
Duplication-Based Fault Tolerance for RISC-V
Embedded Software

Volodymyr Bezsmertnyi1,2, Jean-Michel Cioranesco1, and Thomas Eisenbarth2

1 NXP Semiconductors, Beiersdorfstraße 12, 22529 Hamburg, Germany
{volodymyr.bezsmertnyi,jean-michel.cioranesco}@nxp.com

2 Institute for IT-Security, Ratzeburger Allee 160, 23562 Lübeck, Germany
thomas.eisenbarth@uni-luebeck.de

Disclaimer

This preprint has not undergone peer review (when applicable) or any post-
submission improvements or corrections. The Version of Record of this contri-
bution is published in ”Computer Security - ESORICS 2024: 29th European
Symposium on Research in Computer Security, Bydgoszcz, Poland, September
16-20, 2024, Proceedings, Part IV”, and is available online at https://doi.org/
10.1007/978-3-031-70903-6_5

Abstract. Embedded devices play critical roles in security and safety,
demanding robust protection against fault injection attacks. Among the
myriad of fault effects, the instruction skip fault model stands out due
to its recurrent manifestation in silicon devices. Furthermore, the con-
tinually evolving landscape of hardware attacks facilitates increasingly
sophisticated exploits by achieving multiple instruction skips. In this
work, we propose an extension of the RISC-V debug specification which
enables efficient fault injection testing of the firmware executed on an
FPGA-emulated core under a commonly observed instruction skip fault
model. We use insights from a fault injection campaign to harden and
protect potentially exploitable instructions and propose an assembly level
duplication-based approach for software fault tolerance against instruc-
tion skip applied to RISC-V architecture. Additionally, we provide a
custom debugger implementation which accelerates fault injection cam-
paign by factor of ten. By combining fault injection testing and a generic
instruction duplication technique, our methodology can increase fault
tolerance of the reference software while having minimal performance
loss and code size overhead.

Keywords: risc-v · fault tolerance · fault injection emulation · instruc-
tion skip · fpga

1 Introduction

Embedded devices with high security requirements are increasing in areas such
as automobiles, medical equipment, financial systems, and critical infrastructure.

https://doi.org/10.1007/978-3-031-70903-6_5
https://doi.org/10.1007/978-3-031-70903-6_5


2 V. Bezsmertnyi et al.

One characteristic of such systems is that part of the code being executed, in
particular the boot code, is not planned to be updated in the field. Thus, a way
of securing an embedded device is to identify vulnerabilities early in the prod-
uct development life-cycle by checking code against logical as well as physical
attacks, since an attacker may have the device in hands. Identifying and address-
ing security vulnerabilities early on in the design phase can also help reduce costs
and time required to patch these issues [15]. Pre-silicon security evaluation can
include reviewing architecture and code, testing for compliance with security
standards, and conducting penetration testing. Therefore, software/hardware
co-testing should be thoroughly carried out before being deployed in its final
application.

One attack vector on embedded code is fault injection, where a potential at-
tacker can manipulate the hardware using different means like voltage glitches,
laser beaming, electromagnetic pulses, and others [6]. This can include injecting
faults into the system’s memory, processor, or other components to see how the
system responds and if there are any security vulnerabilities that can be ex-
ploited as a result. In particular, code and data flow can be perturbed, with the
common manifestation being an instruction skipped or not executed. Instruction
skips make it possible to bypass security measures or execute malicious code on
the target. As fault injection techniques are rapidly advancing, leading to the
emergence of more complex and sophisticated attacks such as multiple instruc-
tion skip attacks [35,30], it is crucial to consider these new types of attack in
research and development efforts. In the face of single or multiple instruction
skip attacks, the imperative for software fault tolerance becomes apparent. Var-
ious software fault tolerance techniques like instruction duplication and control
flow integrity checking [28] have to be implemented to fight such attacks. As a
consequence, integrating software fault tolerance mechanisms within pre-silicon
testing protocols becomes necessary to ensure robustness against these specific
threats.

With the advent of the RISC-V architecture, its modular and open-source
nature allows customization of hardware components, providing an ideal plat-
form for specialized functionalities. Notably, the openness of the RISC-V ar-
chitecture enables the integration of hardware acceleration support tailored for
pre-silicon fault injection testing. Our objective in this study is to create effi-
cient tools designed to facilitate fault injection processes, enabling the harden-
ing of code against instruction skip faults specific to the RISC-V architecture.
To achieve this, we propose an extension for the RISC-V debug specification,
featuring the automated skipping of an arbitrary number of instructions at a
target location. This advancement accelerates fault injection by reducing the
communication load between the host debugger and the debug module on the
chip. Furthermore, leveraging insights gained from the fault injection campaign,
we present a technique to harden vulnerable instructions by implementing an
assembly-level duplication-based countermeasure [23], adapted specifically for
the nuances of the RISC-V instruction set. Additionally, we implemented the
proposed extension within the debug module of the open-source CORE-V-MCU



Fault Tolerance for RISC-V 3

System-on-Chip, allowing for a comprehensive evaluation. To highlight the ad-
vantage of open-source architecture, we provided own debugger implementation
with a custom debugging protocol based on QSPI interface instead of conven-
tional JTAG. This modification allowed to speed up fault injection testing by
factor of ten. Finally, the effectiveness of our approach was evaluated through
rigorous testing against reference software, showcasing the efficiency of our code-
hardening technique. The combination of our technique with fault injection test-
ing demonstrated the absence of silent data corruption errors, all while imposing
minimal code size overhead compared to duplicating every relevant instruction.
The implementation of our proposed method will be released as open source and
available on GitHub3.

2 Related work

This section highlights the research conducted on fault injection, in particular
on physical attacks that exploit hardware vulnerabilities. Additionally, instruc-
tion skip fault model is discussed as a fault effect commonly observed in silicon
devices. Furthermore, the section delves into software-implemented fault toler-
ance and control flow integrity techniques as a mean to harden a system against
faults. Finally, the section reviews studies which focus on emulating fault injec-
tion especially with a help of a debugger.

