others allow specifying the
BLE-specific protocol phases and security mode involved in the attacks, i.e., association during
LESC pairing and a high-level policy and concrete mechanism to prevent the attack, i.e., use

Listing 5.5: nino_ble AD

nino_ble:
a: MitM on BLE SSP
d: Out of band pairing: [Use NFC as 00B channel]
surf: [BLE, Pairing, Association]
vect: [No IO downgrade]
model: [Proximity, MitM]
tag: [Protocol, SMP, LESC]

ORSHIN D2.2 PU Page 45 of 65

W ORSHIN

D2.2 - Report about security requirements

Listing 5.6: blur_ble AD

blur_ble:
a: Bluetooth Cross-Transport Key Derivation (BLUR)
d:

Prevent cross-transport key tampering: [Disable key overwrite with
weaker keys]
Enforce strong association mechanisms: [Track associations for paired
devices and abort on downgrade request]
Prevent role switching: [Track asymmetries in roles between BT and BLE]
year: 2020
surf: [BLE, Pairing, CTKD]
vect: [Cross-transport pairing, SC downgrade, No IO downgradel]
model : [Proximity, Impersonation, MitM, Unintended session]
tag: [Protocol, SMP, LESC]
risk: [TODO]
cve: ["15802", "20361"]
cwe: ["287"]

out-of-band pairing with Near Field Communication (NFC). As a result, a designer might consider
adding NFC to the cryptowallet to defend against NINO and other BLE attacks related to the
association phase.

Another example of a threat not identified by STRIDE and pytm is BLUR tracked by CVE-
2020-15802 and CVE-2020-20361. BLUR presents attacks on Bluetooth’s Cross-Transport Key
Derivation (CTKD), and we model it as in Listing 5.6. As in the previous case, with the AD, we
can model Bluetooth’s specific aspects not captured by STRIDE and pytm, such as attacking BC
from BLE and vice versa or adopting concrete mitigation strategies (e.g., disabling the possibility
of overwriting keys with weaker ones, or tracking the associations with paired devices and abort
when receiving downgrade requests, or prevent role switching by tracking asymmetries in the
roles). Overall, we are satisfied with the ADF, and we will continue extending and using it for our
Bluetooth TM exercises.

5.7 FIDO2 (AR7, WP5, SEC)

In this case study, SEC first tried to threat model the FIDO functionality of a cryptowallet (i.e.,
AR7) with STRIDE alone. Then, they constructed a catalog of 21 ADs for FIDO (i.e., fido_-
system.yaml, fido_device.yaml, and fido_solokey.yaml) and used them to TM the same
scenario and compare the two experiences. We now report verbatim the SEC report prepared by
Arianna Gringiani.

5.7.1 FIDO2 TM with STRIDE

This work aimed to study the STRIDE method for threat modeling and apply it to identify vul-
nerabilities of a hardware token implementing the FIDO2 protocol. This report summarises the
challenges and problems faced during the task.

FIDO2 [3] is an authentication protocol designed to allow online services to offer multi-factor
and single-factor authentication. A new and unique cryptographic key pair is created for each
service credential in the initial registration phase. The public key is sent to the service, while the

ORSHIN D2.2 PU Page 46 of 65

W ORSHIN

D2.2 - Report about security requirements

B1 - Client, v BO - Auth Boundary:

P2 - Relying Party FO 3 ch:alleng

;

i -challenge

l F3 - signed challenge

| 1 FA - pué\key request

pub key b F2 fisignedl challenge
) - T

S0 - Database

Figure 5.2: FIDO2 DFD generated by SEC

private key remains on the authenticator, which in our case, is a hardware token. The application
authenticates a user through a cryptographic challenge to the token via a client API. After the
user authenticates by pressing a button on the token, the client device proves possession of the
private key by signing a challenge. Then it sends it back to the application, which can verify it
using the corresponding stored public key.

FIDO2 DFD The first step in threat modeling is to illustrate the system with a data flow diagram,
which in our case, represents the FIDO2 authentication process. The data flow diagram was
created using the Microsoft threat modeling tool [70]. As shown in Figure 5.2, the main actors are
the hardware authenticator, the client, and the online service (i.e., relying party). In addition, we
have the relying party database containing the credentials and public keys.

As the objective was to focus on the authenticator, the first challenge was to understand if
it was more convenient to represent the client and the relying party as external entities or as
normal processes. To gain a better vision of the possible threats, we opted to treat model the
involved entities as internal processes. Another aspect considered was whether or not to include
the human user. The user was not considered, as their only interaction with the system consisted
of pushing a button on the authenticator device. To capture the time dimension of the protocol as
much as possible, the data flows are numbered following the FIDO2 message order [128].

STRIDE threats Starting from the data flow diagram of a system, the tool applies the STRIDE
approach to generate possible threats. Tables 5.4 and 5.5 list the 48 attacks generated from our
diagram ordered by interaction, with the corresponding STRIDE category. For some threats we
report a mitigation strategy suggested by the tool.

Compare STRIDE with real-world threats The next step was to research realistic attack sce-
narios for a FIDO2 system and compare them with the STRIDE threats automatically generated
from the FIDO2 DFD. We studied documented attacks and bugs related to FIDO2 tokens and

ORSHIN D2.2 PU Page 47 of 65

W ORSHIN

D2.2 - Report about security requirements

Table 5.4: STRIDE generated FIDO2 threats (FO, F1)

Id Title Cat. Int. Mitigation

G1 P1 - Client impersonates the context of P2 - Relying Partyto E FO
gain additional privilege

G2 Elevation by Changing the Execution Flow in P1 - Client E FO

G3 P2 - Relying Party remotely executes code for P1 - Client E FO

G4 Data Flow FO - challenge Is Potentially Interrupted D FO

G5 Potential Process Crash or Stop for P1 - Client D FO

G6 Data Flow Sniffing I FO Encrypt the data flow

G7 Potential Data Repudiation by P1 - Client R FO Use logs or audits

G8 Data Flow Tampering T FO Inputintegrity validation

G9 Spoofing the P1 - Client Process, which may lead to informa- S FO Use an authentication
tion disclosure by P2 - Relying Party mechanism

G10 Spoofing the P2 - Relying Party Process, which may lead to S FO Use an authentication
unauthorized access to P1 - Client mechanism

G11 Cross Site Request Forgery E FO

G12 Data Flow Tampering T F1 Inputintegrity validation

G13 Spoofing the PO - Auth Key Process, which may lead to infor- S F1 Use an authentication
mation disclosure by P1 - Client mechanism

G14 Spoofing the P1 - Client Process, which may lead to unautho- S F1 Use an authentication
rised access to PO - Auth Key mechanism

G15 Data Flow Sniffing I F1 Encrypt the data flow

G16 Potential Data Repudiation by PO - Auth Key R F1 Use logs or audits

G17 Potential Process Crash or Stop for PO - Auth Key D F1

G18 Data Flow F1 - challenge Is Potentially Interrupted D F1

G19 PO - Auth Key impersonates the context of P1 - Client to gain E F1
additional privilege

G20 P1 - Client remotely executes code for PO - Auth Key E F1

G21 Elevation by Changing the Execution Flow in PO - Auth Key E F1

G22 Cross Site Request Forgery E F1

integrated them with the security concerns expressed in [4]. In Table 5.6 we report 5 of the most
exploited and impactful threats. For each threat, we report the closest STRIDE-generated ones.

