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ABSTRACT

Control-flow leakage (CFL) attacks enable an attacker to expose

control-flow decisions of a victim program via side-channel obser-

vations. Linearization (i.e., elimination) of secret-dependent con-

trol flow is the main countermeasure against these attacks, yet it

comes at a non-negligible cost. Conversely, balancing secret-dependent

branches often incurs a smaller overhead, but is notoriously inse-

cure on high-end processors. Hence, linearization has been widely

believed to be the only effective countermeasure against CFL at-

tacks. In this paper, we challenge this belief and investigate an

unexplored alternative: how to securely balance secret-dependent

branches on higher-end processors?

We propose Libra, a generic and principled hardware-software

codesign to efficiently address CFL on high-end processors. We

perform a systematic classification of hardware primitives leaking

control flow from the literature, and provide guidelines to handle

them with our design. Importantly, Libra enables secure control-

flow balancing without the need to disable performance-critical

hardware such as the instruction cache and the prefetcher. We for-

malize the semantics of Libra and propose a code transformation al-

gorithm for securing programs, which we prove correct and secure.

Finally, we implement and evaluate Libra on an out-of-order RISC-

V processor, showing performance overhead on par with insecure

balanced code, and outperforming state-of-the-art linearized code

by 19.3%.

1 INTRODUCTION

In recent years, software-based microarchitectural attacks [34, 60]

have emerged as a critical security threat. When multiple stake-

holders run code on the same computing device, this type of side-

channel attack makes it possible for an attacker to infer program

secrets just by monitoring from software how a victim uses shared

hardware such as the cache, branch predictor, or prefetcher.

Of special interest to this work are so-called control-flow leak-

age (CFL) attacks [17, 24, 55, 66, 76, 86, 100] whereby an attacker

tries to expose the program counter (PC) trace of a victim pro-

gram via side-channel observations with the aim of revealing the

outcome of conditional control-flow decisions. The program’s con-

ditional control flow exposes the outcome of the condition that

determines the control flow, which poses a security threat if that

condition depends on secret information. In the presence of a mi-

croarchitectural attacker, a program’s control flow can, in general,

be observed in the microarchitectural state of shared hardware or

through contention.

A possible software countermeasure against CFL attacks is control-

flow balancing [4, 18, 28, 53, 75, 93], a program transformation

which aims tomake the execution of all possible targets of a control-

transfer instruction appear the same to an attacker. So far, control-

flow balancing has been shown to be secure only for a class of low-

power embedded processors [18, 93]. This is because modern su-

perscalar processors feature critical performance-enhancing hard-

ware that maintains state as a function of the PC, thus leaking the

PC in an unbalanceable waywhen this hardware is shared between

different security domains. For this reason, it is widely accepted

that, to counter CFL attacks on higher-end processors, programs

must be PC-secure [66], i.e., their PC should be independent from

secret information. PC-secure programs are created by avoiding

secret-dependent control flow and the techniques for doing so are

well-documented in the literature [19, 66, 78, 87, 94].

Unfortunately, this advice has not been questioned much. Over

the years, it has been evolving into a dogma and it has become

an established practice to hardcode it in constant-time [8] source

code, preventing the adoption of more relaxed policies (for sim-

pler architectures or for weaker attacker models). Furthermore,

this trend creates the fallacy that secret-dependent control flow

is inherently insecure and, consequently, it discourages the search

for novel mechanisms to securely execute PC-insecure programs

on higher-end processors.

On the other hand, there still exists a strong desire to keep the

secret-dependent control flow for performance reasons, even on

high-end processors. Vendors of cryptographic libraries, for instance,

sometimes take the risk and do balance secret-dependent branches [100]

instead of eliminating them. As another example, numerous offen-

sive research papers have been published that develop new CFL

attacks, accompanied by ad-hoc defenses, which are later found to

be vulnerable by other offensive research, a trend that has been

recently described as the CFL arms race [100].

Our Proposal. In this work, we challenge the widely-held belief

that secret-dependent control flow is inherently insecure on high-

end processors and propose awell-founded hardware-software code-

sign for secure and efficient balanced execution. In contrast to prior

works that target a single vulnerability and propose ad-hoc, incre-

mental defenses, we propose a principled solution that addresses
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the CFL problem in a generic way with the goal of ending the CFL

arms race. Also in contrast to prior works, we do not assume a

simple processor pipeline and scheduling but support modern out-

of-order processor designs.

We conduct a rigorous analysis of how hardware optimizations

leak a program’s control flow. A key finding is that hardware opti-

mizations can be partitioned into two categories; those that yield

balanceable observations and those that yield unbalanceable obser-

vations. Balanceable observations can be securely balanced by software-

only approaches. Unbalanceable observations require hardware sup-

port. Based on the findings of our analysis, we propose Libra, a

hardware-software security contract that lays the principled foun-

dation for secure balanced execution. We introduce a novel mem-

ory layout, called folded layout, and an algorithm for folding bal-

anced code regions, whichmakes it possible to keep enabled performance-

critical hardware optimizationswithout compromising security. Ad-

ditionally, we propose an ISA extension for executing folded re-

gions.

In a nutshell, we make the following contributions:

• A novel hardware-software contract, called Libra, for secure

and efficient balanced execution (Section 4).

• A formalization of the ISA-level semantics of Libra and se-

curity and correctness proofs of our folding algorithm (Sec-

tion 5).

• Acharacterization of hardware optimizations regarding how

they leak a program’s control flow (Section 6).

• Recommendations for hardware designers wishing to adopt

Libra to their designs (Section 6).

• An implementation of Libra on an out-of-order RISC-V core

(Section 7.1).

• An experimental evaluation showing that balanced execu-

tion is secure and efficient at a lowhardware cost (Section 7.2).

Additionalmaterial. Our RISC-V implementation and evaluation

are archived onZenodo [91] and available onGitHub: https://github.com/proteus-core/libra.

2 TERMINOLOGY AND BACKGROUND

2.1 Terminology

Wefirst define relevant terminology from the fields of graph theory

and compiler construction and then introduce some new vocabu-

lary (marked with ∗).

Definition 1 (Basic block). A basic block is a straight-line instruc-

tion sequence always entered at the beginning and exited at the

end.

Definition 2 (Control-flow graph). A control-flow graph (CFG)

is a directed graph that represents all the paths that might be tra-

versed through a program during its execution. The nodes of a CFG

represent basic blocks, the edges represent control-flow transfers.

Without loss of generality, we assume that a CFG has a unique

entry and a unique exit block. We also assume that the last instruc-

tion in a basic block is a control-transfer instruction, which desig-

nates the possible successor blocks. We refer to this instruction as

the terminating instruction of the basic block. Figure 1 contains an

En: br a0,t,f

t: br a1 ,tt ,tf

tt: add s1 ,s2,s3

j Ex

tf: add s2 ,s3,s4

j Ex

f: sub s1 ,s2 ,s3

j Ex

Ex: [... ]

�En

�t �f

�tt �tf

�Ex

Figure 1: A program and its CFG.

illustration of a CFG with �En the entry basic block and �Ex the

exit basic block.

Definition 3 (Distance). The distance between two basic blocks in

a CFG is the number of edges in a shortest path connecting them.

In Figure 1, the distance between the basic blocks �En and �Ex
is 2 (�En → �f → �Ex). The distance between two instructions

is defined similarly by considering individual instructions as basic

blocks.

Definition 4 (Postdominance). A basic block . postdominates a

basic block - (i.e., . is a postdominator of - ) if all paths from -

to the exit block go through . .

The closest postdominator of a basic block is called its immedi-

ate postdominator. In Figure 1, basic block �Ex postdominates basic

block �En. It is also the immediate postdominator of �En.

Definition 5 (Level structure). The level structure of a CFG is a

partition of the basic blocks into subsets (levels) that have the same

distance from the entry basic block.

The level structure of the CFG in Figure 1 consists of three levels:

!0 = {�En} , !1 = {�t, �f} , !2 = {�tt, �tf, �Ex}.

Definition 6 (∗Level slice). The set of equidistant instructions for

a distance X with respect to basic block � forms the level slice (or

simply slice) determined by the tuple (�, X)

In Figure 1, the slice of distance 0 is {br a0,t,f} and the slice of

distance 1 is {br a1,tt,tf; sub s1,s2,s3} (both relative to �En).

Definition 7 (∗Secret-dependent region). The set of basic blocks

between a secret-dependent control-transfer instruction 8=BC and

its immediate postdominator form the secret-dependent region de-

termined by 8=BC .

We refer to the basic block containing the secret-dependent control-

transfer instruction as the entry block of the region, and to its im-

mediate postdominator as the exit block of the region. In Figure 1,

if a1 is secret (line t), then {�tt, �tf} is the secret-dependent re-

gion determined by the instruction on line t. The entry block of

the region is �t, the exit block �Ex. Similar to the level structure of

a CFG, we define the level structure of a secret-dependent region as

the partition of its basic blocks into subsets (levels) that have the

same distance from the region’s entry block.

2.2 The Control-Flow Leakage Problem

2.2.1 Control-Flow Leakage A�acks. CFL attacks are a type of mi-

croarchitectural attack whereby an attacker tries to learn the out-

come of a secret-dependent branch by exposing the control flow

https://github.com/proteus-core/libra
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viamicroarchitectural side channels. Consider the program in Listing 1a.

When the branch on line 1 evaluates to true, the instructions on

lines 2-3 are executed and the program exits. When the branch

evaluates to false, the instruction on line 4 is executed and the

program exits. An attacker that is able to observe the program’s

execution time will be able to distinguish the two executions, and

hence learn if secret evaluates to true or false.

Listing 1: Code vulnerable to CFL attacks (Listing 1a) and its

balanced version (Listing 1b).

1 br secret ,t,f

2 t: add s1 ,s2,s3

3 j Ex

4 f: add s2 ,s3,s4

5

6 Ex: [...]

(a)

1 br secret ,t,f

2 t: add s1 ,s2 ,s3

3 j Ex

4 f: add s2 ,s3 ,s4

5 j Ex

6 Ex: [... ]

(b)

Besides this start-to-end timing difference, interrupt latency [86],

data cache contention [69], structural dependencies [7] or data de-

pendencies stalling the pipeline are other examples of microarchi-

tectural events that can bemonitored by an attacker to leak the con-

trol flow. Consider Listing 1a again and assume that the addresses

of the add instructions (lines 2 and 4) map to different instruction

cache lines. Monitoring which cache line has been touched (for in-

stance with the Flush+Reload attack [97]) will reveal the control

flow.

Two common software countermeasures against CFL attacks

are control-flow balancing and control-flow linearization. The for-

mer technique keeps the secret-dependent control flow intact while

the latter eliminates it completely.

2.2.2 Control-FlowBalancing. Control-flow balancing is based on

the idea that if the two sides of a secret-dependent branch induce

exactly the same attacker-observable behavior, then executing the

code does not reveal via side channels which side of the branch

has been executed. Listing 1b gives the balanced form of Listing 1a.

The add instruction on line 2 is balanced with the add instruction

on line 4 and a jump instruction is added to the f path on line 5 to

balance it with the jump on line 3 in the t path.