2.1 Hardware Fault Injection Attacks

Hardware-based fault injection involves introducing errors into the system by
physically altering the hardware of the system. A comprehensive survey of dis-
tinct fault injection approaches is presented in [38], [19], [6]. In [8], multiple
fault injection attacks on microcontroller-based cryptographic algorithm imple-
mentations are demonstrated. In [11], the practicality of fault injections is ex-
amined through empirical research. A systematic examination of fault injections
in Internet-of-Things devices is conducted in [17].

2.2 Instruction Skip Fault Model

The instruction skip fault model is a commonly studied fault model in the field of
computer architecture and digital circuit design. This fault model occurs when
one or more consecutive instructions in a program are not executed due to a
fault in the hardware or software of the system. Here, we list some examples
of works that achieved either single or multiple instruction skips through fault
injection.

3 https://github.com/orshinAtNXP/

https://github.com/orshinAtNXP/


4 V. Bezsmertnyi et al.

Single Instruction Skip A single instruction skip is a fault effect frequently
seen in fault injection testing of many microcontrollers. A recent work [30] that
was presented at Black Hat 2022 utilizes Voltage Fault Injection (VFI) for skip-
ping a single instruction at different points in time in order to defeat ARM
TrustZone. The work from [34] showed an exploit where VFI was used to esca-
late privilege in Linux from user space. Balasch et al. [5] investigated the effects
of clock glitches on an 8-bit microcontroller and provided a possible explanation
for the observed instruction skip. Colombier et al. in [12] proposed a technique
that uses multiple lasers in order to induce multiple single-bit faults in an ARM
Cortex-M3. Menu et al. [22] investigated electromagnetic (EM) fault injections
and questioned an EM fault model since the authors could skip multiple consec-
utive instructions with their method. Proy et al. [27] studied EM pulse effects
at the ISA (instruction set architecture) level.

Multiple Instruction Skip Less common but still dangerous fault effect is the
multiple instruction skip which can be achieved either due to multiple glitches
in a row or a single glitch impacting the critical path in the cores instruction
pipeline. Riviére et al. [29] managed to skip up to four consecutive instructions
by electromagnetically faulting the instruction cache of an ARM Cortex-M CPU.
Blömer et al. [10] utilized multiple clock fault injections for attacking two con-
secutive instructions. Dutertre et al. [13] were able to skip groups of instructions
by laser illumination on an 8-bit non-secure ATmega328P microcontroller. Yuce
et al. [36] were able to skip multiple instructions stored in the target’s pipeline
with clock glitches in a 32-bit LEON3 processor on a Xilinx FPGA. The authors
of [14] reported EM-induced skips of up to six consecutive instructions with low
repeatability on a RISC-V FPGA implementation.

2.3 Software-Implemented Fault Tolerance

Software-Implemented Fault Tolerance (SWIFT) is an approach to improving
the reliability of software systems by incorporating fault-tolerant techniques
like error-detection and redundancy mechanisms directly into the software code
with a goal to harden systems against fault models, particularly instruction
skip faults. Moro et al. [23] provided a formal proof showing the efficiency of
redundancy-based countermeasures against a single instruction skip. Their coun-
termeasure consists of replacing a non-idempotent instruction with an idempo-
tent one and duplicating it. Replacement schemes were provided for the ARM
instruction set, followed by a formal proof of countermeasure efficiency. We adopt
this approach for the RISC-V instructions in our code hardening tool. In [24]
Moro et al. performed evaluation of two countermeasures by launching physical
fault attacks and assessing the impact. Barenghi et al. [7] proposed software
countermeasures for cryptographic algorithms including intrusion and fault de-
tection. Barry et al. [9] implemented a LLVM compiler extension which protects
against instruction skip attacks. Sharif et al. [33] developed a compiler framework
targeting RISC-V processors which hardens code using various fault tolerance



Fault Tolerance for RISC-V 5

techniques. Schirmeier et al. [32] provided a fault injection framework for detect-
ing vulnerable code by emulating faults with a debugger. Kiaei et al. [21] perform
assembly rewriting and lift an x86 binary to an intermediate representation in
order to harden vulnerable instructions which they discover by emulating fault
injections.

2.4 Emulated Fault Injection

In fault injection emulation, the FPGA is programmed to replicate faults that
might occur in the actual hardware, such as electrical or logical faults, to as-
sess how a system or software responds to these faults. A debugger can be used
to change the software behavior simulating possible fault effects on the software
level. Here we highlight works, where a debugger is used for injection of the faults
as it is done in our work. Portela-Garcia et al. [26] utilized the On-Chip Debugger
(OCD) to inject faults into a microcontroller that supported JTAG debugging
capabilities. Instead of controlling the fault injection campaign from the host,
they moved the controlling logic to a separate Systems on Programmable Chip
(SoPC) and the host only configures the fault injection campaign via communi-
cation with SoPC. Mosdorf et al. [25] injected faults using the GDB debugger
and a J-Link debugger via the JTAG interface of an ARM device. Schirmeier et
al. [32] provided a fault injection framework for assessing the fault tolerance of
a system by emulating faults with a debugger on multiple emulators. Zhang et
al. [37] utilized a debugger for the fault injection testing of a real-time operat-
ing system. Ahmad et al. [4] developed a fault injection framework based on a
debugger for x86 CPUs and used GDB to interrupt the program’s execution to
inject faults at runtime.