STRIDE Impressions We can notice how real-world threats differ from those STRIDE gener-
ated. STRIDE describes vague and generic attacks, which simple countermeasures can mitigate.
The method suggests that the potential spoofing of an entity could be solved by enabling a stan-
dard authentication mechanism. However, in threat 3 from Table 5.6, the client is controlled by the
attacker (via malware), therefore a standard authentication mechanism is not sufficient to solve
the issue.

The STRIDE categories being too vague relates to the fact that they are specific to a system
component. Observing the system too closely by focusing on single elements or interactions
could result in missing the bigger picture. Indeed, the main limitation of STRIDE is its lack of
consideration for procedural threats and its limited understanding of the context and ecosystem
in which a system operates.

STRIDE primarily focuses on data flow analysis, which may overlook threats that arise from
specific procedural steps or the broader environment. It fails to capture the vulnerabilities and
risks associated with complex processes, such as user interactions or device life cycle events. As
a result, STRIDE may not provide comprehensive coverage or accurately identify threats depen-
dent on the specific context or ecosystem.

ORSHIN D2.2 PU Page 48 of 65

W ORSHIN

D2.2 - Report about security requirements

Table 5.5: STRIDE generated FIDO2 threats (F2, F3, F4, F5)

Id Title Cat. Int. Mitigation

G23 Spoofing the PO - Auth Key Process, which may lead to unau- S F2 Use an authentication
thorized access to P1 - Client mechanism

G24 Spoofing the P1 - Client Process, which may lead to informa- S F2 Use an authentication
tion disclosure by PO - Auth Key mechanism

G25 Data Flow Tampering T F2 Input integrity validation

G26 Potential Data Repudiation by P1 - Client R F2 Use logs or audits

G27 Data Flow Sniffing | F2 Encrypt the data flow

G28 Potential Process Crash or Stop for P1 - Client D F2

G29 Data Flow F2 - signed challenge Is Potentially Interrupted D F2

G30 P1 - Client impersonates the context of PO - Auth Key to gain E F2
additional privilege

G31 PO - Auth Key remotely executes code for P1 - Client E F2

G32 Elevation by Changing the Execution Flow in P1 - Client E F2

G33 Cross Site Request Forgery E F2

G34 P2 - Relying Party impersonates the context of P1 - Clientto E F3
gain additional privilege

G35 Spoofing the P1 - Client Process, which may lead to unautho- S F3 Use an authentication
rised access to P2 - Relying Party mechanism

G36 Spoofing the P2 - Relying Party Process, which may lead to S F3 Use an authentication
information disclosure by P1 - Client mechanism

G37 Data Flow Tampering T F3 Inputintegrity validation

G38 Potential Data Repudiation by P2 - Relying Party R F3 Use logs or audits

G39 Data Flow Sniffing I F3 Encrypt the data flow

G40 Potential Process Crash or Stop for P2 - Relying Party D F3

G41 Data Flow F3 - signed challenge Is Potentially Interrupted D F3

G42 P1 - Client remotely executes code for P2 - Relying Party E F3

G43 Elevation by Changing the Execution Flow in P2 - Relying E F3
Party

G44 Cross Site Request Forgery E F3

G45 Spoofing of Destination Data Store SO - Database S F4 Use an authentication

mechanism

G46 Potential Excessive Resource Consumption for P2 - Relying D F4
Party or SO - Database

G47 Weak Access Control for a Resource I F5

G48 Spoofing of Source Data Store SO - Database S F5 Use an authentication

mechanism

Moreover, considering six threat categories for each component results in many potentially
overlapping attacks. Although our real-world evaluation is relatively simple with only four entities,
the tool generates 48 threat scenarios, many of which are repeated or similar to each other (e.g.,
G2-G32 or G9-G35). This explosion of cases slows down and overcomplicates the study.

In the attempt to link our threats with the STRIDE-generated ones, we found each real-world
threat to be related to multiple attacks from the first table. However, STRIDE does not allow
categorizing a threat into multiple classes. For threats 4 and 5, we could not find a correspon-
dence, as STRIDE focuses on software; thus, it does not consider physical hardware attacks. On
the other hand, deriving the real-world table from the STRIDE ones is more difficult due to the
previously mentioned STRIDE issues.

In [116] the author stresses that STRIDE should not be used as a categorization method,
but solely as an exercise to help find threats. Shostack’s idea is that once an attack has been
identified, there is no need to waste effort in putting it in one of the six STRIDE categories.

ORSHIN D2.2 PU Page 49 of 65

D2.2 - Report about security requirements * ORSHIN

Table 5.6: Instances of FIDO real-world threats with STRIDE correspondence

Id Title Related STRIDE threats

1 A malicious device can intercept and modify communication G15, G27
between Client and authenticator exploiting misconfigurations
in USB or BLE protocols

2 MitM attack to the Transport Layer Security (TLS) sessionbe- G1, G8, G9, G10, G34,
tween Client and Relying Party G35, G36, G37

3 Attacker executes code for the Client exploiting malware or G2, (G32)
compromised browser extensions and mounts a relay attack

4 Manipulations of the device occur during the supply or distri- G21
bution chain

5 Evil maid attack to extract credentials private key on the Au- G21
thenticator through side-channel attacks (fault injection, tim-
ing, etc)

However, we found this reasoning to be confusing: if it is not clear to which STRIDE category a
threat belongs, or if it falls under multiples, it may be difficult to come up with that threat in the first
place. Also, in case the threat modeler succeeds in identifying a miscellaneous threat, not being
able to univocally categorize it may lead to confusion about the validity of their thought process.

Overall, we found STRIDE to be a valuable tool for a first-time approach of the threat modeling
world as it gives a simple vision of the most common attack strategies. However, the method is
too plain to analyze complex scenarios, thus the need to develop more elaborate solutions.

5.7.2 FIDO2 TM with ADF

Our first exercise consisted of studying the STRIDE method for threat modeling and attempting
to apply it to identify vulnerabilities of a hardware token implementing the FIDO2 protocol. We
reported the challenges and limitations of STRIDE in Section 5.7.1. Afterward, we applied the
ADF to construct a threat library (i.e., ADs in YAML format) for our case study.

We divided the AD library according to three levels of abstraction: system-level threats
(fido_system.yaml), device-level threats (fido_device.yaml) and those related to the Solo
FIDO2 token by SoloKeys [32] (fido_solokey.yaml).

System-level threats System-level threats are high-level attacks concerning the FIDO2 ecosys-
tem where a hardware authenticator, a client, and a relying party interact. Such threats come from
FIDO security references and the generalization of specific attacks. Some mentions of identified
ADs:

1. A Man in The Middle attack between client and authenticator, and between the relying
party and the client. Corruption/spoofing of the client, or related to the relying party app, on
the user device. For certain policies, we specified concrete mechanisms implemented by
certain authenticators to mitigate these risks, such as a transaction confirmation message
allowing the user to identify the relying party correctly.

2. Side-channel attack on the authenticator. This high-level AD presents various defense
policies such as ’robust device’ or 'secure microcontroller’, for which concrete mechanism
specifications are left to particular tokens. We associated this AD with various attack vectors
describing the possible types of side-channel analysis.

ORSHIN D2.2 PU Page 50 of 65

W ORSHIN

D2.2 - Report about security requirements

3. Malicious relying party mounts a cryptographic attack on key handles.
4. Manipulations of the device occur during the supply or distribution chain.