Recent work [18, 93] has demonstrated the security (and effi-

ciency) of control-flow balancing for small, embedded processors

with deterministic timing behavior. The authors propose amethod-

ology consisting of three steps. First, by profiling the microarchi-

tecture, the instruction set is classified into a number of leakage

classes such that executing instructions from the same leakage class

induces the same side-channel observations. Second, a dummy (no-

op) instruction is composed for every leakage class. Lastly, the

secret-dependent branches are algorithmically balanced [93] with

respect to the leakage classification, and by inserting dummy in-

structionswhen necessary. This approach ensures that the dynamic

instruction trace of balanced code always produces the same se-

quence of leakage classes.

Although control-flow balancing counters attacks exploitingmi-

croarchitectural optimizations on low-end devices [64, 86], higher-

end devices (the target of our work) typically feature optimizations

yielding observations that are unbalanceable in software alone. Yet,

for performance reasons, balanced control flow is sometimes found

in security-critical libraries targeting these devices [64, 100]. Thus,

how to make balanced execution secure on these higher-end de-

vices remains an important research question.

2.2.3 Control-Flow Linearization. Control-flow linearization is a

key principle of thewidely-established constant-time programming

discipline [8]. By eliminating secret-dependent branches, control-

flow linearization ensures that the PC does not get tainted (i.e., that

the PC trace is independent of secrets). Several linearization tech-

niques have been proposed in the literature [19, 66, 78, 83, 87, 94].

Listing 2 contains the linearized form of the running example from

Listing 1a, based on a state-of-the-art method that was first pro-

posed byMolnar et al. [66]. Comparedwith the balanced form from

Listing 1b, the linearized form comes with a higher cost due to the

use of additional instructions and registers.

Listing 2: Linearized form of the vulnerable code in

Listing 1a.

1 seqz t1 ,secret

2

3 addi t1 ,t1,-1 # t1 = true mask (in {0x ffff , 0x0000})

4 not t2 ,t1 # t2 = false mask (in {0x ffff , 0x0000})

5 and t3 ,s1,t1 # start of else

6 add s1 ,s2,s3

7 and s1 ,s1,t2

8 or s1 ,s1,t3 # start of then

9 and t3 ,s2,t2

10 add s2 ,s3,s4

11 and s2 ,s3,t1

12 or s2 ,s2,t3

2.2.4 This paper. The goal of this work is to make sure that ex-

ecuting balanced code (which contains secret-dependent control

flow) on high-end processors does not leak more information than

executing the equivalent linearized code (which does not contain

secret-dependent control flow). We demonstrate that, with min-

imal hardware support, it is possible to securely balance secret-

dependent control flow on higher-end platforms,without disabling

performance-critical hardware resources that are shared between

different stakeholders.

3 THREAT MODEL

We consider an adversary with the goal to infer secrets (e.g., cryp-

tographic keys) by learning the secret-dependent control flow of

a victim application. We consider an adversary with the same ca-

pabilities as an adversary under the classic constant-time threat

model, and thus assume that applications are hardened against

transient execution attacks [21]. More specifically, an adversary

with the capabilities of this threat model is able to run arbitrary

code alongside an architecturally isolated victim (e.g., via process

isolation) on the same machine and it shares hardware resources,

such as the branch predictor, cache hierarchy and execution units

with the victim. This setting enables the adversary to precisely ob-

serve the execution time of the victim, and how it uses the shared

resources. If these observations depend on the secret control flow,

the adversary is able to learn something about the secret.

We consider software-based timing channels, i.e., the adversary

monitors the microarchitectural resource usage via timers from

software [34, 60]. Side channels that require physical access and
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physical equipment to measure quantities such as power consump-

tion [52] or EM emissions [77] are out of scope for this paper.

Similarly, other types of software-based side-channel attacks, such

as software-based fault attacks [68] and software-based power at-

tacks [58] are out of scope and subject of orthogonal mitigations.

Wemake no further assumptions on the type of (software-based)

microarchitectural side-channels attacks that can be mounted by

the adversary, ranging from classic cache attacks [69] to more re-

cent contention-based attacks [7].

4 OVERVIEW OF LIBRA

A program’s control flow can leak through observations induced

by various microarchitectural optimizations. Some of these obser-

vations, such as instruction latency, are independent of the value

of the PC. We refer to optimizations yielding this type of obser-

vation as sources of balanceable leakage as their observations can

be balanced by software. However, some performance-critical opti-

mizations commonly found in modern hardware (e.g., the instruc-

tion cache and the instruction prefetcher) yield observations that

are dependent on the value of the PC. They inevitably leak the

control flow. We refer to these optimizations as sources of unbal-

anceable leakage as they cannot be dealt with by software alone.

In Section 6, we study this distinction further and provide a com-

prehensive characterization of hardware optimizations regarding

how they leak the control flow.

Existing control-flow balancing solutions are ineffective against

unbalanceable leakage. It is the goal of Libra to address this gap via

a novel hardware-software security contract for secure and effi-

cient balanced execution. On the one hand, the software is respon-

sible for balancing secret-dependent control flow under a weak ob-

server mode (accounting for the balanceable leakage) in which the

PC does not leak. On the other hand, the hardware provides sup-

port to deal with the sources of unbalanceable leakage to ensure

that the program remains secure in a strong observer mode, repre-

sentative of our threat model (Section 3) for high-end processors.

4.1 Leakage Contract

Libra requires the hardware to augment the ISA with a leakage

contract that provides sufficient information on how to balance

the control flow. Software, such as a compiler, can then rely on

this contract 1) to securely balance secret-dependent control flow

(making control-flow balancing a principled code transformation)

or 2) to verify that secret-dependent control flow is securely bal-

anced. This stands in contrast to prior works [4, 18, 28, 53, 75, 93],

where it is the responsibility of the software to empirically figure

out how to balance corresponding instructions.

The Libra leakage contract classifies an instruction set into two

dimensions. First, it partitions instructions into leakage classes [18,

93] such that instructions from the same leakage class yield iden-

tical side-channel observations. Importantly, any instruction can

be used to balance any other instruction from the same leakage

class. For every leakage class, the contract additionally designates

a canonical dummy instruction, which does not produce architec-

tural effects (e.g., mv x1, x1). Finally, the hardware provides a block-

list of instructions that are not supported in balanced regions. Block-

listed instructions have to be rewritten in terms of non-blocklisted

instructions before performing control-flow balancing.

Second, the leakage contract partitions the instruction set into

safe and unsafe instructions [99]. Safe instructions are instructions

whose timing and shared microarchitectural resource usage are in-

dependent of the values of their operands. For instance, an add in-

struction is typically implemented in a safe way, while a load typi-

cally exposes the value of the address operand on systems with a

data cache (making it an unsafe instruction). It is insecure to pass

secrets to unsafe instructions but it is secure to use unsafe instruc-

tions in balanced regions if it can be proven that the operands of

any two equidistant unsafe instructions are the same for all pos-

sible executions. For instance, the code if (secret) load x0 a else

load x1 a is secure as the resulting observation is independent of

secret (under the assumption that the load is only unsafe in its ad-

dress operand).

4.2 ISA Extension

The goal of Libra is to securely execute balanced code regions on

high-end CPUs without disabling performance-critical optimiza-

tions. In particular, Libra aims at keeping all modern hardware op-

timizations fully enabled when executing security-insensitive code

(i.e., the common case), and keeping as many optimizations as pos-

sible in secret-dependent regions.

To this end, Libra proposes an ISA extension introducing two

main novel features:

• A novel memory layout for balanced code, termed folded

layout, which interleaves the instructions from balanced re-

gions by placing the level slices sequentially in memory.

• A new instruction, the level-offset branch (lo.br), which in-

forms the CPU how to navigate a folded region. Addition-

ally, it signals to the CPU that it is about to execute a secret-

dependent region such that it can adapt the behavior of some

optimizations.

Importantly, even though folding sequentially lays out instruc-

tions of balanced regions in memory (reminiscent of linearization),

the original control flow of the program is preserved, i.e., only one

side of a folded conditional branch is executed, as prescribed by

the original CFG (just like with standard code balancing).

The level-offset branch lo.br 2, offt : offf : bbc specifies how

to navigate a folded region:

(1) The level offsets offt and offf indicate what instructions

of the next level to execute, depending on whether the con-

dition 2 is true or false;

(2) The basic block count bbc indicates the number of basic

blocks of the next level (the slice size of the next level) and

is used to increment the PC by the correct value.

Listing 3 illustrates how to fold the balanced code fromListing 1b.

First, the two add and the two j instructions are sequentially placed

in memory. Second, the conditional branch is rewritten using a

lo.br with offt = 0, offf = 1 and bbc = 2. After the lo.br, the

CPU will execute the folded region slice by slice, incrementing the

PC by 2. If the condition is true, the first (offset offt) instruction of
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each slice is executed, otherwise the second (offset offf) instruc-

tion is executed. Finally, the terminating j instructions are replaced

by lo.br instructions to reset the level offset and bbc and resume

“normal” execution at the Ex label.

Listing 3: Folded form of the balanced code in Listing 1b.

lo.br secret ,0:1:2 # offT:offF:bbc

L1: add s1,s2 ,s3

add s2,s3 ,s4

lo.br zero ,0:0:1 # offT:offF:bbc

lo.br zero ,0:0:1 # offT:offF:bbc

Ex: [... ]

How does Libra address unbalanceable leakage? The design of

Libra is tailored to address unbalanceable leakage in hardware effi-

ciently, i.e., by keeping essential hardware optimizations enabled.

Yet, to establish the security guarantees, Libra requires that the PC

does not leak at a finer granularity than a slice, possibly requiring

adaptations to the behavior of some optimizations.

Importantly, the folded memory layout is crucial to keep en-

abled performance-critical optimizations ofmodern hardware (e.g.,

the instruction cache) without, or with only minimal, adaptations.

By virtue of folding (which creates a linear memory layout), the

hardware can efficiently implement a data-oblivious instruction

memory access pattern by always prefetching all the slices in the

same order, effectively making it independent of the outcomes of

conditional branch(es).

While some sources of unbalanceable leakage do not require

hardwaremodifications, somewill, possibly degrading performance.

However, because the hardware is informed when it is executing a

folded region, these modifications can be limited to folded regions

only. For instance, some hardware structures, such as the branch

predictor, must be disabled for the lo.br instruction to prevent

control-flow exposure to an attacker sharing the branch predictor.

However, the linear layout of a folded region makes the branch pre-

dictor unnecessary for lo.br instructions, because there is no un-

certainty (at slice granularity) what address the sequential prefetcher

should fetch from, so it can fill the cache with the instructions that

are about to be fetched by the CPU.

In Section 6, we present, based on a rigorous study of the attack

literature, a characterization of the sources of unbalanceable leak-

age (with folding in mind), and we provide guidelines about how

to handle them.

4.3 Advanced Features

4.3.1 Nested branches. When folding a regionwith a nested branch

(as in Listing 4a), the software must fold the level structure of the

entire outer region, as shown in Listing 4b. The slice size grows

with the level of nesting. In the example from Listing 4b, each slice

of the second level consists of four instructions. Recall that the

hardware has to make sure to fetch instructions without exposing

their offset within the current level. For instance, if a slice occupies

multiple cache lines, the hardware must ensure to always touch

all the cache lines in the same order, irrespective of the current

instruction’s offset.