3 Protection by Fault Injection Emulation

In this section, we introduce a methodology for protecting a firmware against
instruction skip attacks and provide an overview of the separate steps of the
flow for code hardening. We call our approach Skip Protection by Fault Injec-
tion Emulation (SPFIE) and incorporate it into a framework for fault injection
testing on an emulated RISC-V core. The framework can be used to embed con-
tinuous security testing into the development process of the software, since it
provides an efficient fault injection testing and hardens code with minimal user
interaction. Our framework is also capable of skipping an arbitrary number of
instructions in the given software, which can be used for identifying vulnerable
instructions or code snippets. A user provides a compiled binary that will be
executed on the target emulated core and configures the framework to test a list
of critical functions. The framework then performs fault injection (FI) testing
by executing the binary on the core emulated with an FPGA and produces a
list of vulnerable instructions that require additional protection. Our framework
also requires access to the source code and build scripts of the software in order
to be embedded into the build flow. Having the sources, our code hardening tool



6 V. Bezsmertnyi et al.

finds and replaces vulnerable instructions with a protected version of the original
instruction. Finally, another iteration of the fault injection testing is performed
on the hardened code in order to verify the absence of the previously detected
vulnerabilities.

The framework uses fault injection emulation to identify vulnerable instruc-
tion addresses and uses the results to patch the assembler language files. To
ensure code security on each commit or major source code modification auto-
matically, firmware developers can incorporate this framework into the build
flow. The workflow is depicted in the Figure 1. Next, we elaborate on every step
of the process:

1. Generate and Build : Since our framework hardens the code at the assembly
level, the assembler language files need to be generated from the C sources.
From the assembler files, we build the initial binary for the fault injection
campaign emulated on a FPGA.

2. FI testing : In this step, the user performs FI testing by skipping the config-
ured amount of instructions for the given functions to test. The FI campaign
results in a list of faulty addresses that, if skipped via a fault injection, can
lead to exploitable behavior.

3. Code Hardening : Given a list of faulty addresses, our code hardening tool
performs a transformation and duplication of the faulty instructions. The
patched instructions are then written to the assembler files. Detailed trans-
formations of RISC-V instructions are described in Section 6.

4. Build and Verify : In the last step, the final binary is built from the patched
assembler files, and another iteration of the FI testing on the final binary
can be performed to confirm the absence of vulnerabilities and original func-
tionality of the binary.

By integrating the SPFIE methodology in the build flow of the firmware, the
developers can continuously and automatically ensure the security of the code
against instruction skip attacks, and a secure version of the binary can be re-
leased. By viewing the logs of the framework, the developers can get a direct
feedback on the vulnerable instructions. This information can be analyzed in
order to gain an understanding of how skipped instructions can impact the code
execution. An advantage of this approach is scalability, since increasing the num-
ber of available emulators reduces the testing time linearly. The developers can
set up additional emulators and uniformly distribute the test addresses across
the emulators. Afterwards, the faulty addresses for each emulator instance can
be collected and put together for the code hardening. A disadvantage of this
approach is that it requires human guidance in form of provided names of the
critical functions which are supposed to be tested and hardened.

4 Debugger-Driven FI Testing

This section delves into the specifics of debugger-driven fault injection test-
ing framework, which is employed to skip instruction on an FPGA-emulated



Fault Tolerance for RISC-V 7

Fig. 1: Schematic overview of the code hardening flow.

system-on-chip (SoC). Here, we describe how the FI campaign is performed and
accelerated by a custom debug specification extension.

The reason for opting for an emulation solution is the speed advantage it
offers, whereby the code is executed directly on an emulated target device, al-
lowing for full available execution speed. This facilitates the execution of binaries
and the injection of faults much faster than simulation-based solutions, enabling
us to conduct fault injection testing on large numbers of instructions. For this
purpose, an emulation environment needs to be configured to run tests. This
includes setting up an FPGA with a synthesized design of the target SoC and
establishing the communication to the debug module (DM). With an emulator
set up, the user can start the fault injection campaign.

The fault injection testing is controlled by a Fault Injection Controller (FIC)
which manages the fault injection campaign by leveraging the debugger and the
emulation setup in order to find vulnerable places in the assembly code. The basic
idea is to inject faults upon hitting a breakpoint at a target instruction address.
The debugger is used to configure special custom registers in the DM(discussed in
Section 5) to simulate an instruction skip. By detecting an address, where a fault
is supposed to be injected, the DM alters the program counter according to the
configuration. Before the FIC starts FI testing, the user evaluates the attackers
ability and determines, how many instructions an attacker is potentially able
to skip via fault injection into the particular SoC. This mainly depends on the
targeted architecture, CPU pipeline stages and the memory subsystem from
where instructions are fetched. It is a crucial information for the fault injection
campaign and the subsequent code hardening, since our instruction duplication
technique introduces fault tolerance to a degree which depends on attackers
ability to skip a certain amount of instructions. The user also identifies and
provides a list of security critical functions in the binary that have to be tested.
For each instruction address in the function-under-test (FUT), the FIC does the
following steps:



8 V. Bezsmertnyi et al.

1. Reset the core to prevent interaction with the core state from the previous
executions.

2. Load the executable into the memory.
3. Configure special CSRs in the DM for the automatic instruction skip.
4. Set breakpoint at exception handler.
5. Set breakpoint at last address of main function.
6. Resume the binary execution.

There are 3 possible outcomes of a single test run: the execution can time out,
hit the breakpoint at the exception handler or successfully execute the program
and hit the breakpoint at the end of the main function. The timed out runs
might need further investigation by the user. Execution of the exception handler
is an indication of detected fault injection, since the program didn’t complete
its execution. If the program was executed successfully, that means the fault
injection was not detected and silent data corruption might have happened. So,
at the end of the fault injection campaign, the FIC invokes the code hardening
routine and provides to it the list with faulty addresses for analysis.