We attempted to link these generic attacks with one or more CWE and CAPEC, while the attack
surfaces remain high-level (authenticator, client, and relying party). We previously attempted to
model these types of threats using the STRIDE method. Some of these high-level vulnerabilities
can be easily traced back to the STRIDE categories, such as man-in-the-middle attacks and
spoofing issues from point 1. However, it is unlikely that side-channel attacks will come up within
a STRIDE approach, mainly because the method does not consider the hardware world, which
constitutes a significant limitation.

Device-level threats Device-level threats refer to actual vulnerabilities discovered in one or
more models of hardware tokens, coming from reported CVEs and other online articles and
documentation. The majority of those are side-channel or fault-injection attacks to the token
device, which exploit vulnerabilities in microcontrollers, secure elements, and other components,
the communication among them, or generic implementation issues specific to a model of the
token. Other threats concern WebAuthN [128] implementation vulnerabilities and bugs, which is
the protocol for communications between the client and relying party. It is clear how STRIDE
struggles to help identify these specific threats due to the generality of the method and, once
again, its lack of focus on hardware issues.

SoloKeys threats Lastly, we focused on Solo, an open-source FIDO2 token. We reported
physical threats associated with a CVE or documented in the SoloKeys online blog [31]. By
leveraging the AD structure, we assessed whether some previously documented threats applied
to the token. The policies of the generic side-channel AD can now have a concrete mechanism.
For instance, under 'secure microcontroller’, we specified the name of the microcontroller used by
SoloKeys and the security measures implemented by it. Concerning the specific threats, many
of them target components not present in the token design, and in one case, we found that the
token employs a time-insensitive key derivation function to mitigate timing SC attacks.

FIDO2: ADF vs. STRIDE

While STRIDE can be a helpful method for identifying generic threats in software systems, it
does not cover all possible threats and does not provide specific mitigations tailored to a system’s
unique characteristics. Additionally, its software-centric approach limits its applicability to systems
where hardware vulnerabilities are a concern. The possibility of utilizing a pre-existing ADs library
for TM holds significant promise in the future. This approach would offer distinct advantages over
using STRIDE alone. The ADs flexible and rich data model allows for more precise and relevant
analysis and offers a valuable tool for enhancing system security.

Carefully compiling and organizing information about attacks within the AD object allows for
filtering threats effectively. The AD object captures detailed data about attacks, including sur-
faces, vectors, techniques, and models, enabling precise threat identification and analysis. In
practical terms, the AD method enables developers to make informed decisions when selecting
system components. By referencing the AD object’s repository of attacks, developers can iden-
tify components or behaviors that have previously been targeted or exploited. This information
empowers them to implement appropriate defenses or choose more secure alternatives.

The AD object’s inclusion of optional and extensible fields, such as CVE, CWE, and CAPEC

ORSHIN D2.2 PU Page 51 of 65

W ORSHIN

D2.2 - Report about security requirements

identifiers facilitate easy access to information about known vulnerabilities and attack patterns.
Indeed, while these identifiers provide valuable information about known vulnerabilities and attack
patterns, they are not exhaustive and may not encompass all possible threats. Also, enabling a
hierarchical structure of layered ADs can offer a holistic perspective on the threat landscape.
It facilitates the identification of complex attack patterns and assesses their potential impact on
different system layers or components.

Compiling AD for a specific context can ultimately involve multiple stakeholders distributing
the effort. The resulting AD becomes reusable, effectively addressing trivial threats with existing
mitigations. This approach directs the focus toward critical threats that require unique solutions.
By leveraging shared efforts and established mitigations, the AD framework optimizes resource
allocation, prioritizing identifying and mitigating high-impact threats. This approach has the poten-
tial to greatly enhance the accuracy and applicability of the threat modeling process, surpassing
the limitations of generic approaches like STRIDE.

ORSHIN D2.2 PU Page 52 of 65

W ORSHIN

D2.2 - Report about security requirements

Related Work

In this Chapter, we comment on research work related to ADF. We cover TM methodologies,
real-world examples, automation tools, and domain-specific case studies. We also discuss some
relevant work in the areas of threat intelligence and process security.

TM Methodologies

Historically, fault trees can be considered the first TM methodology, where each threat represents
a failure, and failures are hierarchically represented in a tree [126]. ATree were extended, among
others, with attack-defense-trees [63], profiles [65], and case-study driven methodologies [10].
STRIDE was also extended with STRIDE per element and per interaction [122]. ATree were
augmented with formal methods [130]. Another popular methodology is called PASTA (Process
for Attack Simulation and Threat Analysis) that combines threat identification, modeling, scoring,
remediation, and simulation using a seven-stage approach [125].

There have been industrial efforts to standardize threat modeling across platforms such as
the OTM (Open Threat Model) format by IriusRisk [55] and MITRE’s ATT&CK, an adversary-
centric framework designed to threat model post-compromise enterprise security, including lat-
eral movement, and privilege escalation [74, 75]. The framework is in constant expansion and
currently includes attack techniques and sub-techniques for enterprise, mobile, and industrial
systems. Recently, the US Cybersecurity and Infrastructure Security Agency (CISA) released
Decider, an open-source web application to help map a threat to ATT&CK [20]. MITRE also pub-
lished D3FEND [58, 81, 82], the defensive counterpart of the ATT&CK framework. Best practices
related to TM methodologies were also created, such as OWASP’s threat modeling project [98],
and collections of survey and comparison of different TM methodologies [113, 112]. Recently,
we have seen attempts to use a large language model (LLM), like Generative Pre-trained Trans-
former 4 (GPT-4), and Pathway Language Model (PaLM), to aid threat modeling with moderate
success [117, 123, 87].

Vendors also implemented their own TM methodologies. Intel proposed TARA (Threat Agent
Risk Assessment), an attack-centric methodology based on seven steps. TARA is currently un-
maintained [110], but is still popular in some sectors, such as automotive. Lockheed Martin pro-
posed the Cyber Kill Chain (CKC) [67] to model cyber intrusion activities, like advanced persistent
threats (APT). The chain has seven steps: reconnaissance, weaponization, delivery, exploitation,
installation, command and control, and actions.

Card games were also developed to gamify threat modeling, notable examples are Eleva-
tion of Privilege [115], Control-Alt-Hack™ [96], LINDDUN GO [66], and Cornucopia [41]. These
games are especially useful to engage newcomers.

ORSHIN D2.2 PU Page 53 of 65

D2.2 - Report about security requirements * ORSHIN

TM real-world examples

There are few real-world threat modeling exercises freely available [49]. In 2018, researchers
quantitatively measured the efficacy of threat modeling in a real-world enterprise scenario (i.e.,
the New York City Cyber Command (NYC3) which is the agency defending New York City from
cyber threats [118]). In 2019, Trail of Bits did a comprehensive security audit of Kubernetes and
released the produced threat model and related pytm code [95]. OWASP also maintains a list of
threat model examples with the Threat Model Cookbook project [97], including attack trees and
flow diagrams.

TM automation tools

There are several (open-source) TM automation tools [120]. These tools allow, among others,
to parse threats from code comments (e.g., Threatspec [34]), build system models and threats
catalogs from code or configuration languages (e.g., Pytm [121], hcltm [43], threagile [107], and
Threat Dragon [100]), and speed up TM using agile best practices, e.g., Rapid Threat Model
Prototyping (RTMP) [50]. Moreover, there are commercial TM tools such as the ones provided
by IriusRisk [54] and Tutamantic [124]. The most popular closed-source but free TM tool is
Microsoft’s Threat Modeling Tool (TMT) [70] that natively supports STRIDE.