Listing 4: Region with nested branches (Listing 4a) and its

folded version (Listing 4b).

br secret ,t,f

t: br c,tt ,tf

tt: add r,r,4

j Ex

tf: add r,r,8

j Ex

f: br c,ft ,ff

ft: sub r,r,4

j Ex

ff: sub r,r,8

j Ex

Ex: [... ]

(a)

lo.br secret ,0:1:2

L1: lo.br c ,0:1:4

lo.br c ,2:3:4

L2: add r,r,4

add r,r,8

sub r,r,4

sub r,r,8

lo.br zero ,0:0:1

lo.br zero ,0:0:1

lo.br zero ,0:0:1

lo.br zero ,0:0:1

Ex: [...]

(b)

Note that when a nested branch does not depend on secret in-

formation (e.g., a loopwith a constant trip count), it can bemore ef-

ficient to keep the branch instead of folding it. In that case, for cor-

rectness, the software must ensure that the level offsets of the tar-

get instructions are consistent regarding the offsets of the branch

instructions. Moreover, for security, the software must ensure that

the branch targets of the branches in the source slice all point to

targets in the same target slice.

4.3.2 Function calls. To support function calls in balanced code,

prior work on control-flow balancing [18, 93] proposed to create a

dummy function for each function called from a secret-dependent

region. A dummy function is mostly made up of dummy (no-op)

instructions designed to mirror the behavior of the real function.

These dummy instructions ensure that both the dummy and real

functions cause identical changes in the microarchitectural state.

As a result, an attacker cannot distinguish between the execution

of the dummy function and that of the real function. A call to a

function in a secret-dependent region can then be balanced with

a call to its dummy version. Libra supports this scheme, yet in or-

der not to expose the control flow on higher-end CPUs (e.g., via

the instruction cache), functions must be folded with their dummy

counterpart. Libra provides hardware support to efficiently invoke

a folded function and extends the ISA with a new instruction, the

level-offset call: lo.call 1 ℓ . The instruction jumps to the folded

function and, according to the boolean immediate 1, either exe-

cutes the real part or the dummy part of the folded function. Ad-

ditionally, the CPU must save/restore the Libra state (i.e., current

offset and bbc) of the caller upon calls/returns. Libra proposes a

two-level hardware stack, used for storing and restoring the Libra

state of the caller. For non-leaf functions (i.e., to supportmore than

one level of nesting, including recursion), the software is responsi-

ble to save and restore the Libra state on a software-based stack.

4.3.3 Exceptions. Instructions that may throw exceptions are in-

herently unsafe because whether an exception is thrown depends

on the value of their operands and handling an exception impacts

both the timing and resource usage of an application. Therefore,

such instructions should be treated similarly to other unsafe, bal-

anceable instructions, by balancing the unsafe operands and their

dependencies.
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4.4 Hardware-Software Security Contract

In summary, with Libra we propose a hardware-software security

contract for balanced execution. If both parties fulfill their part of

the contract, then executing a balanced code region will not leak

more information than the equivalent linearized region.

On the hardware side, Libra imposes the following requirements:

HR1 A leakage contract for control-flow balancing is provided.

HR2 The PC does not leak at a finer granularity than a slice.

HR2a The instruction memory access pattern does not depend on

the outcome of the level-offset branch (implied by HR2).

HR3 The level-offset branch and the level-offset call are safe in-

structions.

On the so�ware-side, Libra relies on:

SR1 A correct identification of secret-dependent regions and func-

tions called from secret-dependent regions.

SR2 A secure balancing according to a weak observer mode as

prescribed by the leakage contract. In practice, this entails

making sure that secrets do not directly flow to unsafe in-

structions, applying a balancing algorithm (such as the one

from [93]), and providing dummyversions for functions called

from secret-dependent regions.

SR3 A correct folding of the balanced regions and functions. In

Section 5.3, we give a folding algorithm.

5 FORMAL SEMANTICS

5.1 Language and Semantics

5.1.1 Language. The Libra folding transformation transforms pro-

grams written in a source assembly language asm1 to a target lan-

guage asm (Figure 2).

(Values) E ∈ V (Registers) x ∈ R (Labels) ℓ, ℓC , · · · ∈ L

〈4G?〉 ::= E | x

〈8=BC〉 ::= op1 x 〈4G?〉 | op2 x 〈4G?〉 〈4G?〉 | store 〈4G?〉 〈4G?〉

| br 〈4G?〉 ℓC ℓ5 | call ℓ | ret

〈inst〉 ::= s.br 〈4G?〉 ℓC ℓ5 | s.call 1 ℓ ℓ′ | 〈8=BC〉

〈inst〉 ::= lo.br 〈4G?〉 E E E | lo.call 1 ℓ | 〈8=BC〉

Figure 2: Syntax of asm and asm instructions where op1 ∈

{neg, load . . . } and op2 ∈ {add,mul, . . . } are non-control-flow-

altering unary and binary instructions and 1 ∈ {⊥,⊤} is an

immediate boolean operand. A program % is a partial map-

ping from locations to instructions and % [ℓ] denotes the in-

struction at location ℓ .

Source language. In addition to standard ISA instructions, the

source language asm is equipped with additional syntactic con-

structs to: (1) identify secret-dependent branches (SR1), and (2) as-

sociate functions that can be called in secret-dependent regions

with a dummy version (SR2). These constructs should be seen as

information derived from source-level annotations. Secret-dependent

branches, s.br 2 ℓC ℓ5 , indicate that the condition 2 is secret and

1Following common practice [71], we denote source objects with a blue, sans − serif
font and target objects with a red, bold font. Objects common to source and target
are written with black normal font.

inform the Libra transformation about secret-dependent regions

to fold. Their semantics is similar to regular conditional branches.

Secret-dependent calls, s.call 1 ℓ ℓ′ , indicate that the function at

address ℓ′ is the dummy version of the function at address ℓ . If

1 = ⊤, the original function ℓ is called, whereas if 1 = ⊥, the

dummy function ℓ′ is called. Secret-dependent calls inform the Li-

bra transformation of functions to fold with their dummy version.

Target language. The target language is equipped with a level-

offset branch and level-offset call, which are used to navigate folded

regions and whose semantics will be detailed later.

5.1.2 Configurations. Source configurations are of the form 〈<,A, pc, d〉

where < : V → V is a memory, mapping addresses to values,

A : R → V is a register map, pc is the program counter, and d

is a stack of return addresses. 2 To execute a folded region slice-

by-slice, Libra keeps track of the number of basic blocks in the

currently active level (bbc) and the offset of the currently active

basic block (off) in a Libra context, denoted ctx = (bbc, off).

The initial Libra context is (1, 0). A Libra configuration f is a tu-

ple 〈<,A, pc, d, _〉 where 〈<,A, pc, d〉 is a source configuration, and

_ is a stack of Libra contexts. In the following, we refer to Libra

configurations simply as configurations.

Note that handling function calls and exceptions in folded re-

gions requires a stack of (at least) two Libra contexts. In that set-

ting, Libra contexts must be saved and restored by the callee in

non-leaf functions. For simplicity, our formalization allows for a

stack of unlimited size.

5.1.3 Semantics. The semantics of Libra, given by the relationf
>
==⇒f′ ,

defines that the evaluation of an instruction in a configuration

f produces a configuration f′ and an observation >. The seman-

tics is parameterized by a function obs(f), which defines the ob-

servation produced in a configuration f (and will be instantiated

in Section 5.2). We give in Figure 3 an excerpt of semantics rules,

focusing on the important aspects of Libra i.e., the update of the

program counter and the Libra context. The evaluation of an ex-

pression 4 using a register file A is given by L4MA and the evaluation
of a non–control-transfer instruction 8=BC (e.g., arithmetic, logic, or

memory instruction), is given by a relation 〈<,A 〉
8=BC
−−−→〈<′, A ′〉.

The program counter always points to the instruction to be exe-

cuted (% [pc]). To navigate the folded memory layout, we define a

function slice_addr, returning the address of the current slice, and

a function next_slice, returning the address directly following the

current slice:

slice_addr(pc, off) , pc − off

next_slice(pc, bbc, off) , slice_addr(pc, off) + bbc

The rule pc-update defines the evaluation of a non–control-

transfer instruction. It increments the program counter with the

basic block count, effectively jumping to current offset in the next

slice.

2For simplicity, our formalization features a stack of return addresses. However, a
standard setting with a simple return address register that is correctly saved/restored
on the stack would be equivalent, under the assumption that return addresses do not
interfere with the rest of the program (i.e., no return address overwrite, no pointer
arithmetic on return address, etc).
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The rule lob-true defines the evaluation of a level-offset branch

lo.br 4 offf offt bbc
′ when the condition 4 evaluates to true. It

jumps to the next slice at offset offt and sets the new basic block

count to bbc′ . The rule lob-false is analogous and omitted for

brevity.

The rule lo-call defines the evaluation of a level-offset call,

which calls a function folded with its dummy version, at location

ℓ . The rule jumps to the first slice of the function and, according to

the boolean1, sets the offset to 0 or 1, to execute the original or the

dummy function, respectively. It also sets the basic block count to

2, to account for the folding of the original and dummy functions.

Finally, it pushes the return address on the return stack. Normal

function calls are similar, but push the initial Libra context (1, 0)

to the Libra stack.

The rule ret defines the evaluation of a return instruction. It

simply jumps to the return address on the top of the return stack

and restores the previous Libra context.

pc-update

% [pc] = 8=BC 8=BC ∉ {q.br, q.call, ret}

〈<,A 〉
8=BC
−−−→〈<′, A ′〉 pc′ = pc + bbc

〈<,A, pc, d, _ · (bbc, off)〉
>
==⇒〈<′, A ′, pc′, d, _ · (bbc, off)〉

lob-true

% [pc] = lo.br 4 offt offf bbc
′

LeMA ≠ 0 pc′ = next_slice(pc, bbc, off) + offt

〈<,A, pc, d, _ · (bbc, off)〉
>
==⇒〈<,A, pc′, d, _ · (bbc′, offt)〉

lo-call

% [pc] = lo.call 1 ℓ

off′ = (if 1 = ⊤ then 0 else 1) pc′ = ℓ + off′

d′ = d · pc + bbc _′ = _ · (bbc, off) · (2, off′)

〈<,A, pc, d, _ · (bbc, off)〉
>
==⇒〈<,A, pc′, d′, _′〉

ret

% [pc] = ret pc′ = ℓ

〈<,A, pc, d · ℓ, _ · (bbc, off)〉
>
==⇒〈<,A, pc′, d, _〉

Figure 3: Excerpt of the Libra semantics, where q ∈ {lo, s, Y}

and > = obs(〈<,A, _ · (bbc, off)〉).

We additionally equip our source language asmwith a source se-

mantics
>
==⇒, defined in a standard way and omitted here for brevity.

Finally, we let f
>
==⇒ =f′ be the =-step evaluation from a configura-

tion f to a configuration f′ , where > is the concatenation of obser-

vations produced by individual instructions [13].

5.2 Security Policy

5.2.1 Libra LeakageModel. Side-channel observations are captured

in a leakage contract (HR1), which partitions the instruction set

into leakage classes and safe/unsafe instructions (cf. Section 4.1).