5 Debug Specification Extension

To accelerate the fault injection campaign by minimizing host-to-target com-
munication, we propose a modification to the on-chip debug module. This en-
hancement allows for more efficient instruction skipping. The openness of the
RISC-V ecosystem grants access to the debug specification, offering room for
custom debug features. Controlling the debug module involves manipulating its
internal Control and Status Registers (CSRs), which include 16 reserved regis-
ters designated for custom functionalities. By detailing our method at the debug
specification level, we ensure its independence from specific debug module imple-
mentations, ensuring a level of portability across diverse RISC-V system designs.
In the following, we outline the specifications of three custom registers, explain-
ing their function in skipping an arbitrary number of instructions at runtime.
This method optimizes the FI process, contributing to enhanced efficiency while
maintaining adaptability across varying system architectures.

The custom debug registers designed for instruction skipping are as follows:

– fi address: This register stores the address of the target instruction where
a fault is to be injected during a single test. Upon setting the fi address,
the DM sets a hardware breakpoint at the address in the fi address register
to be able to skip the target instruction before its is executed.

– hit count: Within this register resides a numerical value indicating the num-
ber of times the target instruction must be executed before the fault injection
is triggered. The DM should decrease the hit count value by 1 every time
the fi address is encountered. Finally, if hit count value is 0, the fault is
injected and the hardware breakpoint at fi address is removed.

– pc delta: Contained in this register is a two’s complement number that
dictates the program counter’s advancement when the address specified in



Fault Tolerance for RISC-V 9

fi address is encountered at least hit count times. This value determines
the shift in the program counter upon meeting the specified conditions.

As one can see, using this construction, we can also skip multiple consecutive in-
structions as well by setting the pc delta register accordingly. It is also possible
to simulate more advanced fault models such jump to an arbitrary address, which
can be useful in some cases, like for testing unexpected control flow violations.

6 Code Hardening Tool

The Code Hardening Tool is invoked after the FI testing is completed. It gets
the list of faulty addresses and the number of skipped instructions in the FI
campaign, and its goal is to patch the faulty addresses in the assembler files by
duplicating them. So, for each faulty address we need to find the corresponding
group of assembly instructions in the sources and replace it with a duplicated se-
quence of idempotent instructions. An idempotent instruction is an instruction
that can be executed multiple times without changing the result beyond the
first execution. In other words, the effect of the instruction remains the same no
matter how many times it is executed. Such instructions are useful for the fault-
tolerant replacement sequences that we propose, similar to the countermeasure
by Moro et al. [23]. If every instruction in such a sequence is duplicated more
times than an attacker is able to skip, then every instruction in the sequence is
executed at least once, and the execution of the duplicated idempotent instruc-
tion sequence does not lead to side effects that might change the result of the
program’s execution.

We define five instruction classes for the RISC-V IMC instruction set: idem-
potent, separable, pseudo-instructions, compressed, and special instructions.

Idempotent instructions can be duplicated without any transformations. These
include store and branching instructions as well as load and arithmetic instruc-
tions where every source operand differs from the destination operand. The CHT
can duplicate such instructions directly without replacing them.

Separable instructions are arithmetic operations where one of the source operands
is simultaneously the destination operand. Such instructions cannot be dupli-
cated right away and need to be replaced using an extra register. The extra
register needs to be free, meaning it should not have been used in the calcula-
tions before. Some example transformations of arithmetic and load instructions
are provided in the Table 1.

Pseudo-instructions in RISC-V are assembler directives that are not part of
the official RISC-V instruction set but are provided by the assembler to make
it easier for programmers to write code. Pseudo-instructions are translated by
the assembler into one or more actual RISC-V instructions. When the CHT
encounters such an instruction, it rewrites it using special, idempotent, and
separable instructions. Afterwards, every instruction in the resulting sequence
will be replaced by an idempotent one. The examples of some pseudo-instruction
transformations are presented in Table 2.



10 V. Bezsmertnyi et al.

Example instruction Description Transformation

addi a0,a0,1 Increments a0 register by
one.

mv rx,a0

addi a0,rx,1

lw a0,8(a0) Loads a 32-bit word from
memory at the address (a0

+ 8) and stores the result in
register a0.

lw rx, 8(a0)

mv a0, rx

Table 1: A table with some examples for replacement sequences for the separable
RISC-V instructions. The register rx represents a free register used to temporar-
ily store a value.

Example instruction Description Transformation

la a0,0xdeadbeef Loads an immediate 32-bit
value. Expands into:
lui a0,0xdeadc

addi a0,a0,0xeef

lui rx,0xdeadc

addi a0,rx,0xeef

call fn Calls a subroutine by storing
the address of the next instruc-
tion in ra register and jump-
ing to the label fn. Expands
into the special instruction jal

ra,fn.

lui rx, %hi(fn ret)

addi ra,rx,%lo(fn ret)

j fn

fn ret:

Table 2: A table with some examples for replacement sequences for the RISC-V
pseudo-instructions. The register rx represents a free register used to temporarily
store a value.

Compressed instructions are a subset of the RISC-V instruction set that uses
16-bit instructions instead of the standard 32-bit instructions. The compressed
instruction set uses the same instruction formats as the standard instruction set,
but with shorter opcodes and fewer operands. The compressed instructions will
be ”decompressed” by the CHT. The decompression process involves looking
up the underlying instruction and multiplying an immediate value by a factor
depending on the instruction. If the decompressed instruction is a separable or a
special instruction, it will be transformed into an idempotent instruction accord-
ingly. Example transformations of some compressed instructions are presented
in the Table 3.

Special. Three special instructions in the standard set, namely jal, jalr, and
auipc, are generally not idempotent depending on operands. These instructions,
commonly used for jumps and subroutine calls, require transformation sequences
that always rely on label-based offsets within assembler files. This requirement
arises because these instructions either use or alter the program counter, and
introducing new instructions into the assembler files can affect their behavior.