Domain-Specific TM

Prior work also performed domain-specific threat modeling using (and extending) one or more TM
methodologies. For example, in [59] the authors show how to adapt STRIDE and TARA to threat
model a connected car adhering to the AUTOSAR standard [44]. The NCC Group extended the
MS TMT with a template for automotive TM [86].

Other domain-specific areas of TM extension are cyber-physical system (CPS) [61], industrial
control systems (ICS) [5], Internet of Things (loT) [1] and mobile (cellular) networks [103]. Re-
cently, six popular end-to-end messenger desktop clients STRIDE and LINDDUN threat models
were evaluated along the space and time dimensions [19].

Threat intelligence

Actual incidents are collected using threat intelligence platforms that can help threat modeling
with real world data. The Malware Information Sharing Platform (MISP) is an open-source threat
intelligence platform born out of an academic effort and now used by the industry [129, 102].
MISP enables, among others, to store, share, collaborate on cyber security Indicators of Com-
promise (loC), malware analysis, and also to use loCs to detect and prevent attacks. There
are other useful free and open source projects related to threat intelligence, such as Open Cy-
ber Threat Intelligence (OpenCTl) [101], Structured Threat Information Expression (STIX) [53],
Threat Report ATT&CK Mapper (TRAM) [42], and TheHive incident response platform [33].

Process security

Most of process security efforts so far focused on the hardware and software supply chains.
Researchers extensively analyzed vulnerable dependencies from package repositories for in-
terpreted programming language, like Node package manager (Npm), Python Package Index
(PyPI), and RubyGems [38] and extracted valuable security lessons from the software supply

ORSHIN D2.2 PU Page 54 of 65

W ORSHIN

D2.2 - Report about security requirements

chain [39]. Other works developed attack taxonomies for open source software (OSS) via attack
trees [64] and uncovered new attack techniques via the software supply chain, such as the GitHub
fork attack vector [16]. Recently, some works started exploring automated ways to analyze the
security of closed-source software supply chains [11].

ORSHIN D2.2 PU Page 55 of 65

W ORSHIN

D2.2 - Report about security requirements

Conclusion

This document presents the design, implementation, and evaluation of ADF, a framework we
developed to address Task 2.2 and aid state-of-the-art threat modeling techniques. We presented
its design requirements, the AD object building block, flat and hierarchical representations, and
how it can be used to enhance STRIDE, LINDDUN, and ATree threat identifications. We show how
we implemented it with ADF, a toolkit we will open-source with a permissive license and extend
in the future. Currently, ADF has four modules: Catalog, Parse, Check, and Analyze, usable to
create and process ADs. Next, we show how to exploit the ADF using a reference scenario
where we are asked to develop a new cryptowallet and satisfy seven abstract requirements. We
successfully evaluate the ADF in seven case studies related to the AR mentioned earlier. We
now draw some conclusions based on our work.

WP2 - Task 2.2: “Security requirements for a product to be built are typically abstract
or complex. In this task, we develop a mapping of these abstract security require-
ments into concrete policies for the life cycle phases and into concrete security re-
quirements for the components, the device will be composed of. These policies and
concrete security requirements will drive the research in WP3, WP4 and WP5.”

The ADF successfully addresses the two goals we set in Task 2.2. First, it enables to map
abstract security and privacy requirements to ADs modeling high-level and low-level attacks and
defenses on the TLC and its related products. For instance, in Chapter 4 we map seven AR to a
cryptowallet build with the TLC, and we evaluate the related ADs in Chapter 5.

Second, ADF is usable in WP3 (Models for formal verification), WP4 (Effective security au-
dits), and WP5 (Secure auth and comms). These three technical WPs are already benefiting from
ADF as demonstrated in Chapter 5, where we use ADF in TM scenarios related to SC, Fl and
microarchitectural speculative execution attacks (WP3), presilicon and invasive physical attacks
on hardware (WP4), and attacks on inter (i.e., BLE) and intra (i.e., FIDO) device communication
protocols (WP5).

Task 2.2 produced valuable and novel contributions aligned with what we developed in Task
2.1. For example, we used the Trusted Life Cycle (TLC), the main contribution of T2.1, to build
process-specific ADs and set requirements for the process. These ADs catalog might be used
as blueprints to develop a device via a trustable life cycle. For example, given ADs covering
supply chain attacks on a life cycle, a user of such a life cycle can trust its resilience against a
measurable set of supply chain attacks.

Task 2.2 generated added value for the ORSHIN industrial partners. SEC was capable of
translating a state-of-the-art process standard for which it is certified (i.e., ISA/IEC 62443-4-1)
into a set of actionable AD objects to threat model a process. This is a novel application of
TM that we enabled with ADF. Moreover, they managed to represent real-world FIDO threats
(i.e., system, device, and token level) not captured by STRIDE. NXP modeled for the first time

ORSHIN D2.2 PU Page 56 of 65

W ORSHIN

D2.2 - Report about security requirements

presilicon attacks and defenses on one of their RISC-V secure cores. TXP states that ADF is
particularly useful for invasive physical attacks as there is no TM library about this threat category
and building the ADs enabled them to create a self-documenting catalogs that can be (re)used
across TM exercises regardless of the user level of expertise with the topic.

We also got valuable feedback from the ORSHIN academic partners. KUL (COSIC) managed
to take advantage of the AD object flexibility to model physical SC and FI attack techniques
even in cases where no defenses exist. KUL (DistriNet) believes that the ADF could be used to
achieve completeness, reproducibility, and speed-ups during TM. ECM used the ADF to model
Bluetooth, a complex communication standard with a huge attack surface (e.g., protocol-level and
implementation-level attacks).

We will continue improving the ADF and submit it as a core contribution in a research paper.
We will improve the data model based on the excellent feedback we got from the case studies
(e.g., better guidance on how to create and manage ADs with different layers of abstraction). We
will work on a new module capable of (semi)automatically generating ADs from well-structured
sources. For example, we will take advantage of the top ten CWE list for hardware and their
related CVEs and CAPECs to generate a dedicated ADs catalog. Moreover, we will develop a
mechanism to (semi)automatically score the risk of ADs via their risk field and based on context-
specific information. For example, the same AD can be scored differently according to the TM
scenario. Furthermore, we will take advantage of the AD categories that we defined in Section 2.2
(e.g., Security or Privacy, Product or Process) and encode them in the AD object. For example,
we can add an optional list of strings storing the AD categories such as adtype = [catl, cat2,
cat3].

ORSHIN D2.2 PU Page 57 of 65

W ORSHIN

D2.2 - Report about security requirements

Bibliography

[1] loannis Agadakos, Chien-Ying Chen, Matteo Campanelli, Prashant Anantharaman,
Monowar Hasan, Bogdan Copos, Tancrede Lepoint, Michael Locasto, Gabriela F Ciocar-
lie, and UIlf Lindgvist. Jumping the air gap: Modeling cyber-physical attack paths in the
internet-of-things. In Proceedings of the 2017 workshop on cyber-physical systems secu-
rity and privacy, pages 37—48, 2017.

[2] FIDO Alliance. FIDO: Simpler, Stronger Authentication. https://fidoalliance.org/.
[3] FIDO Alliance. FIDO2. https://fidoalliance.org/fido2/.