In order to leverage leakage classes in a standard security cri-

terion [13], we associate a unique leakage identifier (add, load, br ,

etc.) to each leakage class. The leakage identifier of an instruction

8=BC is given byℒ(8=BC). For instance, if additions and subtractions

are indistinguishable to an attacker, a possible instantiation of ℒ

is ℒ(add x x x) = ℒ(sub x x x) = add.

Additionally, the instruction set is partitioned into disjoint sets.

Safe unary instructions (I✓) and safe binary instructions (I✓-✓),

do not expose information about the value of their operands. Con-

versely, unsafe unary instructions (I✗), left-unsafe (I✗-✓), right-unsafe

(I✓-✗), and left-right-unsafe (I✗-✗) instructions expose information

about the values of their only, left, right, or both source operands,

respectively.

Libra leaves freedom to hardware developers regarding the con-

crete instantiation of leakage classes and safe/unsafe partitioning.

It only imposes (HR3) that secure branches and level-offset branches

do not leak their outcome—i.e., {lo, s}.br 2 _ ∈ I✓—and secure

calls and level-offset calls do not reveal whether the original func-

tion or the dummy function is actually executed—i.e., {lo, s}.call _

∈ I✓. For our security policy, we additionally require that nor-

mal branches and calls leak their outcome, and that control-flow-

altering instructions belong in a distinct leakage class from each

other and from non-control-flow-altering instructions. Intuitively,

this ensures that low-equivalent source executions are slice-synchronized:

at each step, their program counters belong to the same slice.

5.2.2 Weak/StrongObserverMode. The Libra leakagemodel is used

to instantiate the function obs, which, as mentioned earlier, is a

parameter of the semantics specifying the observation produced

when evaluating an instruction. We define two distinct observer

modes (i.e., instantiations of obs) that we will apply to asm and

asm programs.

The weak observer mode (obs−) exposes all timing and microar-

chitectural effects that are independent of the program counter

(i.e., the balanceable leakage). The leakage classes and safe/unsafe

partitioning determine the instantiation of obs− , as defined in Figure 4.

safe

% [pc] = op2 x 41 42
op2 x 41 42 ∈ I

✓-✓ op2 = ℒ(op2 x 41 42)

obs− (〈<,A, pc〉) = op2

l-unsafe

% [pc] = op2 x 41 42
op2 x 41 42 ∈ I

✗-✓ op2 = ℒ(op2 x 41 42) E = L41MA

obs− (〈<,A, pc〉) = op2 E

Figure 4: Definition of obs− according to the Libra leakage

contract (excerpt). Other rules (r-unsafe, lr-unsafe, etc.)

are analogous.

The strong observer mode (obs+) includes observations of the

weak mode, plus the observable part of the program counter (i.e.,

the unbalanceable leakage), which, from HR2, does not expose

more than the address of the current slice:

obs+ (〈<,A, pc, d, _ · (bbc, off)〉) = slice_addr(pc, off)·

obs− (〈<,A, pc〉)
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5.2.3 Security. Security is defined with respect to a partition of

the initial state (memory and registers) into public and secret re-

gions.

Definition 8 (Indistinguishability). Two states f , f′ are indistin-

guishable, written f ≃ f′ , if they agree on the value of their public

registers and public memory locations.

We define security as (termination-insensitive) Observational Non-

Interference (ONI) [36] w.r.t. an observation function obs:

Definition 9 (obs-ONI). A program % , interpreted in a semantics

==⇒ , is secure under observer mode obs, written obs-ONI(%) if and

only if for any pair of initial configurations f0, f
′
0, if f0 ≃ f′0, and

f0
>
==⇒ =f= , then f′0

>’
==⇒ =f′= and > = >′ .

Intuitively, the goal of our Libra transformation is to transform

asm programs that are obs−-ONI, to asm programs that are obs+-ONI.

In other words, developers should make sure that secrets do not di-

rectly flow to insecure instructions and balance secret-dependent

branches (SR2), while Libra—with compiler (SR3) and hardware

(HR2) support—guarantees that the target program is secure with

respect to a strong observer that can observe (parts of) the program

counter through microarchitectural side-channels.

5.3 Libra Transformation

To automatically support Libra (SR3), we define a folding transfor-

mation F from asm programs—with annotated secret-dependent

branches (SR1) and dummy functions for functions that can be

called in secret-dependent regions (SR2)—to asm programs. For

clarity, we present the transformation informally, with illustrative

examples, and leave the formalization to Appendix A.

5.3.1 Folding secret-dependent regions. For each balanced secret-

dependent region (—annotated in asm programs by a secret-dependent

branch s.br 4 ℓC ℓ5 —the transformation first computes the level

structure !0 . . . != of the region. Next, for all levels !8 , the transfor-

mation rewrites each terminating instruction {Y, s}.br 4 ℓC ℓ5 in

the level with a level-offset branch lo.br 4 offt offf bbc where

bbc is the basic block count of the next level (i.e., |!8+1 |), and offt
and offf are the level offsets corresponding to ℓC and ℓ5 , respec-

tively, in the level !8+1. Finally, for each level of the level structure,

the transformation folds the corresponding basic blocks by inter-

leaving their instructions.

Example 1 (Folding branches). Consider the balanced secret-dependent

region in Listing 5a and let �En, �t, �tt . . . �Ex be the basic blocks

corresponding to labels En, t, tt, . . ., Ex. The compiler first computes

the level structure of the region: !0 = {�En}, !1 = {�t, �f}, !2 =

{�tt, �tf, �ft, �ff}, !3 = {�Ex}. Next, the transformation rewrites

the terminating instruction in each level (except !3) with level-

offset branches. For instance, terminating instructions of !1 are

replaced with lo.br 2 offt offf |!2 | where offt, offf are com-

puted according to the mapping {tt ↦→ 0, tf ↦→ 1, ft ↦→ 2, ff ↦→

3}. Finally, the transformation interleaves the basic blocks in each

level, giving the program in Listing 5b.

5.3.2 Folding functions. First, the algorithm computes the union

of the level structures of the functions (the original and the dummy

Listing 5: Libra transformation (Listing 5b) of a balanced

secret-dependent branch (Listing 5a) where j Ex is syntactic

sugar for br 0,Ex,Ex; lo.j is syntactic sugar for lo.br 0,0:0:1; and

8t, 8
′
t , . . . are arbitrary non-terminating instructions.

En: s.br c,t,f

t: 8t; 8 ′t
br d,tt ,tf

tt: 8tt; j Ex

tf: 8tf; j Ex

f: 8f; 8 ′
f

br e,ft ,ff

ft: 8ft; j Ex

ff: 8ff; j Ex

Ex: [... ]

(a)

En: lo.br c,0:1:2

L1: 8t; 8f
8 ′t; 8 ′

f
lo.br d ,0:1:4

lo.br e ,2:3:4

L2: 8tt; 8tf; 8ft; 8ff;
lo.j; lo.j; lo.j; lo.j

Ex: [... ]

(b)

function) to fold. Then, similarly as for secret-dependent branches,

it replaces branches with level-offset branches, and interleaves in-

structions according to the level structure. Finally, it replaces the

call with a level-offset call lo.call 1 ℓ , where ℓ is the (fresh) label

of the folded function.

Example 2 (Folding functions). Consider the program in Listing 6a

and let �foo, �t, �f . . . �Ex' be the basic blocks corresponding to la-

bels foo, t, f, . . ., Ex'. The compiler first computes the union of the

level structure of the functions:!0 = {�foo, �foo'}, !1 = {�t, �f, �t', �f'}, !2 =

{�Ex, �Ex'}. The transformation then rewrites the terminating in-

structions and interleaves the basic blocks in each level, giving the

program in Listing 6b.

Listing 6: Libra transformation (Listing 6b) of a call inside

a balanced secret dependent region (Listing 6a) where j Ex is

syntactic sugar for br 0,Ex,Ex; lo.j n is syntactic sugar for lo.br

n,0:1:2; and 80, 8
′
0, . . . are arbitrary non-terminating instruc-

tions.

[... ]

s.call ⊤,foo ,foo '
[... ]

foo: 80
br c,t,f

t: 81; 82; j Ex

f: 83; 84; j Ex

Ex: ret

foo ': 8 ′0
br c',t',f'

t': 8 ′1; 8 ′2; j Ex '

f': 8 ′3; 8 ′4; j Ex '

Ex ': ret

(a)

[...]

lo.call ⊤,ffoo
[...]

ffoo: 80; 8 ′0
lo.br c 0:1:4;

lo.br c' 2:3:4

L2: 81; 83; 8 ′1; 8 ′3
82; 84; 8 ′2; 8 ′4;
lo.j 0; lo.j 0;

lo.j 1; lo.j 1

Ex '': ret ; ret

(b)

5.4 Correctness and Security

This section states the correctness and security of our Libra trans-

formationF . First, we establish a correspondence relation between

source and target configurations. Intuitively, this relates source

and program configurations that are at the same point of execu-

tion and have the same memory and register states.

Definition 10 (f
P
∼ 2). A source configuration f = 〈m, r, pc, d〉

for a program P is related to a target configuration2 = 〈m, r, pc, 1,,〉

for a program P, denoted f
P
∼ 2 , if and only if the following holds:

(1) m = m, (2) r = r, and (3) pc
P
∼ℓ pc, where

P
∼ℓ relates program
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locations in the source program to their corresponding location in

the target program.

Libra is a correct program transformation, preserving program

semantics, as established by the following proposition:

Proposition 1 (Correctness). For any asm programP, number

of steps =, and initial source and target configurations f and 2 such

that 2
P
∼ f , if f ==⇒=f′ then 2 ==⇒

=2 ′ and f ′
P
∼ 2 ′ , where ==⇒ is

parameterized by P and ==⇒ is parameterized by F (P).

Libra is a program transformation that hardens programs secure

against a weak attacker, to programs secure against a strong at-

tacker, as established by the following proposition:

Proposition 2 (Security). For any asm program P,

obs−-ONI(P) =⇒ obs+-ONI(F (P))

Proof sketches for Propositions 1 and 2 are given in Appendix B.

6 CFL CHARACTERIZATION

Based on a rigorous analysis of themicroarchitectural attack litera-

ture (cf. Table 1 for references), we now present a characterization

of hardware optimizations regarding how they have been exploited

to leak the control flow of applications. The importance of this

characterization is twofold. First, it provides a mental framework

for improving the understanding of CFL, which also guided the de-

sign of Libra. Second, it provides the basis to establish recommen-

dations for hardware designers wishing to adopt Libra. The results

of our CFL attack analysis, i.e., the raw data for our characteriza-

tion, are presented in Table 1. Each row in this table corresponds to

a microarchitectural optimization. The first column names the op-

timization and points to representative papers exploiting it for CFL

attacks. The second column indicates if the hardware optimization

yields balanceable observations (i.e., if they can be balanced with-

out Libra support). The third column lists our recommendation on

how to handle the leakage using Libra. The last column contains

additional notes.

We start by dividing the optimizations into two top-level classes:

those that yield balanceable observations (class C1), and those that

yield unbalanceable observations (class C2).

C1 - Balanceable observations

For optimizations yielding balanceable observations, the hardware

can rely on the software to balance these observations according

to the Libra leakage contract (SR2).