Fault Tolerance for RISC-V 11

Example instruction Description Transformation

c.addi16sp 8 Adds the non-zero sign-
extended 6-bit immediate
to the value in the stack
pointer, where the immedi-
ate is scaled to represent
multiples of 16. Expands
into a separable instruction
addi sp,sp,16*8.

mv rx,sp

addi sp,rx,128

c.add sp,a0 Adds the values in registers
sp and a0 and writes the re-
sult to register sp. Expands
into a separable instruction
add sp,sp,a0.

mv rx,sp

add sp,rx,a0

Table 3: A table with some examples for replacement sequences for the com-
pressed RISC-V instructions. The register rx represents a free register used to
temporarily store a value.

The replacement sequences are detailed in Table 4. Transforming jal involves
establishing a return label after the sequence’s final instruction. This label stores
the subsequent instruction’s address after jal execution. Utilizing la to load the
return label’s address and j to jump to the target label ensures a safe jump with
the correct destination register address.

Similarly, the jalr transformation entails loading the return label’s address,
storing the incremented source register value in a temporary register, and ex-
ecuting a jump to the temporary register’s stored value. It is crucial that the
return label points to the instruction after the entire duplicated sequence.

For auipc, requiring a label after the sequence, we initialize temporary reg-
isters with the label’s address and immediate value using lui. Adding these
temporary registers results in a PC-relative address stored in the destination
register, ensuring the transformation relies solely on idempotent instructions.

In order to harden an instruction, the CHT expands the target instruction
if it is a pseudo-instruction or decompresses it if it is a compressed instruction
according to the instruction set specification. Each instruction in the resulting
sequence will be then transformed and duplicated after the transformations. By
duplicating each instruction in a sequence more times than the attacker can
skip, we ensure that every instruction in the sequence will be executed at least
once, and an attacker needs to be able to skip more instructions for a successful
attack.

An example of the protection process is depicted in the Figure 2. We start
by having a vulnerable group of two consecutive instructions: a compressed in-
struction c.add a0,s2 and a pseudo-instruction call fn. After the first step,
the compressed instructions expand into a separable instruction add a0,a0,s2

and the pseudo-instruction expands into the special instruction jal ra,fn. Af-



12 V. Bezsmertnyi et al.

Instruction Description Transformation

jal rd,offset Puts the address of the next in-
struction into rd register and
adds offset to the program
counter.

lui rx,%hi(ret lbl)

addi rd,rx,%lo(ret lbl)

j offset

ret lbl:

jalr rd,rs1,offset Puts the address of the next in-
struction into rd register, adds
an offset to the value of the rs1
register, and sets the program
counter to the resulted value.

lui rx,%hi(ret lbl)

addi rd,rx,%lo(ret lbl)

addi rx,rs1,offset

jr rx

ret lbl:

auipc rd,offset Adds an immediate 20-bit value
offset to the upper 20 bits
of the current program counter,
filling lower 12 bits with zeros,
and stores the result in the rd

register.

lui rx2,%hi(pc lbl)

addi rx1,rx2,%lo(pc lbl)

lui rx2,offset

pc lbl:

add rd,rx1,rx2

Table 4: A table with replacement sequences for the special RISC-V instructions.
The registers rx, rx1 and rx2 represent free registers used to temporarily store
values, imm and offset represent operands with any immediate value based on
a label within the code.

ter the applied transformation step, a return label is introduced, and the free
temporary register t0 is used in the transformation of the separable and the
special instruction. The instructions in the transformed sequence will be dupli-
cated three times because the original group size was 2. Finally, the original
instructions in the assembler files will be replaced by the fault-tolerant version.

7 Implementation

As emulation platform we selected the open-source 32-bit microcontroller unit
(MCU) CORE-V-MCU [31]. It features the open-source 4-stage, in-order 32-
bit RISC-V core CV32E40p [18], operating at a core frequency of 20 MHz. We
customized the debug module of the emulated design according to specification
from Section 5 for a faster instruction skip, owing to our access to the source
code of the emulated SoC. Highlighting the advantages of the RISC-V archi-
tecture’s open-source nature, we developed a custom debugger. This debugger
communicates Debug Module Interface (DMI) commands over a custom QSPI
protocol. The emulation setup’s schematic overview is depicted in Figure 3. Two
debugging processes operate on the host: the conventional OpenOCD [2] and
our custom debugger. OpenOCD communicates with the HS-2 Debugger [1] via
USB, and HS-2 utilizes JTAG transport layer to interact with the SoC’s debug
module. Simultaneously, our custom debugger communicates with a Teensy 4.1
Arduino microcontroller [3]. The Teensy is programmed to function as a QSPI
master, receiving DMI commands from the host over USB and transmitting



Fault Tolerance for RISC-V 13

Fig. 2: An example of protecting a group of vulnerable instructions consisting of
a compressed and a pseudo-instruction.

them to the SoC using a software-based QSPI implementation. Essentially, we
supplemented the SoC with a hardware multiplexer responsible for managing
JTAG and QSPI slave communication. The multiplexer translates debugging
commands into general Debug Module Interface commands, adhering to the
RISC-V Debug Specification [16]. IN this particular design, DM implementation
operates on an execution-based principle. This means that when the core enters
debug mode, the code in the DM’s ROM, referred to as the ”park loop,” is ex-
ecuted. We extended the DM registers and ROM code in line with our custom
extension’s specifications to allow automated program counter modification upon
breakpoint. This fully automates the process of emulating an instruction skip on
the chip without instrumenting the code being executed. To enable high-speed
debugging and accommodate the use of two different debugger implementations,
we adjusted the SoC’s pinout, introducing 10 additional pins to integrate the
QSPI interface.