[4] FIDO Alliance. FIDO Security reference. https://fidoalliance.org/specs/
common-specs/fido-security-ref-v2.1-ps-20220523.pdf, 2021.

[5] Luca Allodi and Sandro Etalle. Towards realistic threat modeling: attack commodification,
irrelevant vulnerabilities, and unrealistic assumptions. In Proceedings of the 2017 Work-
shop on Automated Decision Making for Active Cyber Defense, pages 23—-26, 2017.

[6] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. BIAS: Bluetooth Imper-
sonation AttackS. In Proceedings of the IEEE Symposium on Security and Privacy (S&P),
May 2020.

[7] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. Key Negotiation Down-
grade Attacks on Bluetooth and Bluetooth Low Energy. ACM Transactions on Privacy and
Security (TOPS), 23(3):1-28, 2020.

[8] Daniele Antonioli, Nils Ole Tippenhauer, Kasper Rasmussen, and Mathias Payer. BLUR-
tooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth Low
Energy. In Proceedings of the Asia conference on computer and communications security
(ASIACCS), May 2022.

[9] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B Rasmussen. The KNOB is Broken:
Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BR/EDR. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1047-1061, 2019.

[10] Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. Is my attack tree correct? In Com-
puter Security—-ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part | 22, pages 83—102.
Springer, 2017.

[11] Frederick Barr-Smith, Tim Blazytko, Richard Baker, and Ivan Martinovic. Exorcist: Auto-
mated differential analysis to detect compromises in closed-source software supply chains.
In Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research
and Ecosystem Defenses, pages 51-61, 2022.

ORSHIN D2.2 PU Page 58 of 65

https://fidoalliance.org/
https://fidoalliance.org/fido2/
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.pdf
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.pdf

D2.2 - Report about security requirements * ORSHIN

[12] Eli Biham and Lior Neumann. Breaking the Bluetooth pairing—the fixed coordinate invalid
curve attack, 2020.

[13] Martin Blech. xmltodict - Makes working with XML feel like you are working with JSON.
https://github.com/martinblech/xmltodict.

[14] Matteo Cagnazzo, Markus Hertlein, Thorsten Holz, and Norbert Pohimann. Threat mod-
eling for mobile health systems. In 2018 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), pages 314-319. IEEE, 2018.

[15] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp
Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A systematic evaluation of
transient execution attacks and defenses. In Nadia Heninger and Patrick Traynor, editors,
28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019, pages 249-266. USENIX Association, 2019.

[16] Alan Cao and Brendan Dolan-Gavitt. What the fork? finding and analyzing malware in
github forks. In Proc. of NDSS, volume 22, 2022.

[17] Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent Nicomette, Mohamed Kaaniche,
and Géraldine Marconato. InjectaBLE: Injecting malicious traffic into established Bluetooth
Low Energy connections. In 2021 51st Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 388—-399. IEEE, 2021.

[18] Guillaume Celosia and Mathieu Cunche. Fingerprinting Bluetooth Low Energy devices
based on the generic attribute profile. In Proceedings of the 2nd International ACM Work-
shop on Security and Privacy for the Internet-of-Things, pages 24—-31, 2019.

[19] Partha Das Chowdhury, Maria Sameen, Jenny Blessing, Nicholas Boucher, Joseph Gar-
diner, Tom Burrows, Ross Anderson, and Awais Rashid. Threat Models over Space and
Time: A Case Study of E2EE Messaging Applications. arXiv preprint arXiv:2301.05653,
2023.

[20] CISA. Decider web application. https://github.com/cisagov/Decider/.

[21] Tristan Claverie and José Lopes Esteves. Bluemirror: reflections on Bluetooth pairing and
provisioning protocols. In 2021 IEEE Security and Privacy Workshops (SPW), pages 339—
351. IEEE, 2021.

[22] Mina Deng, Kim Wuyts, Riccardo Scandariato, Bart Preneel, and Wouter Joosen. A privacy
threat analysis framework: supporting the elicitation and fulfillment of privacy requirements.
Requirements Engineering, 16(1):3—-32, 2011.

[23] Graphviz developers. Graphviz is an open source graph visualization software. https:
//graphviz.org/.

[24] Graphviz developers. Package facilitating the creation and rendering of graph descriptions
in the DOT language of Graphviz. https://pypi.org/project/graphviz/.

[25] LibYAML developers. LibYAML - A C library for parsing and emitting YAML. https://
github.com/yaml/libyaml.

[26] Linux Kernel Developers. The Kernel Address Sanitizer (KASAN). https://www.kernel.
org/doc/html/latest/dev-tools/kasan.html.

[27] Linux Kernel Developers. The Kernel Memory Sanitizer (KMSAN). https://www.kernel.
org/doc/html/latest/dev-tools/kmsan.html.

ORSHIN D2.2 PU Page 59 of 65

https://github.com/martinblech/xmltodict
https://github.com/cisagov/Decider/
https://graphviz.org/
https://graphviz.org/
https://pypi.org/project/graphviz/
https://github.com/yaml/libyaml
https://github.com/yaml/libyaml
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kmsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kmsan.html

D2.2 - Report about security requirements * ORSHIN

[28] Pandas developers. Pandas is a fast, powerful, flexible and easy to use open source
data analysis and manipulation tool, built on top of the Python programming language.
https://pandas.pydata.org/.

[29] PyYAML developers. PyYAML is a full-featured YAML framework for the Python program-
ming language. https://pyyaml.org/.

[80] Rust developers. Rust: A language empowering everyone to build reliable and efficient
software. https://www.rust-lang.org/.

[31] SoloKeys developers. Solokeys blog. https://solokeys.com/blogs/news.
[32] SoloKeys developers. Solokeys homepage. https://solokeys.com/.

[33] TheHive developers. TheHive is a FOSS security incident response platform. https:
//github.com/TheHive-Project/TheHive.

[34] Threatspec developers. Threatspec - continuous threat modeling, through code. https:
//github.com/threatspec/threatspec.

[35] Wordcloud developers. A little word cloud generator in Python. https://pypi.org/
project/wordcloud/.

[36] Matplotlib development team. Matplotlib: Visualization with Python. https://matplotlib.
org/.

[37] Guardian Digital. Linux Security Advisories. https://linuxsecurity.com/advisories.

[38] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformaggio, and
Wenke Lee. Towards measuring supply chain attacks on package managers for interpreted
languages. arXiv preprint arXiv:2002.01139, 2020.

[39] William Enck and Laurie Williams. Top five challenges in software supply chain security:
Observations from 30 industry and government organizations. IEEE Security & Privacy,
20(2):96—100, 2022.

[40] engn33r. Awesome Bluetooth Security (BR, EDR, LE, and Mesh). https://github.com/
engn33r/awesome-bluetooth-security.

[41] Dario De Filippis and OWASP. Cornucopia card game. https://shostack.org/games/
elevation-of-privilege.

[42] The Center for Threat-Informed Defense. Threat Report ATT&CK Mapping (TRAM).
https://github.com/center-for-threat-informed-defense/tram.

[43] Christian Frichot. hcltm: Threat Modeling with HCL. https://github.com/xntrik/hcltm.

[44] Simon Farst, Jirgen Méssinger, Stefan Bunzel, Thomas Weber, Frank Kirschke-Biller, Pe-
ter Heitkdmper, Gerulf Kinkelin, Kenji Nishikawa, and Klaus Lange. Autosar—a worldwide
standard is on the road. In 714th International VDI Congress Electronic Systems for Vehi-
cles, Baden-Baden, volume 62, page 5. Citeseer, 2009.