C2 - Unbalanceable observations

Optimizations yielding unbalanceable observations inevitably leak

the control flow when the processor executes weakly balanced

code. One of objectives of Libra is to keep the optimizations in

this category enabled as much as possible. We further break down

this category into two subcategories.

C2.1 - Inhibiting dummy composition. The first subcategory groups

optimizations that inhibit the composition of a dummy instruc-

tion. Consider for example the silent-store optimization [56, 81].

A silent store writes a value to memory that is already present at

the specified address. A silent-store optimization skips writes to

memory for silent stores. This behavior turns a store instruction

from a right-unsafe into a full-unsafe instruction since its timing

and resource usage will depend not only on the memory address

operand, as before, but also on the value to store. To securely bal-

ance an unsafe instruction, both of its operands must be balanced

as well. Yet, since a store affects architectural state, a silent store

is the only possible dummy instruction to balance a store, which

would leak the control flow in the presence of a silent-store opti-

mization.

Guideline: Disable instances from this optimization class in

folded regions. In case that the composition of a dummy instruc-

tion is inhibited by the combination of multiple optimizations, it

sometimes suffices to disable only one of them. An alternative so-

lution to disabling the optimization is to blocklist the affected in-

struction(s) in the hardware-software security contract (HR1).

C2.2 - Observations as a function of the instruction address. The

second subcategory concerns optimizations yielding observations

that are a function of the instruction address. We further divide

this subcategory into four optimization classes.

C2.2.1 - Observations that reveal the level offset. Some optimiza-

tions yield observations that are inherently different for each in-

struction within a slice. Hence, they inevitably reveal the level off-

set of an executed instruction. Take the branch predictor for in-

stance. The possible targets of a lo.br instruction are different for

each lo.br of the same slice. Hence, if lo.br targets are encoded in

the branch predictor, an attacker sharing the predictor state could

distinguish lo.br instructions within a slice and learn the level

offset.

Guideline:Disable optimizations of this type in folded regions.

For some optimizations, it is necessary to completely disable them

(e.g., cache banking [98]), for others this might be unnecessary,

such as in the example of the directional predictor we gave, which

must only be disabled for a lo.br instruction.

C2.2.2 - Libra-safe optimizations. Some optimizations, such as

the instruction cache, directly benefit from HR2a, which imposes

a data-oblivious access pattern to the instruction memory. If the

processor frontend follows HR2, by implementing slice-granular

fetch/decode, these optimizations do not leak at a finer granularity

than a slice.

Guideline: No hardware modifications are required.

C2.2.3 - Slice-dependent mappings. Some optimizations map in-

struction addresses to instruction-specific information. The BTB

and the PC-based strided data prefetcher, for instance, are typically

implemented using table-based structures indexed by instruction

address.

Guideline: Thanks to folding, it becomes possible to represent

instruction-specific information as slice-specific information. Map-

pings from instruction address to instruction-granular information

can be changed into mappings from slice address to slice-granular

information (per HR2). This usually requires minimal hardware

modifications such as indexing hardware structures by slice ad-

dress instead of by instruction address.

C2.2.4 - Instruction-specific optimizations. Some optimizations per-

form different operations depending on the instruction and are not
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Table 1: Control-flow leakage attack landscape.

Exploited Optimization Balanceable Guideline Notes

Computation simplification [9] ✓ C1 Alternatives: reject program, DIT [10, 49]

Data TLB [37, 88] ✓ C1 Balance address operands (page granular)

Data cache [40, 59, 69, 72, 97] ✓ C1 Balance address operands (cache-line granular)

Data cache bank [98] ✓ C1 Balance address operands (byte granular)

DRAM row buffer (data) [73] ✓ C1 Balance address operands

Data-dependent data prefetcher [22, 81] ✓ C1 Balance address operands (loads/stores) and value operands (stores)

Load/store buffers ✓ C1

Pipeline interlock [63, 84, 98] ✓ C1 Balance stalling data dependencies

µop fusion [79] ✓ C1

Execution engine [7, 15, 32, 33, 80, 90] ✓ C1 Balance structural dependencies

Interrupt controller [64, 86] ✓ C1 Balance interrupt latencies

Reorder buffer (ROB) [5] ✓ C1 Balance instruction types

Memory bus / controller [17, 18, 89, 95] ✓ C1 Balance memory bus(es) usage

Computation reuse [81] ✓ C1 Balance operands

Branch order buffer (BOB) [48] ✓ C1

Interconnect [70] ✓ C1

Frontend [76] ✓ HR2 Slice-granular fetch/decode

Instruction cache [1, 23, 43, 59, 97] ✓ C2.2.2 Balancing (confining region inside a single cache line) is more

limited

MMU / Page tables [20, 64, 88, 96] ✓ C2.2.2 Balancing (confining region inside a single page) is more limited

DRAM row buffer (instructions) [73] C2.2.2

Instruction prefetcher [57, 101] C2.2.2

Instruction TLB [37, 88] C2.2.2

PC-dep data prefetcher [14, 23, 24, 39, 82] C2.2.3

Directional predictor [2, 3, 31, 47] C2.2.3 Only for public branches, disable for lo.br

BTB [30, 55, 100] C2.2.3 Care must be taken not to leak the target transiently

Value prediction [27, 81] C2.2.3

µop cache (DSB) [26, 51, 79] C2.2.4 Alternative: disable in folded regions

Silent stores [81] C2.1 Disable in folded regions

Instruction cache bank [98] Disable Disable in folded regions (violatesHR2)

generalizable to the slice, contrary to optimization classC2.2.3. An

example is the µop cache, where the operations, decode, insert and

evict, depend on the specific instruction.

Guideline: Instead of disabling these optimizations, it might

be more beneficial to keep them enabled and always perform the

operation on every instruction of the slice. Keeping optimizations

enabled for instances for this optimization class will typically be

more expensive compared to optimization class C2.2.3.

7 IMPLEMENTATION AND EVALUATION

7.1 Implementation

Following the requirements from Section 4.4 and the guidelines

from Section 6, we implemented Libra on Proteus [16] (version

2024.01-O), a RISC-V out-of-order core designed to experiment with

hardware security extensions.

HR1: Leakage contract. We partitioned the RISC-V instruction

set into leakage classes and validated the correctness of this classi-

fication via our automated security evaluation (cf. Subsection 7.2).

In particular, load instructions leak their address via the data cache

and are balanced in software.

HR2: Slice-granular PC leakage. Based on our analysis, the sources

of precise PC leakage on Proteus were the branch target predictor,

the instruction cache, and the instruction prefetcher. For security

reasons, we completely disable the branch predictor in folded re-

gions. Yet, thanks to the linear layout of folded regions, the perfor-

mance impact of this is limited: the next slice—where the execution

will continue—will be prefetched by the time the branch condition

is resolved. The other hardware structures did not have to be al-

tered, as explained next.

HR2a: Data-oblivious instruction memory access pattern. The in-

struction fetch unit has beenmade Libra-aware. In a secret-dependent

folded region, the level offset of the currently executing instruction

needs to be invisible to the memory subsystem. In our implemen-

tation, this is achieved by fetching in a fixed order all cache lines

including instructions from the current slice. This also results in

the state of the instruction cache being independent from the level

offset. As the prefetcher’s behavior in Proteus only depends on the

instruction cache state, it also observes the same access patterns

and does not require any additional changes. Thanks to the folded

layout in memory, the prefetching remains very effective during

the execution of folded regions.

HR3: Level-offset branch. For our implementation, we introduced

a variant of the lo.br instruction, the terminating level-offset branch

tlo.br. This instruction behaves similarly as a regular lo.br, but

additionally encodes the number of slices in the next level, an op-

timization that makes the lo.br instructions of the last level of a

folded region unnecessary. Our prototype encodes the lo.br and

tlo.br variants for each RISC-V branch instruction by repurpos-

ing the two prefix bits in the fixed-width 32-bit RISC-V encoding,
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Table 2: Overhead factors: execution time (cycles) / binary

size (bytes).

Benchmark Baseline Balanced Linearized Folded

fork 110 c / 136 B 1.00x / 1.00x 1.11x / 1.12x 1.00x / 0.94x
triangle 116 c / 132 B 1.03x / 1.06x 1.05x / 1.15x 0.98x / 1.00x
bsl 1415 c / 336 B 1.20x / 1.04x 1.54x / 1.08x 1.24x / 1.01x
diamond 186 c / 192 B 1.07x / 1.10x 1.18x / 1.23x 1.06x / 1.04x
kruskal 1573 c / 452 B 1.09x / 1.05x 1.21x / 1.16x 1.16x / 1.04x
ifthenloop 407 c / 200 B 1.35x / 1.20x 1.28x / 1.20x 1.56x / 1.16x
switch 1402 c / 500 B 2.11x / 1.41x 2.70x / 1.92x 1.90x / 1.15x
sharevalue 1410 c / 500 B 1.38x / 1.02x 1.76x / 1.15x 1.77x / 1.01x
mulmod16 339 c / 276 B 1.23x / 1.01x 1.47x / 1.16x 1.32x / 0.96x
keypad 3490 c / 416 B 2.86x / 1.08x 3.48x / 1.12x 3.61x / 1.06x
modexp2 11716 c / 324 B 1.72x / 1.02x 1.79x / 1.09x 1.78x / 1.01x

mean 1.38x / 1.09x 1.57x / 1.20x 1.46x / 1.03x

but other implementations could use the free opcode slots as de-

fined by the RISC-V specification. The current and previous Li-

bra contexts are stored in a two-level hardware stack. We support

folded regions with up to 16 basic blocks per level (8 for a termi-

nating level).

7.2 Evaluation

We evaluated our implementation by measuring the binary size

and execution time overheads using a benchmark suite from re-

lated work [18, 75, 85, 92, 93]; measuring the hardware overhead;

and performing RTL-level noninterference testing to validate secu-

rity.

Binary size. The results on binary size can be found in Table 2,

which shows the binary size of the original benchmark, the over-

head of balancing the secret-dependent branches (which still leaks

information through unbalanceable observations), the overhead of

linearizing the secret-dependent brancheswithMolnar’smethod [66],

and finally, folding the secret-dependent branches with Libra. The

benchmarks show that the overhead is small compared to state-of-

the-art linearized (constant-time) code. In certain cases, the folded

program can even be expressed more succinctly due to the charac-

teristics of folded regions; after the last slice, the next instruction

will be executed regardless of which branch was taken, making

additional jump instructions, such as in Listing 1a, unnecessary.

Execution time. We evaluate the execution time overhead us-

ing the same extended benchmark suite, shown in Table 2. Even

though our prototype implementation is not optimal, the bench-

marks clearly show an advantage of Libra over linearized code. The

mean performance overhead of Libra is 46% compared to 57% of the

linearized code (a relative overhead reduction of 19.3%), and for cer-

tain benchmarks it not only performs much better than linearized

code, but also outperforms insecure balanced code. For example,

the switch and triangle benchmarks clearly show the power of

Libra over alternative approaches.

Hardware cost. We evaluate the hardware cost of implementing

Libra on Proteus by synthesizing the design to the Xilinx XC7A35TICSG324-

1L FPGA in Xilinx Vivado 2022.2. According to our measurements,

the Libra additions increase the number of look-up tables by 11.4%

(from 16,531 to 18,414), the number of registers by 9.5% (from 13,566

to 14,850), while keeping the critical path unchanged (37.4 ns).