8 Evaluation

In this section, we conduct an assessment of different debugger implementations
and analyze the impact of our hardening method on several key metrics, namely
the overall testing time, program runtime, and code size. To evaluate our ap-
proach, we opted to employ well-established cryptographic algorithms obtained
from the MiBench benchmark suite [20]. These algorithms encompass popu-
lar cryptographic functions such as AES-128, SHA-256, and Blowfish-CFB64.
Throughout our experiments, we focused on a scenario where the SoC received an
input that comprehensively exercises the execution of all instructions within the
functions under test. Our evaluation leveraged the previously described setup,
allowing us to rigorously assess the performance of our implementation. The
experiments were conducted on a host machine running Windows 10, equipped



14 V. Bezsmertnyi et al.

Fig. 3: Schematic overview of the emulation setup.

with an Intel Core i5-1145G7 processor operating at clock speed of 2.6 GHz and
16 GB of RAM.

To begin, we assess the influence of debugger selection and the utilization of
our custom DM extension on fault injection testing time. Our initial focus in-
volves conducting a single instruction skip fault injection campaign specifically
targeting cryptographic calculation functions, while timeout was configured to
3 seconds. During these evaluations, we compared the outputs of a single run
against an established golden truth value to detect Silent Data Corruption (SDC)
upon completion of the main function. Thus, we consider instructions as vulnera-
ble if skipping them resulted SDC, indicating a necessity for hardening measures.

Furthermore, to gauge the impact of our DM extension, we implemented
debugger-driven fault injection testing (as detailed in Section 4) without deploy-
ing the DM extension. The only difference in this approach occurred at step 3,
where instead of configuring extended CSRs, we set a breakpoint at the fault
address and adjusted the program counter by the byte count of the instruction to
skip once the breakpoint was hit. The individual test run durations are detailed
in Table 5, while the outcomes of the fault injection campaign are summarized
in Table 6. Notably, the Blowfish test program stood out, with almost half of
its instructions identified as vulnerable. Upon manual inspection of the assem-
bler code, we observed heavy reliance on loop unrolling within the algorithm,
resulting in multiple instances of vulnerable instructions.

An evident outcome is the notable reduction in test time facilitated by our
custom DM extension, observed across both debugger implementations. This
improvement stems from a reduction in communication overhead compared to
the pure debugger solution. The hardware-driven fault injection circumvents the



Fault Tolerance for RISC-V 15

Not using extension Using extension

OpenOCD 1.55s (1x) 1.21s (1.28x)

Custom debugger 0.24s (6.45x) 0.14s (11.07x)

Table 5: Average single test run duration of the FI campaign performed by two
different debugger implementations and using different fault injection methods.
The numbers in parentheses represent the speedup factor compared to the base-
line, which is FI campaign performed by OpenOCD not using extension.

Total instructions tested Number of vulnerable instructions Timeout events

AES 3512 54 36

SHA 520 69 14

Blowfish 1241 564 6

Table 6: Results of fault injection campaign.

need for debugger notifications, eliminating delays within a single run. Hence,
we observed a distinct at least 21% decrease in single run duration with the
enhanced fault injection method compared to the pure debugger solution.

Moreover, exchanging the debug transport module protocol (originally JTAG)
for a more efficient protocol (QSPI) led to a substantial increase in communica-
tion speed, resulting in a significant reduction in overall testing time by several
orders of magnitude. To underscore this difference, we conducted an additional
experiment to measure the speed of read/write operations to memory. The mea-
sured speed for memory operations, regardless of read or write, amounted to
0.13 MB/s for the OpenOCD/HS-2 combination and surged to 2.45 MB/s for
the Teensy implementation. This enhancement, approximately 18 times faster
than the conventional debug toolchain, underscores the efficiency gain achieved
through the protocol switch.

Our subsequent evaluation analyzed the hardening of vulnerable instructions
and validating that their skipping no longer leads to any occurrences of SDCs,
which serves as evidence of the efficacy of our hardening strategy. In addition,
we conducted a comparative analysis to assess the impact of hardening on both
runtime and code size, detailed in Tables 7 and 8 respectively. When discussing
the impact on code size, a program is classified as partially hardened if only the
vulnerable instructions were duplicated. On the other hand, a fully hardened
program involves duplicating every instruction within a tested function. Our ob-
servations reveal that code size experiences minimal overhead when subjected
to fault injection testing before hardening implementation. However, fully hard-
ened functions result in at least a twofold increase in code size compared to its
pre-hardened state. Furthermore, our experiment data underscores that program
runtime is less affected in the partially hardened scenario. This outcome can be
attributed to the selective duplication of only the necessary instructions in the
partially hardened variant.



16 V. Bezsmertnyi et al.

Original size Fully hardened size Partially hardened size

AES 3512 (100%) 8340 (237%) 3584 (102%)

SHA 520 (100%) 1102 (211%) 602 (115%)

Blowfish 1241 (100%) 2704 (218%) 1953 (157%)

Table 7: Comparison of instruction number for original and hardened binaries.
The numbers in parentheses represent the percentage increase compared to the
original size.

Original runtime(ms) Fully hardened runtime(ms) Partially hardened runtime(ms)

AES 24.3 (100%) 65.6 (270%) 27.0 (111%)

SHA 21.1 (100%) 41.2 (195%) 23.4 (110%)

Blowfish 18.5 (100%) 40.5 (219%) 25.6 (121%)

Table 8: Comparison of average runtime performance for original and hardened
binaries. The numbers in parentheses to represent the percentage increase in
runtime compared to the original runtime.