[45] Matheus E Garbelini, Chundong Wang, Sudipta Chattopadhyay, Sumei Sun, and Ernest
Kurniawan. Sweyntooth: Unleashing mayhem over bluetooth low energy. In Proceedings
of the 2020 USENIX Conference on Usenix Annual Technical Conference, pages 911-925,
2020.

[46] Google. Android Security Bulletins. https://source.android.com/docs/security/
bulletin.

ORSHIN D2.2 PU Page 60 of 65

https://pandas.pydata.org/
https://pyyaml.org/
https://www.rust-lang.org/
https://solokeys.com/blogs/news
https://solokeys.com/
https://github.com/TheHive-Project/TheHive
https://github.com/TheHive-Project/TheHive
https://github.com/threatspec/threatspec
https://github.com/threatspec/threatspec
https://pypi.org/project/wordcloud/
https://pypi.org/project/wordcloud/
https://matplotlib.org/
https://matplotlib.org/
https://linuxsecurity.com/advisories
https://github.com/engn33r/awesome-bluetooth-security
https://github.com/engn33r/awesome-bluetooth-security
https://shostack.org/games/elevation-of-privilege
https://shostack.org/games/elevation-of-privilege
https://github.com/center-for-threat-informed-defense/tram
https://github.com/xntrik/hcltm
https://source.android.com/docs/security/bulletin
https://source.android.com/docs/security/bulletin

D2.2 - Report about security requirements * ORSHIN

[47] Marit Hansen, Meiko Jensen, and Martin Rost. Protection goals for privacy engineering. In
2015 IEEE Security and Privacy Workshops, pages 159—-166. IEEE, 2015.

[48] MG Hardy. Beyond continuous monitoring: Threat modeling for real-time response. SANS
Institute, 2012.

[49] Geoffrey Hill. Awesome Threat Modeling. https://github.com/
geoffrey-hill-tutamantic/awesome-threat-modelling.

[50] Geoffrey Hill. ~ Rapid Threat Model Prototyping (RTMP). https://github.com/
geoffrey-hill-tutamantic/rapid-threat-model-prototyping-docs

[51] Konstantin Hypponen and Keijo MJ Haataja. “Nino” Man-in-the-Middle attack on Bluetooth
Secure Simple Pairing. In 2007 3rd IEEE/IFIP International Conference in Central Asia on
Internet, pages 1-5. IEEE, 2007.

[52] Securin Inc. Pegasus Spyware Snoops on Political Fig-
ures Worldwide. https://www.securin.io/articles/
pegasus-spyware-snoops-on-political-figures-worldwide/.

[53] OASIS Cyber Threat Intelligence. Sharing threat intelligence just got a lot easier! https:
//oasis-open.github.io/cti-documentation/.

[54] IriusRisk. IriusRisk is the industry leader in Automated threat modeling and secure software
design. https://www.iriusrisk.com/.

[55] IriusRisk. The Open Threat Modeling Format (OTM) defines a platform independent
way to define the threat model of any system. https://github.com/iriusrisk/
OpenThreatModel

[56] ISA/IEC. ISA/IEC 62443 Series of Standards. https:
//www.isa.org/standards-and-publications/isa-standards/
isa-iec-62443-series-of-standards

[57] Pontus Johnson, Robert Lagerstrom, and Mathias Ekstedt. A meta language for threat
modeling and attack simulations. In Proceedings of the 13th International Conference on
Availability, Reliability and Security, pages 1-8, 2018.

[58] Peter E Kaloroumakis and Michael J Smith. Toward a knowledge graph of cybersecurity
countermeasures. The MITRE Corporation, page 11, 2021.

[59] Adi Karahasanovic, Pierre Kleberger, and Magnus Almgren. Adapting threat modeling
methods for the automotive industry. In Proceedings of the 15th ESCAR Conference, pages
1-10, 2017.

[60] Vladimir Keleshev. Schema validation just got Pythonic. https://github.com/keleshev/
schema.

[61] Rafiullah Khan, Kieran McLaughlin, David Laverty, and Sakir Sezer. STRIDE-based threat
modeling for cyber-physical systems. In 2017 IEEE PES Innovative Smart Grid Technolo-
gies Conference Europe (ISGT-Europe), pages 1-6. IEEE, 2017.

[62] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 1—-19.
IEEE, 2019.

ORSHIN D2.2 PU Page 61 of 65

https://github.com/geoffrey-hill-tutamantic/awesome-threat-modelling
https://github.com/geoffrey-hill-tutamantic/awesome-threat-modelling
https://github.com/geoffrey-hill-tutamantic/rapid-threat-model-prototyping-docs
https://github.com/geoffrey-hill-tutamantic/rapid-threat-model-prototyping-docs
https://www.securin.io/articles/pegasus-spyware-snoops-on-political-figures-worldwide/
https://www.securin.io/articles/pegasus-spyware-snoops-on-political-figures-worldwide/
https://oasis-open.github.io/cti-documentation/
https://oasis-open.github.io/cti-documentation/
https://www.iriusrisk.com/
https://github.com/iriusrisk/OpenThreatModel
https://github.com/iriusrisk/OpenThreatModel
https://www.isa.org/standards-and-publications/isa-standards/isa-iec-62443-series-of-standards
https://www.isa.org/standards-and-publications/isa-standards/isa-iec-62443-series-of-standards
https://www.isa.org/standards-and-publications/isa-standards/isa-iec-62443-series-of-standards
https://github.com/keleshev/schema
https://github.com/keleshev/schema

D2.2 - Report about security requirements * ORSHIN

[63] Barbara Kordy, Sjouke Mauw, Sasa Radomirovi¢, and Patrick Schweitzer. Foundations of
attack—defense trees. In Formal Aspects of Security and Trust: 7th International Workshop,
FAST 2010, Pisa, Italy, September 16-17, 2010. Revised Selected Papers 7, pages 80—95.
Springer, 2011.

[64] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. Taxonomy of attacks
on open-source software supply chains. arXiv preprint arXiv:2204.04008, 2022.

[65] Aleksandr Lenin, Jan Willemson, and Dyan Permata Sari. Attacker profiling in quantitative
security assessment based on attack trees. In Secure IT Systems: 19th Nordic Conference,
NordSec 2014, Tromso, Norway, October 15-17, 2014, Proceedings 19, pages 199-212.
Springer, 2014.

[66] KU Leuven. LINDDUN GO: Lean team approach to privacy threat modeling. https://
linddun.org/go/, 2023.

[67] Lockheed Martin. The Cyber Kill Chain. https://www.lockheedmartin.com/en-us/
capabilities/cyber/cyber-kill-chain.html, 2022.

[68] Microsoft. Microsoft Security Development Lifecycle (SDL). https://www.microsoft.
com/en-us/securityengineering/sdl/.

[69] Microsoft. Microsoft Threat Modeling Tool threats. https://learn.microsoft.com/
en-us/azure/security/develop/threat-modeling-tool-threats#stride-model.

[70] Microsoft. Microsoft Threat Modeling Tool (TMT). https://learn.microsoft.com/
en-us/azure/security/develop/threat-modeling-tool.

[71] Microsoft. The DREAD approach to threat assessment. https://
learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/
threat-modeling-for-drivers.