Security. To evaluate the security of our implementation, we

adopt amethodology from relatedwork [18, 92, 93]: noninterference-

based testing in a cycle-accurate Verilog simulator. For each bench-

mark, wemanually ensure that all possible code paths are explored,

which is feasible due to the relatively small size of the benchmarks.

We verify that, for executions with identical public inputs but vary-

ing secret inputs, the processor’s internal signals associated with

side channels remain consistent. Any variation would indicate a

leak of secret information. The signals we focus on include the

state of the branch predictor, addresses in the instruction and data

caches, the state of the instruction prefetcher, and the occupancy

of the execution units. Each simulation is run independently, start-

ing from a cold microarchitectural state.

Interestingly, our security evaluation revealed that the hardened

kruskal benchmark (originally introduced in [62]) contains a re-

cursive function with a secret-dependent number of iterations, as

hypothesized by the original authors. As a linearized implementa-

tion of Kruskal’s algorithm is not a trivial effort and out of scope

for our paper, we only transformed the secret-dependent branch

in the main function of the benchmark.

8 DISCUSSION

Intra-cache-line attacks. HR2 requires that the PC does not leak

at a finer granularity than a level slice. This implies that execut-

ing folded regions is secure only if an attacker is unable to observe

intra-cache-line instruction memory accesses in folded regions. To

the best of our knowledge, only two published attacks expose intra-

cache-line accesses: cache-bank conflicts [63] and false dependen-

cies [98]. To comply with HR2, the optimizations exploited by

these attacks must be disabled in folded regions. However, we do

not consider them to be performance-critical. In more recent mi-

croarchitectures these leakages have been closed, confirming our

assumption thatHR2will not significantly affect the performance.

Future work. There are some open questions that should be ad-

dressed in future work. First, a limitation with the implementation

of our prototype is that the pipeline stalls after fetching a lo.br

(until its condition is resolved). As described in Section 4, the linear-

ity of folded regions removes the uncertainty of what instructions

to fetch after a lo.br. However, the uncertainty ofwhat instruction

to execute (i.e., what is the level offset of the next instruction in the

next prefetched slice?) still remains. For security reasons, the CPU

cannot proceed based on a prediction of the direction of the lo.br

as this would induce a timing signal exposing the control flow. On

the RISC-V processor we used for our implementation, the lo.br

penalty is generally only a few cycles. However, the penalty on

superscalar CPUs with deeper pipelines (capable of fetching and

executing multiple instructions in a single cycle) is much higher.

How to deal with the lo.br penalty on this class of CPUs (up to

10-15 cycles on some CPUs [45]) remains an open design question.

We believe that exploiting the regularity and the linearity of folded

regions is key to solving this challenge.

Second, we informally argue (Table 1) that many optimizations

either comply withHR2, or can be adapted to do so. Our empirical

evaluation on an implementation featuring instruction and data

caches, branch predictor and prefetcher, supports this argument.
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Formally verifying that these optimizations complywithHR2would

be an interesting avenue for future work.

Third, there is no compiler support for Libra. Wemanually iden-

tify, balance and fold secret-dependent regions at assembly level,

restricting the size of our benchmark programs. Compiler support

for Libra to be able to conduct more extensive performance mea-

surements on real-world programs is future work.

Fourth, we put software-based fault attacks [68] and software-

based power attacks [58] out of scope. It is interesting future work

to extend the leakage contract to cover these attacks.

Fifth, we only considered fixed-length instructions. Variable-length

instructions, as found in the popular x86 ISA, might require some

changes to the current Libra design. To increase the chances of

adoption on architectureswith variable-length instructions, it would

be interesting to investigate how to support them.

Finally, creating the leakage contract is a manual effort. A very

interesting avenue for future work is to investigate how to gener-

ate the leakage contract from the hardware description (RTL level),

as done in recent work [29, 46, 65], and how to express contracts

such that they can be consumed by a compiler [42].

9 RELATED WORK

CFL Hardening. The literature contains a vast amount of prior

work on software-only countermeasures against CFL attacks. Al-

most 25 years ago, Agat [4] already proposed a transformational

security type system to balance conditional branches, later refined

by Köpf andMantel [53]. Non-transformational type systems to de-

tect unbalanced branches have been implemented for the AVR [28]

and MSP430 [75] architectures. Winderix et al. [93] proposed an

algorithm for control-flow balancing during compilation and im-

plemented and evaluated it using the LLVM compiler infrastruc-

ture [54]. Prior work considers secret-dependent control flow in-

herently insecure and strongly discourages control-flow balancing

as a defense against CFL attacks. This view is incorporated in the

well-established constant-time programming discipline [8], which

disallows programmers from writing secret-dependent branches.

There is a rich literature to automatically detect [35, 50] and elim-

inate [19, 66, 78, 83, 87, 94] secret-dependent control flow.

Architectural Support. Many existing software-only countermea-

sures leverage hardware primitives designed with performance in

mind. The resulting security guarantees are brittle, as these coun-

termeasures rely on undocumented behavior that is not guaran-

teed in future versions of the hardware. For instance, conditional

execution (a.k.a. predicated execution or predication) is supported

in some form by the x86, Arm and RISC-V ISAs to accelerate some

hard-to-predict branches, yet is sometimes used to eliminate secret-

dependent control flow [19, 25, 94], critically relying on the (cur-

rent) data-oblivious behavior. Another example is Intel TSX, used

as a primitive for a countermeasure proposed by Gruss et al. [38].

In contrast, Libra provides principled support by augmenting the

ISA with a security contract representing its security guarantees.

Many modern CPUs provide safe instructions, making explicit se-

curity guarantees part of the ISA. An example is constant-time sup-

port for AES to improve speed and security of applications relying

on it (e.g., [6]). As another example, x86, Arm and RISC-V ISAs

have extended their ISAs with facilities to turn unsafe instructions

into safe instruction via a feature called Data (Operand) Indepen-

dent Timing [10, 49]. To the best of our knowledge, architectural

support to securely execute balanced code on high-end processors

has not been proposed before. Recently, Winderix et al. [92] pro-

posed architectural support for control-flow balancing and control-

flow linearization to efficiently counter CFL attacks. Unfortunately,

their solution for control-flow balancing is only targeted towards

processors with a microcontroller profile featuring simple proces-

sor pipelines. In contrast, our proposal for control-flow balancing

is designed to securely execute balanced regions on high-end sys-

tems.

Hardware-Software Leakage Contracts. Recent work on hardware-

software leakage contracts [41, 44, 61, 67, 74] proposes to augment

the ISAwith a specification of how the hardware leaks information.

Libra also specifies such a hardware-software leakage contract and

partitions the instruction set into leakage classes. Instructions of

the same leakage class leak the same information and thus are in-

distinguishable to an attacker. The first idea for classifying the in-

struction set this way was proposed by Winderix et al. [93] under

the form of latency classes, a concept that was later generalized

into leakage classes by Bognar et al. [18]. Yu et al. [99], propose

ISA design principles for data Oblivious ISAs (OISAs) to perform

side-channel resistant and high-performance computations. The

authors proposes an ISA-level data oblivious abstraction, which

partitions the instruction set into safe and unsafe instructions. In

contrast to Libra, their work does not include ISA-level principles

to make control-transfer instructions data oblivious, and hence is

complementary to ours.

Secure Compilation for Side-Channel Defenses. Our secure com-

pilation proof is inspired by existing proof techniques for preser-

vation of side channel defenses by compilers [11–13] with some

adaptations to account for important differences. Compared to the

constant-time policy [11], balancing allows program counters of

low-equivalent executions to diverge, and compared to constant-

resource transformation [12], our transformation is not entirely

leakage preserving. In this work, we assume a non-canceling leak-

age model (i.e., >1 · >2 = >′1 · >
′
2 =⇒ >1 = >′1 ∧ >2 = >′2). Secure

compilation for relaxed policies based on canceling leakage (e.g.,

program cost in terms of clock cycles) have been proposed [12].

However, it remains unclear whether there exist a concrete threat

model (attacker model and microarchitecture) to which these poli-

cies securely apply. In particular, such relaxed policies are insecure

against the strong attacker that we consider in this paper [86].

10 CONCLUSION

In this paper, we challenged the widely-held belief that control-

flow balancing is either insecure or inefficient on modern out-of-

order CPUs. We proposed Libra, a novel hardware-software code-

sign for principled, secure and efficient balanced execution. We

gave evidence that it is possible with minimal hardware support

to securely balance secret-dependent control flow while keeping

performance-critical hardware optimizations enabled. A key fea-

ture of Libra is the specification of a hardware-software security

contract that software can rely on to harden applications in a prin-

cipled way, similar to how software relies on an ISA specification
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for the functional correctness of programs. Libra minimally ex-

tends the instruction set to make balanced execution secure and

efficient on high-end systems, mainly by virtue of folding. We for-

malized the Libra semantics and the folding transformation, which

we proved correct and secure. We also presented a characterization

of how microarchitectural optimizations can leak a program’s con-

trol flow, the basis for our recommendations for hardware design-

ers wanting to adopt Libra to their designs. Our implementation

and evaluation show significant performance benefits compared to

state-of-the-art control-flow linearization at low hardware cost.
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A FOLDING TRANSFORMATION

This section details our folding transformation F from asm pro-

grams to asm programs (Appendix A.1). We also discuss the hy-

potheses we make on source programs (Appendix A.2).

Notations. In the following, we let � [8] denote the 8th instruc-

tion in basic block �. We also let �Y denote the empty basic block.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://doi.org/10.5281/zenodo.12786159
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By definition of a control-flow graph, all program labels point to

the beginning of a basic block and we write �ℓ to denote the basic

block corresponding to label ℓ . In a level !, we assume that basic

blocks are indexed, and we let idx(!, �) denote the index of basic

block � in level !.

We let ( = (�4=CA~, �4G8C , {�1, . . . , �=}) denote a secret depen-

dent region {�1, . . . , �=}, with entry block �4=CA~ and exit block

�4G8C . We let entry(() and exit(() return the entry and exit basic

block of the region, respectively. We let � = (ℓ5 , {�1, . . . , �=}) de-

note a function, defined by its entry label ℓ5 and its sequence of

basic blocks {�1, . . . , �=}. Finally, we let level_struct(() return the

level structure of a secret dependent region ( (excluding �4G8C and

�4G8C ) and level_struct(� ) return the level structure of a function.

A.1 Folding Algorithm

Wefirst define a functionRewriteTerminator(!8 , !8+1), which rewrites

the terminating instructions from a level !8 (Algorithm 1). It re-

place all branches in the level with a level offset branch lo.br 4 offt offf bbc

where bbc is the basic block count of the next level (i.e., |!8+1 |),

and offt (resp. offf) is the basic block number corresponding to

ℓC (resp. ℓ5 ) in the level !8+1.

def RewriteTerminator(!8 , !8+1):
Input: Level to modify !8 = {�0 . . . �=}

Result:Modified level !′8 = {�
′
0 . . . �

′
=}

bbc← |!8+1 |;

;4=← |�0 |;

{�′0 . . . �
′
=} ← {�0 . . . �=};

for �8 ∈ !8 :

assert |�8 | = ;4=;

switch �8 [;4= − 1] :

case {Y, s}.br 4 ℓC ℓ5 :

assert �ℓC , �ℓ5 ∈ !8+1;

offt ← idx(!8+1, �ℓC );

offf ← idx(!8+1, �ℓ5 );

�′8 [;4= − 1] ← lo.br 4 bbc offt offf;

case ret :

�′8 [;4= − 1] ← ret;

otherwise :
assert False

return !′8 = {�
′
0 . . . �

′
=}

Algorithm 1: Rewriting of terminating instructions.