9 Conclusion

In this work, we dove into the topic of the fault injection emulation, to enable
security assessment during the code development phase. It is desired for some
critical code parts in embedded software to be as fault-tolerant and sound as
possible. Via fault injection emulation, developers can test their system in a
fast and efficient way in the pre-silicon phase. One particularly relevant fault
model is the instruction skip model. If an attacker can force a device to skip
one or more instructions via physical fault injection, this can lead to a bypass
of crucial security checks and countermeasures. Upcoming open-source technolo-
gies like the RISC-V architecture make it possible to design and tailor systems
for specific needs like fault injection testing. To accelerate debugger-driven fault
injection testing, we designed an extension compliant with RISC-V debug spec-
ification. Our proposal involves modifying the debug module within an SoC to
facilitate automatic skipping of an arbitrary number of instructions at a break-
point. Through the integration of special CSRs and debug module modifications,
we achieved a reduction in the duration of a single test run compared to using
a pure debugger solution. Additionally, by replacing the conventional JTAG de-
bug transport protocol with a custom QSPI interface, we witnessed a remarkable
improvement in communication speed, enhancing the performance of the debug-
ging toolchain significantly. As a strategy to counter fault injection attacks, we
introduced a duplication-based code hardening technique adopted for the RISC-
V instruction set to improve fault tolerance of test binaries. By fault injection
testing and patching only vulnerable parts of code, we were able to completely
prevent fault effects within the assumed threat model. Notably, the partial code
hardening introduced less size and runtime overhead compared to full code du-



Fault Tolerance for RISC-V 17

plication while maintaining an equivalent level of security. This approach ensures
enhanced fault tolerance while minimizing the associated resource demands.

Acknowledgments

Funded by the European Union under grant agreement no. 101070008. Views
and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union. Neither the European Union
nor the granting authority can be held responsible for them.

References

1. JTAG-HS2 programming cable. https://digilent.com/shop/

jtag-hs2-programming-cable/, accessed on 2023-12-01
2. Open on-chip debugger. https://openocd.org/, accessed on 2023-12-01
3. Teensy® 4.1 development board. https://www.pjrc.com/store/teensy41.html,

accessed on 2024-01-04
4. Ahmad, H.A.h., Sedaghat, Y., Moradiyan, M.: LDSFI: a lightweight dy-

namic software-based fault injection. In: 2019 9th International Conference
on Computer and Knowledge Engineering (ICCKE). pp. 207–213 (2019).
https://doi.org/10.1109/ICCKE48569.2019.8964875, ISSN: 2643-279X

5. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box
characterization of the effects of clock glitches on 8-bit MCUs. In: 2011
Workshop on Fault Diagnosis and Tolerance in Cryptography. pp. 105–114.
https://doi.org/10.1109/FDTC.2011.9

6. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sor-
cerer’s apprentice guide to fault attacks. Proceedings of the IEEE 94(2), 370–382
(2006). https://doi.org/10.1109/JPROC.2005.862424, http://ieeexplore.ieee.
org/document/1580506/

7. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures 100(11), 3056–3076.
https://doi.org/10.1109/JPROC.2012.2188769, conference Name: Proceedings of
the IEEE

8. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures. Proceedings of the
IEEE 100(11), 3056–3076 (2012). https://doi.org/10.1109/JPROC.2012.2188769

9. Barry, T., Couroussé, D., Robisson, B.: Compilation of a countermea-
sure against instruction-skip fault attacks. In: Proceedings of the Third
Workshop on Cryptography and Security in Computing Systems. pp. 1–6.
ACM. https://doi.org/10.1145/2858930.2858931, https://dl.acm.org/doi/10.

1145/2858930.2858931

10. Blömer, J., Silva, R.G.d., Günther, P., Krämer, J., Seifert, J.P.: A practical second-
order fault attack against a real-world pairing implementation, https://eprint.
iacr.org/undefined/undefined

11. Breier, J., Hou, X.: How practical are fault injection attacks, really? 10, 113122–
113130. https://doi.org/10.1109/ACCESS.2022.3217212, conference Name: IEEE
Access

https://digilent.com/shop/jtag-hs2-programming-cable/
https://digilent.com/shop/jtag-hs2-programming-cable/
https://openocd.org/
https://www.pjrc.com/store/teensy41.html
https://doi.org/10.1109/ICCKE48569.2019.8964875
https://doi.org/10.1109/FDTC.2011.9
https://doi.org/10.1109/JPROC.2005.862424
http://ieeexplore.ieee.org/document/1580506/
http://ieeexplore.ieee.org/document/1580506/
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1145/2858930.2858931
https://dl.acm.org/doi/10.1145/2858930.2858931
https://dl.acm.org/doi/10.1145/2858930.2858931
https://eprint.iacr.org/undefined/undefined
https://eprint.iacr.org/undefined/undefined
https://doi.org/10.1109/ACCESS.2022.3217212


18 V. Bezsmertnyi et al.

12. Colombier, B., Grandamme, P., Vernay, J., Chanavat, E., Bossuet, L., de Laulanié,
L., Chassagne, B.: Multi-spot laser fault injection setup: New possibilities for fault
injection attacks. In: Grosso, V., Pöppelmann, T. (eds.) Smart Card Research and
Advanced Applications, vol. 13173, pp. 151–166. Springer International Publish-
ing. https://doi.org/10.1007/978-3-030-97348-3 9, https://link.springer.com/

10.1007/978-3-030-97348-3_9, series Title: Lecture Notes in Computer Science
13. Dutertre, J.M., Riom, T., Potin, O., Rigaud, J.B.: Experimental analysis of

the laser-induced instruction skip fault model. In: Askarov, A., Hansen, R.R.,
Rafnsson, W. (eds.) Secure IT Systems, vol. 11875, pp. 221–237. Springer Inter-
national Publishing. https://doi.org/10.1007/978-3-030-35055-0 14, http://link.
springer.com/10.1007/978-3-030-35055-0_14, series Title: Lecture Notes in
Computer Science

14. Elmohr, M.A.: Embedded systems security: On EM fault injection on RISC-v and
BR/TBR PUF design on FPGA

15. Farooq, U., Mehrez, H.: Pre-silicon verification using multi-FPGA platforms: A
review 37(1), 7–24. https://doi.org/10.1007/s10836-021-05929-1, https://link.
springer.com/10.1007/s10836-021-05929-1

16. Foundation, R.V.: RISC-V Debug Specification. Specification 0.13.2, RISC-V
Foundation (2019), https://riscv.org/specifications/debug-specification/