[72] Mitre. 2021 CWE Most Important Hardware Weaknesses. https://cwe.mitre.org/
scoring/lists/2021_CWE_MIHW.html.

[73] Mitre. 2022 CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.mitre.
org/top25/archive/2022/2022_cwe_top25.html.

[74] Mitre. ATT&CK framework. https://attack.mitre.org/.
[75] Mitre. ATT&CK framework GitHub project. https://github.com/mitre-attack.

[76] Mitre. CAPEC-667: Bluetooth Impersonation AttackS (BIAS). https://capec.mitre.
org/data/definitions/667.html.

[77] Mitre. CAPEC-668: Key Negotiation of Bluetooth Attack (KNOB). https://capec.mitre.
org/data/definitions/668.html.

[78] Mitre. Common Attack Pattern Enumerations and Classifications. https://capec.mitre.
org/.

[79] Mitre. Common Vulnerabilities and Exposures. https://www.cve.org/.
[80] Mitre. Common Weakness Enumeration. https://cwe.mitre.org/.

[81] Mitre. D3FEND framework. https://d3fend.mitre.org/.

[82] Mitre. DBFEND framework GitHub project. https://github.com/d3fend.

ORSHIN D2.2 PU Page 62 of 65

https://linddun.org/go/
https://linddun.org/go/
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://attack.mitre.org/
https://github.com/mitre-attack
https://capec.mitre.org/data/definitions/667.html
https://capec.mitre.org/data/definitions/667.html
https://capec.mitre.org/data/definitions/668.html
https://capec.mitre.org/data/definitions/668.html
https://capec.mitre.org/
https://capec.mitre.org/
https://www.cve.org/
https://cwe.mitre.org/
https://d3fend.mitre.org/
https://github.com/d3fend

W ORSHIN

D2.2 - Report about security requirements

[83] Michael Muckin and Scott C Fitch. A threat-driven approach to cyber security. Lockheed
Martin Corporation, 2014.

[84] musl developers. musl libc for Linux git repository. https://git.musl-1libc.org/cgit/
musl.

[85] musl developers. musl libc for Linux homepage. https://musl.libc.org/.

[86] nccgroup. The Automotive Threat Modeling Template. https://github.com/nccgroup/
The_Automotive_Threat_Modeling_ Template, 2016.

[87] Rusty Newton. Threat Modeling Example with ChatGPT. https://blog.infosec.
business/how-to-use-chatgpt-to-learn-threat-modeling/, 2023.

[88] NIST. An Introduction to Privacy Engineering and Risk Management in Federal Systems.
https://csrc.nist.gov/publications/detail/nistir/8062/final.

[89] NIST. Common Vulnerability Scoring System (CVSS). https://nvd.nist.gov/

vuln-metrics/cvss.

[90] NIST. CVSS Version 2 Calculator. https://nvd.nist.gov/vuln-metrics/cvss/
v2-calculator.

[91] NIST. CVSS Version 2 Calculator. https://nvd.nist.gov/vuln-metrics/cvss/
v3-calculator.

[92] NIST. CVSS Version 4. https://www.first.org/cvss/v4-0.

[93] NIST NVD. CVE-2019-9506 Detail (KNOB). https://nvd.nist.gov/vuln/detail/
CVE-2019-9506.

[94] NIST NVD. CVE-2020-10135 Detail (BIAS). https://nvd.nist.gov/vuln/detail/
CVE-2020-10135.

[95] Trail of Bits. Trail of Bits Audit of Kubernetes. https://github.com/trailofbits/
audit-kubernetes/tree/master.

[96] University of Washington. Control-Alt-Hack™ card game. http://www.controlalthack.
com/, 2010.

[97] OWASP. OWASP Threat Model Cookbook Project. https://github.com/0WASP/
threat-model-cookbook.

[98] OWASP. OWASP Threat Modeling Project. https://owasp.org/

www-project-threat-model.
[99] OWASP. OWASP Top Ten. https://owasp.org/www-project-top-ten/, 2021.

[100] OWASP and Mike Goodwin. Threat Dragon is a free, open-source, cross-platform threat
modeling application. https://github.com/0WASP/threat-dragon.

[101] OpenCTI Platform. OpenCT]I allows orgs to manage cyber threat intelligence knowledge
and observables. https://github.com/0OpenCTI-Platform/opencti.

[102] MISP Project. MISP - Threat Intelligence Sharing Platform. https://github.com/MISP/
MISP.

[103] Siddharth Prakash Rao, Hsin-Yi Chen, and Tuomas Aura. Threat modeling framework for
mobile communication systems. Computers & Security, 125:103047, 2023.

ORSHIN D2.2 PU Page 63 of 65

https://git.musl-libc.org/cgit/musl
https://git.musl-libc.org/cgit/musl
https://musl.libc.org/
https://github.com/nccgroup/The_Automotive_Threat_Modeling_Template
https://github.com/nccgroup/The_Automotive_Threat_Modeling_Template
https://blog.infosec.business/how-to-use-chatgpt-to-learn-threat-modeling/
https://blog.infosec.business/how-to-use-chatgpt-to-learn-threat-modeling/
https://csrc.nist.gov/publications/detail/nistir/8062/final
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.first.org/cvss/v4-0
https://nvd.nist.gov/vuln/detail/CVE-2019-9506
https://nvd.nist.gov/vuln/detail/CVE-2019-9506
https://nvd.nist.gov/vuln/detail/CVE-2020-10135
https://nvd.nist.gov/vuln/detail/CVE-2020-10135
https://github.com/trailofbits/audit-kubernetes/tree/master
https://github.com/trailofbits/audit-kubernetes/tree/master
http://www.controlalthack.com/
http://www.controlalthack.com/
https://github.com/OWASP/threat-model-cookbook
https://github.com/OWASP/threat-model-cookbook
https://owasp.org/www-project-threat-model
https://owasp.org/www-project-threat-model
https://owasp.org/www-project-top-ten/
https://github.com/OWASP/threat-dragon
https://github.com/OpenCTI-Platform/opencti
https://github.com/MISP/MISP
https://github.com/MISP/MISP

W ORSHIN

D2.2 - Report about security requirements

[104] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. Frankenstein: Ad-
vanced wireless fuzzing to exploit new bluetooth escalation targets. In Proceedings of the
29th USENIX Conference on Security Symposium, pages 19-36, 2020.

[105] Mike Ryan. Crack and decrypt BLE encryption. https://github.com/mikeryan/
crackle, Accessed: 2019-07-30, 2019.

[106] Chris Salter, O Sami Saydjari, Bruce Schneier, and Jim Wallner. Toward a secure system
engineering methodolgy. In Proceedings of the 1998 workshop on New security paradigms,
pages 2—-10, 1998.

[107] Christian Schneider. Threagile is an open-source toolkit for agile threat modeling:. https:
//github.com/Threagile/threagile

[108] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21-29, 1999.

[109] Bruce Schneier. Chinese Supply-Chain Attack on Computer
Systems. https://www.schneier.com/blog/archives/2021/02/
chinese-supply-chain-attack-on-computer-systems.html, 2021.

[110] Intel Security. Prioritizing Information Security Risks with Threat Agent Risk As-
sessment. https://medial0.connectedsocialmedia.com/intel/10/5725/Intel IT_
Business_Value_Prioritizing Info_Security_Risks_with_TARA.pdf, 2009.

[111] Ben Seri, Gregory Vishnepolsky, and Dor Zusman. BLEEDINGBIT: The hidden Attack
Surface within BLE chips, 2019.