Next, we define a function FoldLevel(!), which takes a level ! =

{�0 . . . �=} and returns a single folded basic block �′ interleaving

the instructions of �0 . . . �= (Algorithm 2).

To fold secret-dependent branches, we define a function FoldRe-

gion(() that returns the folded version of a secret dependent re-

gion ( (Algorithm 3). The function first computes the level struc-

ture of ( , rewrite the terminators, and fold the level structure.

To fold a function � with its dummy function � ′ , we define a

function FoldFunction(�, � ′, ℓff’) (Algorithm 4) that returns a folded

function with entry label ℓff’. First, the algorithm computes the

union of the level structure of � and � ′ . Then, it replaces branches

with level-offset branches. Finally, it folds basic blocks according

def FoldLevel(!):
Input: Level to fold ! = {�0 . . . �=}

Result: Basic block �′ (folded level)

bbc← |! |;

;4=← |�0 |;

�′ ← �Y ;

for �8 ∈ ! :

assert |�8 | = ;4=;

for 9 ∈ [0, ;4=) :

�′ [ 9 × bbc + 8] ← �8 [ 9];

return �′

Algorithm 2: Folding of the basic blocks of a level !.

def FoldRegion(():
Input: Secret-dependent region (

Result: Folded secret-dependent region (′

!1 . . . != ← level_struct(();

!0 ← entry(();

!=+1 ← exit(();

for !8 ∈ !0 . . . != :

!′8 ← RewriteTerminator (!8 , !8+1, False);

�′8 ← FoldLevel (!′8 );

(′ ← (�′0, exit((), {�
′
1 . . . �

′
=});

return (′

Algorithm 3: Folding of a secret dependent region ( .

to the level structure and returns the final function, defined by the

set of folded basic blocks and entry label ℓff’.

def FoldFunction(�, � ′, ℓff’):
Input: Functions � , �

Result: Folded function � ′′

!0 . . . != ← level_struct(� ) ∪ level_struct(� ′);

!=+1 ← �Y ;

for !8 ∈ !0 . . . != :

!′′8 ← RewriteTerminator (!8 , !8+1,True);

�′′8 ← FoldLevel (!′′8 );
return � ′′ = (ℓff’, {�

′′
0 . . . �′′= )}

Algorithm 4: Folding of a function � with its dummy version

� ′ . The union of level structures is defined as the component-

wise union of basic blocks.

Finally, we define a last function RewriteCall(�), which replaces

secret dependent calls with their corresponding level-offset call

(Algorithm 5).

Final folding transformation. The final folding transformation

P = F (P) performs the following steps:

(1) For each pair of function/dummy �ℓ5 /�
′
ℓ5 ′

that can be called

from a secret-dependent region (annotated in asmwith a se-

cret dependent call), F computes the folded function �ℓff’ =

FoldFunction(�ℓ5 , �
′
ℓ5 ′

, ℓff’) and places it at location ℓff’ in P.

Functions �ℓ5 , �
′
ℓ5 ′

are also included in P if they can be called

with “normal” calls.
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def RewriteCall(�):
Input: Basic block to rewrite �

Result:Modified basic block �′

�′ ← �;

for 8 ∈ 0 . . . |� | − 1 :

if � [8] = s.call 1 ℓf ℓf’ :

� [8] ← lo.call 1 ℓff’;

:
return B’

Algorithm 5: Rewriting of secret dependent calls, where ℓff’ is

the label of the folded function corresponding to functions ℓf
and ℓf’.

(2) For each (outermost) secret-dependent region S (annotated

in asm programs by a secret-dependent branch), F com-

putes the folded region S = FoldRegion(S), and replaces

the original region S with S. Note that for a given secret-

dependent region, our algorithm folds its entire level struc-

ture (which includes nested branches). Hence, for nested

secret-dependent branches, only the outermost branch need

to be considered and the nested branches will be automati-

cally folded.

(3) All other basic blocks are directly copied from P to P;

(4) Secret dependent calls in P are replaced by RewriteCall(�);

(5) Finally, in the final code memory layout of P, the folded lev-

els are placed adjacent to each other, in level order. In other

words the basic block corresponding to FoldLevel(!8+1) di-

rectly follows the basic block corresponding to FoldLevel(!8).

The exit block of a secret dependent region is also placed

just after the last folded level.

Note that from F , we can naturally define a correspondence from

locations in P to locations in P, which we capture with the relation

ℓ
P
∼ℓ ℓ . For folded functions, a source location ℓ in a function �ℓ5

can be related to two target locations: one in the folded function

�ℓff’ , and one in the original function �ℓ5 .

A.2 Hypotheses on Source Programs

Our folding transformation (in particular the function RewriteTer-

minator()) is only defined for source programs satisfying the fol-

lowing requirements:

(1) In a function, we assume that the terminating instruction of

basic blocks in the last level is a return.

(2) In a secret-dependent region or function, all the basic blocks

of a given level have the same number of instructions.

(3) In a secret-dependent region or function, all the successors

of basic blocks in a level !8 are in level !8+1.

Additionally, for correctness and security, we assume that the

following hypotheses hold on source programs:

Hypothesis 1. P is safe. In particular, it implies that starting from

an initial configuration, ==⇒ does not get stuck.

Hypothesis 2. Functions in P can only be entered through their

entrypoint and always return to their return site.

Hypothesis 3. Secret-dependent regions inP are single-entry single-

exit: they can only be entered through their entry block and are

always exited through their exit block.

B PROOFS

The following lemma establishes a correspondence between instruc-

tions of source and target programs when their locations are re-

lated by
P
∼ℓ :

Lemma 1. For a location ℓ in an asm program P, and location ℓ in

P = F (P) such that ℓ
P
∼ℓ ℓ , the following hold:

• iff P[ℓ] = br 4 ℓC ℓ 5 and ℓ is not in a secret-dependent region or

function, then P[ℓ] = br 4 ℓC ℓ 5 , with ℓC
P
∼ℓ ℓC and ℓ 5

P
∼ℓ ℓ 5 ;

• iff P[ℓ] = call ℓfoo then P[ℓ] = call ℓfoo, with ℓfoo
P
∼ℓ ℓfoo;

• if P[ℓ] = s.br 4 ℓC ℓ 5 then P[ℓ] = lo.br 4 bbc offt offf
where:

– bbc is the size of the level ! (let ℓ! denote its location) con-

taining ℓC and ℓ 5 ,

– offt is an offset such that offt + ℓ!
P
∼ℓ ℓC , and

– offf is an offset such that offf + ℓ!
P
∼ℓ ℓ 5 .

• if P[ℓ] = br 4 ℓC ℓ 5 and ℓ is in a secret dependent region, then

P[ℓ] = lo.br 4 bbc offt offf with the same conditions as

above.

• iff P[ℓ] = s.call 1 ℓfoo ℓfoo′ then lo.call 1 ℓfoo |foo′ with

ℓfoo
P
∼ℓ ℓfoo |foo′ and ℓfoo′

P
∼ℓ ℓfoo |foo′ + 1;

• for any other instruction, P[ℓ] = P[ℓ].

Proof. The proof follows from the definition of F (P). �

B.1 Correctness

This section sketches the proof of Proposition 1:

Proposition 1 (Correctness). For any asm programP, number

of steps =, and initial source and target configurations f and 2 such

that 2
P
∼ f , if f ==⇒=f′ then 2 ==⇒

=2 ′ and f′
P
∼ 2 ′ , where ==⇒ is

parameterized by P and ==⇒ is parameterized by F (P).

First, we define a relation _
P

∼ctx d , relating stack of program

locations d in a program P to a stack of Libra contexts _. Intuitively,
P

∼ctx holds iff contexts on the context stack _ are valid for program

locations on the return stack d .

Definition 11 (
P

∼ctx ). For a Libra program P,
P

∼ctx is defined as

follows:

(bbc, off)
P

∼ctx ℓ if in P, ℓ points to offset off in a slice of size bbc

_ · (bbc, off)
P
∼ctx d · ℓ if (bbc, off)

P
∼ctx ℓ and _

P
∼ctx d

Second, we define an strong correspondence relation (
P
∼+) be-

tween source and target configurations. In addition to
P
∼ (Definition 10),

this stronger relation also requires correspondence between return

stacks, and that the Libra stack is correct w.r.t. the return stack:

Definition 12 (f
P
∼+ 2 ). A source configuration f = 〈m, r, pc, d〉

for a program P is strongly related to a target configuration 2 =

〈m, r, pc, 1,,〉 for a program P, denoted f
P
∼+ 2 , if and only if the

following holds:
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• f
P
∼ 2

• d
P
∼ℓ 1,

• ,
P

∼ctx 1 · pc

where (as defined before)
P
∼ℓ relates program locations in the source

program to their corresponding location in the target program.

Abusing notation, we lift
P
∼ℓ to return stacks.

This strong correspondence relation will be our induction in-

variant to prove Proposition 1. The proof of Proposition 1 follows

directly from the following lemma:

Lemma 2 (Correctness-lemma). For all asm program P, number

of steps =, and initial source and target configurations f and 2 such

that 2
P
∼+ f :

if f ==⇒=f′ then 2 ==⇒
=2 ′ and f′

P
∼+ 2

′

where ==⇒ is parameterized by P and ==⇒ is parameterized by F (P).

Proof. The proof goes by induction on the evaluation relation

in the source configuration. The base case trivially follows from

the definition of initial configurations and 2
P
∼+ f .

For the inductive case, we assume that the source configuration

makes a step and, as an induction hypothesis (IH), that configura-

tions at step = − 1 (f and 2) are related by
P
∼+ :

f ==⇒f′ (Hstep)

f
P
∼+ 2 (IH)

We then show that the target configuration also makes a step such

that the final configurations are still related by
P
∼+ :

2 ==⇒2 ′ and f′
P
∼+ 2

′ (Goal)

The proof goes by case analysis on the evaluated instruction. In

particular, for each rule in the source semantics, Lemma 1 gives

us the instruction evaluated in the target, which, in turn, defines

the rule that can be applied in the target semantics. For each rule,

2 ==⇒2 ′ always trivially follows from Hstep. Hence, so to show

Goal, we only detail f′
P
∼+ 2

′.

Rule pc-update. In this rule, the memory, register map and pro-

gram counters are modified.

(Memory & Registers) By IH and Lemma 1, we know that both

source and target configurations evaluate the same instruction. Ad-

ditionally, from IH, the register and memory and the same in both

configurations. Therefore, the final memories and register maps

are also equal in the source and target.

(Program counter) Let bbc, off be the Libra context on top of

,. From the semantics, we get pc′ = pc + 1 in the source, and

pc′ = pc + bbc in the target. We need to show that pc′
P
∼ℓ pc

′ and

that (bbc, off)
P

∼ctx pc
′.

From IH and Definition 11, we get that (bbc, off)
P

∼ctx pc, mean-

ing that, in P, pc points to a slice of size bbc at offset off. Note

that, because we are in the middle of a basic block, the next slice

is adjacent to the current slice and has the same size. Hence, pc′

point to the next slice (of size bbc), at offset off, which concludes

(bbc, off)
P

∼ctx pc
′ . Additionally, fromF (P), the next slice at offset

off also corresponds to pc′ , which concludes pc′
P
∼ℓ pc

′.

Regular branch true. (Case false is analogous.) In this rule, only the

program counter is modified. By IH and Lemma 1, we know that

both source and target configurations are respectively evaluating

br 4 ℓC ℓ 5 and either br 4 ℓC ℓ 5 , with ℓC
P
∼ℓ ℓC and ℓ 5

P
∼ℓ ℓ 5 , or

lo.br 4 bbc′ offt offf. We focus here on the case br 4 ℓC ℓ 5 (see

next proof case for lo.br). We also know from IH, that 4 evaluates

to the same value in source and target.

(Program counter) From the semantics, we have that the final

program counters are pc′ = ℓC and pc
′
= ℓC . From ℓC

P
∼ℓ ℓC , we can

conclude pc′
P
∼ℓ pc

′.

Additionally, we need to show that (bbc, off)
P

∼ctx pc′ . From

Lemma 1, we know that pc is not in a secret-dependent region,

nor in a secret-dependent function. By definition of F , pc
P
∼ℓ pc,

and (bbc, off)
P

∼ctx pc, it follows that (bbc, off) = (1, 0). From

Hyp. 2 and 3, we know that pc′ is also not in a secret-dependent

region, nor in a secret-dependent function. By definition of F , it

follows that pc′ corresponds to a slice of size 1 (at offset 0), which

concludes (bbc, off)
P

∼ctx pc
′ .

Rule lob-true. (Case lob-false is analogous.) In this rule, the pro-

gram counters and libra context stack are modified. By IH and

Lemma 1, we know that both source and target configurations are

respectively evaluating {Y, s}.br 4 ℓC ℓ 5 and lo.br 4 bbc
′ offt offf

instructions. We also know from IH, that 4 evaluates to the same

value in source and target.

(Program counter) From the semantics, we have that the final

program counters are pc′ = offt and pc′ = ℓ + offt with ℓ =

next_slice(pc, bbc, off) is the address of the next slice. Because

lo.br is a terminating instruction, this next slice is located in a dif-

ferent basic block �. By definition of F , we also know that � is ad-

jacent to the current basic block, hence from the correctness of the

Libra stack (IH), the start address of � is ℓ . Finally, from Lemma 1,

we have that offt + ℓ
P
∼ℓ pc

′ , which concludes pc′
P
∼ℓ pc

′.

(Libra context) The Libra context on top of the stack is updated

to (bbc′, offt). We need to show that (bbc′, offt)
P
∼ctx pc′ , i.e.,

that in P, pc′ points to offset offt in a slice of size bbc′ . This fol-

lows directly from Lemma 1.

Regular calls. In this rule, the program counter and return stack are

modified.

(Program counter) By IH and Lemma 1, we know that source

and target configurations respectively evaluate call ℓfoo and call ℓfoo,

with ℓfoo
P
∼ℓ ℓfoo. From the semantics, we have pc′ = ℓfoo′ and

pc′ = ℓfoo. Hence, pc
′ P
∼ℓ pc

′ .

(Return stack) In the source, the return address pc + 1 is added

to the stack. In the target, pc + bbc is added to the stack. To show

that d′
P
∼ℓ 1

′ , it suffices to show pc + 1
P
∼ℓ pc + bbc. See proof for

the rule pc-update, case (program counter).

(Libra context) The Libra context (1, 0) is added on top of the

Libra context stack. We need to show:

_ · (bbc, off) · (1, 0)
P

∼ctx 1 · pc + bbc · pc
′
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From Definition 11, this amounts to showing:

(1, 0)
P
∼ctx pc

′ (1)

(bbc, off)
P

∼ctx pc + bbc (2)

(bbc, off)
P

∼ctx 1 (3)

(1) pc′ points to the function foo, because foo is not at folded

function (by definition of F ), we have (1, 0)
P

∼ctx pc
′ .

(2) From IH, we have (bbc, off)
P
∼ctx pc. Moreover, because we

are in the middle of a basic block, pc + bbc still points to a

slice (of size bbc), at offset off, which concludes (bbc, off)
P

∼ctx

pc + bbc.

(3) (bbc, off)
P

∼ctx 1 directly follows from IH.

Rule lo-call ⊥. (Case ⊤ is analogous.) In this rule, the program

counters, return stack, and Libra contexts are modified.

(Program counter) By IH and Lemma 1, we know that both source

and target configurations evaluate s.call⊥ ℓfoo ℓfoo′ and lo.call⊥ ℓfoo |foo′

instructions, respectively, with ℓfoo′
P
∼ℓ ℓfoo |foo′ + 1; From the

semantics, we have pc′ = ℓfoo′ and pc′ = ℓfoo |foo′ + 1. Hence,

pc′
P
∼ℓ pc

′ .

(Return stack) See the proof for regular calls, case return stack.

(Libra context) The Libra context (2, 1) is added on top of the

Libra context stack. We need to show:

_ · (bbc, off) · (2, 1)
P

∼ctx 1 · pc + bbc · pc
′

The proof is similar to the proof for regular calls. The only differ-

ence is the subcase 1, which becomes (2, 1)
P
∼ctx pc′. Here, pc′

points to the first slice of the folded function foo|foo′ at offset 1

(dummy part). Additionally (from F (P)) the first slice of a folded

function is always of size 2. Hence (2, 1)
P

∼ctx pc
′ .

Rule ret. In this rule, the program counters, return stack, and Libra

contexts are modified. By IH and Lemma 1, we know that both

source and target configurations evaluate ret.

(Program counter) The program counter are updated to point to

the address on the top of the return stack. From IH, these addresses

are related by
P
∼ℓ . This concludes pc

′ P
∼ℓ pc

′ .

(Return stack) The return address is popped from the return

stack, in both source and target. Hence, d′
P
∼ℓ 1′ directly follow

from IH.

(Libra context) The previous Libra context is restored. We must

show that it is a correct context for the next configuration (i.e.,

,′
P

∼ctx 1′ · pc′). Notice that under Hyp. 2, ,′ cannot be empty.

Hence, ,′
P

∼ctx 1
′ · pc′ directly follows from IH. �

The following lemma follows from the fact that source program

are safe (Hyp. 1), and that source and target semantics are deter-

ministic.

Lemma 3. For all asm program P, number of steps =, and source

and target configurations f and 2 such that 2
P
∼+ f :

if 2 ==⇒
=2 ′ then f ==⇒=f′ and f′

P
∼+ 2

′

where ==⇒ is parameterized by P and ==⇒ is parameterized by F (P).

B.2 Security

We recall our hypothesis about the leakage model:

Hypothesis 4. We assume that:

• Secure branches and level-offset branches do not leak their

outcome: {lo, s}.br 2 _ ∈ I✓,

• Secure calls and level-offset calls do not reveal whether the

original function or the dummy function is actually exe-

cuted: {lo, s}.call _ ∈ I✓,

• Normal branches leak their outcome: br 2 _ ∈ I✗,

• Normal calls leak their target: call ℓ ∈ I✗,

• Control-flow-altering instructions belong in a distinct leak-

age class from each other and fromnon-control-flow-altering

instructions.

We now sketch the proof of Proposition 2:

Proposition 2 (Security). For any asm program P,

obs−-ONI(P) =⇒ obs+-ONI(F (P))

Proof. Let P be a obs−-ONI program, we need to prove that

F (P) is obs+-ONI. To this end, we assume a pair of executions of

F (P):

20
o0
==⇒ . . .

o=−1
====⇒2= 2 ′0

o
′
0

==⇒ . . .
o
′
=−1

====⇒2 ′=

starting from low-equivalent configurations, i.e., 20 ≃ 2 ′0. We

need to prove that both executions produce the same leakage, i.e.,

o8 = o
′
8 for all 0 ≤ 8 < =. By Lemma 3, there exist corresponding

source executions:

f0
o0
===⇒ . . .

o=−1
======⇒f= f′0

o′0
===⇒ . . .

o′=−1
======⇒f′=

such that f0 ≃ f′0 and for all 0 ≤ 8 ≤ =, f8
P
∼+ 28 and f′8

P
∼+ 2 ′8 .

From obs−-ONI(P), we have o8 = o′8 for all 0 ≤ 8 < =.

By the definition of source and target leakages, for 0 ≤ 8 < =,

we have:

o8 = slice_addr(pc8 , off8 ) · obs
− (〈m8 , r8 , pc8〉)

o
′
8 = slice_addr(pc′8 , off

′
8 ) · obs

− (〈m′8 , r
′
8 , pc

′
8 〉)

o8 = obs− (〈m8 , r8 , pc8 〉) = o′8 = obs− (〈m′8 , r
′
8 , pc

′
8 〉)

To show that the target leakages are equal,we consider the balance-

able part of the target leakage (i.e., obs− (〈m8 , r8 , pc8 〉) and obs
− (〈m′8 , r

′
8 , pc

′
8 〉)),

and the unbalanceable part of the target leakage (i.e., slice_addr(pc8 , off8 )

and slice_addr(pc′8 , off
′
8 )) separately.

Balanceable leakage. This case follows a similar pattern as compila-

tion proofs for constant-resource transformation [12]. In particular,

F is a leakage preserving transformation for the balanceable part

of the leakage. This means that the target execution produces ex-

actly the same observation as its corresponding source execution.

Hence, obs− (〈m8 , r8 , pc8 〉) = o8 and obs− (〈m′8 , r
′
8 , pc

′
8 〉) = o′8 . From

o8 = o′8 , we can conclude that target leakages are identical, which

concludes our goal.

Unbalanceable leakage. This case follows a similar pattern as compi-

lation proofs for constant-time preservation. In particular, we need

to find a lockstep CT-simulation w.r.t.
P
∼+, which relates source

states and target states at each execution step and which yields
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preservation ofONI. In compilation proofs for constant-time preser-

vation, this CT-simulation is usually simple program counter equiv-

alence. In our case, however, program counters of low-equivalent

executions can diverge. Instead, our CT-simulation relates execu-

tions pointing to the same program slice.

Indeed, from Hyp. 3 and 4, we get that for all 0 ≤ 8 ≤ =, the

control-flows of f8 and f
′
8 belong to the same slice. More precisely:

• f8 is inside a secret dependent region iff f′8 is inside a secret-

dependent region,

• when not in a secret-dependent region, pc8 = pc′8 , and

• when in a secret-dependent region, pc8 and pc′8 belong to

the same level and are at the same offset in their respective

basic blocks.

We remark that F folds secret-dependent regions such that instruc-

tions from the same level that are at the same offset in their respec-

tive basic blocks are placed in the same slice.

Hence, f8
P
∼+ 28 and f

′
8

P
∼+ 2

′
8 , we get that slice_addr(pc8 , off8 )

and slice_addr(pc′8 , off
′
8 ) correctly return the base address of their

current slices and that these slice are the same in both target exe-

cutions, which concludes our goal and the proof.

�
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