[112] Nataliya Shevchenko. Threat Modeling: 12 Available Methods. https://insights.sei.
cmu.edu/blog/threat-modeling-12-available-methods/, 2018.

[113] Nataliya Shevchenko, Timothy A Chick, Paige O’Riordan, Thomas P Scanlon, and Carol
Woody. Threat modeling: a summary of available methods. Technical report, Carnegie
Mellon University Software Engineering Institute Pittsburgh United . .., 2018.

[114] Adam Shostack. Experiences Threat Modeling at Microsoft. 2008.

[115] Adam Shostack. Elevation of Privilege card game. https://shostack.org/games/
elevation-of-privilege, 2010.

[116] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons, 2014.

[117] Adam Shostack. More on GPT-3 and threat modeling. https://shostack.org/blog/
more-on-gpt3/, 2023.

[118] Rock Stevens, Daniel Votipka, Elissa M Redmiles, Colin Ahern, Patrick Sweeney, and
Michelle L Mazurek. The battle for new york: A case study of applied digital threat modeling
at the enterprise level. In USENIX Security Symposium, pages 621-637, 2018.

[119] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory. In
2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013, pages 48—-62. IEEE Computer Society, 2013.

[120] Kristen Tan and Vaibhav Garg. An analysis of open-source automated threat modeling
tools and their extensibility from security into privacy. 2022.

[121] lzar Tarandach. pytm: A Pythonic framework for threat modeling. https://github.com/
izar/pytm.

ORSHIN D2.2 PU Page 64 of 65

https://github.com/mikeryan/crackle
https://github.com/mikeryan/crackle
https://github.com/Threagile/threagile
https://github.com/Threagile/threagile
https://www.schneier.com/blog/archives/2021/02/chinese-supply-chain-attack-on-computer-systems.html
https://www.schneier.com/blog/archives/2021/02/chinese-supply-chain-attack-on-computer-systems.html
https://media10.connectedsocialmedia.com/intel/10/5725/Intel_IT_Business_Value_Prioritizing_Info_Security_Risks_with_TARA.pdf
https://media10.connectedsocialmedia.com/intel/10/5725/Intel_IT_Business_Value_Prioritizing_Info_Security_Risks_with_TARA.pdf
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://shostack.org/games/elevation-of-privilege
https://shostack.org/games/elevation-of-privilege
https://shostack.org/blog/more-on-gpt3/
https://shostack.org/blog/more-on-gpt3/
https://github.com/izar/pytm
https://github.com/izar/pytm

D2.2 - Report about security requirements * ORSHIN

[122] |zar Tarandach and Matthew J Coles. Threat modeling: a practical guide for development
teams. O’Reilly, 2021.

[123] Google Cloud Security Team. Sec-PaLM: Supercharging security with gener-
ative Al https://cloud.google.com/blog/products/identity-security/
rsa-google-cloud-security-ai-workbench-generative-ai, 2023.

[124] Tutamantic. Tutamen Threat Model Automator. https://www.tutamantic.com/.

[125] Tony UcedaVelez and Marco M Morana. Risk Centric Threat Modeling: process for attack
simulation and threat analysis. John Wiley & Sons, 2015.

[126] William E Vesely, Francine F Goldberg, Norman H Roberts, and David F Haasl. Fault tree
handbook. Technical report, Nuclear Regulatory Commission Washington DC, 1981.

[127] Maximilian von Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens Grossklags.
Method confusion attack on Bluetooth pairing. In 2021 IEEE symposium on security and
privacy (SP), pages 1332—-1347. IEEE, 2021.

[128] W3C. Web Authentication: An API for accessing Public Key Credentials - Level 2. https:
//www.w3.org/TR/webauthn/, 2021.

[129] Cynthia Wagner, Alexandre Dulaunoy, Gérard Wagener, and Andras lklody. Misp: The
design and implementation of a collaborative threat intelligence sharing platform. In Pro-
ceedings of the 2016 ACM on Workshop on Information Sharing and Collaborative Security,
pages 49-56. ACM, 2016.

[130] Wojciech Widet, Maxime Audinot, Barbara Fila, and Sophie Pinchinat. Beyond 2014: For-
mal methods for attack tree—based security modeling. ACM Computing Surveys (CSUR),
52(4):1-36, 2019.

[131] Jake Williams. What You Need to Know About the So-

larWinds Supply-Chain Attack. https://www.sans.org/blog/
what-you-need-to-know-about-the-solarwinds-supply-chain-attack/, 2020.

[132] TMM working group. Threat Modeling Manifesto. https://wuw.
threatmodelingmanifesto.org, 2020.

[1383] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave (Jing) Tian, Antonio Bianchi, Mathias
Payer, and Dongyan Xu. BLESA: Spoofing Attacks against Reconnections in Bluetooth
Low Energy. 2020.

[134] Kim Wuyts, Riccardo Scandariato, and Wouter Joosen. LIND (D) UN privacy threat tree
catalog. 2014.

[135] Kim Wuyts, Laurens Sion, and Wouter Joosen. Linddun GO: A lightweight approach to
privacy threat modeling. In 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 302—-309. IEEE, 2020.

[136] yamllint developers. YAMLIint: the YAML validator. https://www.yamllint.com/.

[137] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhigiang Lin, and Xinwen Fu. Breaking Secure
Pairing of Bluetooth Low Energy Using Downgrade Attacks. pages 37-54, 2020.

ORSHIN D2.2 PU Page 65 of 65

https://cloud.google.com/blog/products/identity-security/rsa-google-cloud-security-ai-workbench-generative-ai
https://cloud.google.com/blog/products/identity-security/rsa-google-cloud-security-ai-workbench-generative-ai
https://www.tutamantic.com/
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-supply-chain-attack/
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-supply-chain-attack/
https://www.threatmodelingmanifesto.org
https://www.threatmodelingmanifesto.org
https://www.yamllint.com/

	Cover
	Executive Summary
	Table of Content
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Background
	Threat Modeling
	Q1: What are we working on?
	Q2: What can go wrong?
	Q3: What are we going to do about it?
	Q4: Did we do a good enough job?

	pytm: A Pythonic framework for threat modeling
	Threat Catalogs

	ADF Design
	Requirements
	AttackDefense (AD) Object
	Flat and Hierarchical ADs
	Extending STRIDE, LINDDUN and ATree with ADF

	ADF Implementation
	Catalog
	Parse
	Check
	Analyze

	ADF Usage
	Cryptowallet scenario
	Abstract requirements
	Creating and Using the ADs

	ADF Evaluation
	ISA/IEC 62443-4-1 (AR1, WP2, SEC)
	Threat modeling of process requirements with the AD framework

	Side Channel and Fault Injection (AR2, WP3, KUL)
	AD Feedback

	Speculative Execution (AR3, WP3, KUL)
	Threat modeling speculative execution attacks
	Feedback on the use of the framework

	Presilicon Attacks (AR4, WP5, NXP)
	Presilicon TM of the CV32E40S Secure Core with ADF

	Physical Attacks (AR5, WP4, TXP)
	AD Feedback

	BLE Prot. and Impl.-Level Attacks (AR6, WP5, ECM)
	BLE TM with STRIDE and pytm
	BLE TM with ADF

	FIDO2 (AR7, WP5, SEC)
	FIDO2 TM with STRIDE
	FIDO2 TM with ADF

	Related Work
	Conclusion
	Bibliography