17. Gangolli, A., Mahmoud, Q.H., Azim, A.: A systematic review of fault injection at-
tacks on IoT systems 11(13), 2023. https://doi.org/10.3390/electronics11132023,
https://www.mdpi.com/2079-9292/11/13/2023

18. Gautschi, M., Schiavone, P.D., Traber, A., Loi, I., Pullini, A., Rossi,
D., Flamand, E., Gurkaynak, F., Benini, L.: Near-threshold RISC-
v core with DSP extensions for scalable IoT endpoint devices (2017).
https://doi.org/10.1109/TVLSI.2017.2654506, https://ieeexplore.ieee.

org/document/7864441
19. Giraud, C., Thiebeauld, H.: A survey on fault attacks. International Federation

for Information Processing Digital Library; Smart Card Research and Advanced
Applications VI; 153 (2004). https://doi.org/10.1007/1-4020-8147-2 11

20. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown,
R.: Mibench: A free, commercially representative embedded benchmark suite.
In: Proceedings of the Fourth Annual IEEE International Workshop on
Workload Characterization. WWC-4 (Cat. No.01EX538). pp. 3–14 (2001).
https://doi.org/10.1109/WWC.2001.990739

21. Kiaei, P., Breunesse, C.B., Ahmadi, M., Schaumont, P., Woudenberg, J.v.: Rewrite
to reinforce: Rewriting the binary to apply countermeasures against fault injection.
In: 2021 58th ACM/IEEE Design Automation Conference (DAC). pp. 319–324
(2021). https://doi.org/10.1109/DAC18074.2021.9586278

22. Menu, A., Dutertre, J.M., Potin, O., Rigaud, J.B., Danger, J.L.: Experimental
analysis of the electromagnetic instruction skip fault model. In: 2020 15th De-
sign & Technology of Integrated Systems in Nanoscale Era (DTIS). pp. 1–7.
https://doi.org/10.1109/DTIS48698.2020.9081261

23. Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification
of a software countermeasure against instruction skip attacks 4(3), 145–
156. https://doi.org/10.1007/s13389-014-0077-7, http://link.springer.com/10.
1007/s13389-014-0077-7

24. Moro, N., Heydemann, K., Dehbaoui, A., Robisson, B., Encrenaz, E.: Experimental
evaluation of two software countermeasures against fault attacks. In: 2014 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST). pp.
112–117. https://doi.org/10.1109/HST.2014.6855580

https://doi.org/10.1007/978-3-030-97348-3_9
https://link.springer.com/10.1007/978-3-030-97348-3_9
https://link.springer.com/10.1007/978-3-030-97348-3_9
https://doi.org/10.1007/978-3-030-35055-0_14
http://link.springer.com/10.1007/978-3-030-35055-0_14
http://link.springer.com/10.1007/978-3-030-35055-0_14
https://doi.org/10.1007/s10836-021-05929-1
https://link.springer.com/10.1007/s10836-021-05929-1
https://link.springer.com/10.1007/s10836-021-05929-1
https://riscv.org/specifications/debug-specification/
https://doi.org/10.3390/electronics11132023
https://www.mdpi.com/2079-9292/11/13/2023
https://doi.org/10.1109/TVLSI.2017.2654506
https://ieeexplore.ieee.org/document/7864441
https://ieeexplore.ieee.org/document/7864441
https://doi.org/10.1007/1-4020-8147-2_11
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/DAC18074.2021.9586278
https://doi.org/10.1109/DTIS48698.2020.9081261
https://doi.org/10.1007/s13389-014-0077-7
http://link.springer.com/10.1007/s13389-014-0077-7
http://link.springer.com/10.1007/s13389-014-0077-7
https://doi.org/10.1109/HST.2014.6855580


Fault Tolerance for RISC-V 19

25. MOSDORF, M., SOSNOWSKI, J.: Fault injection in embedded systems using gnu
debugger (2011)

26. Portela-Garćıa, M., López-Ongil, C., Garcia Valderas, M.G., Entrena, L.: Fault
injection in modern microprocessors using on-chip debugging infrastructures.
IEEE Transactions on Dependable and Secure Computing 8(2), 308–314 (2011).
https://doi.org/10.1109/TDSC.2010.50

27. Proy, J., Heydemann, K., Majéric, F., Cohen, A., Berzati, A.: Studying EM pulse
effects on superscalar microarchitectures at ISA level, http://arxiv.org/abs/

1903.02623

28. Reis, G., Chang, J., Vachharajani, N., Rangan, R., August, D.: SWIFT: Software
implemented fault tolerance. In: International Symposium on Code Generation and
Optimization. pp. 243–254. IEEE. https://doi.org/10.1109/CGO.2005.34, http:
//ieeexplore.ieee.org/document/1402092/

29. Rivière, L., Najm, Z., Rauzy, P., Danger, J.L., Bringer, J., Sauvage, L.: High
precision fault injections on the instruction cache of ARMv7-m architectures,
https://eprint.iacr.org/undefined/undefined

30. Saß, M., Mitev, R., Sadeghi, A.R.: Oops..! i glitched it again! how to multi-glitch the
glitching-protections on ARM TrustZone-m, http://arxiv.org/abs/2302.06932

31. Schiavone, P.D., Rossi, D., Di Mauro, A., Gurkaynak, F., Saxe, T., Wang, M.,
Yap, K.C., Benini, L.: Arnold: An eFPGA-augmented RISC-v SoC for flexible and
low-power IoT end nodes . https://doi.org/10.1109/TVLSI.2021.3058162, https:
//ieeexplore.ieee.org/document/9369856

32. Schirmeier, H., Hoffmann, M., Dietrich, C., Lenz, M., Lohmann, D., Spinczyk,
O.: FAIL*: An open and versatile fault-injection framework for the as-
sessment of software-implemented hardware fault tolerance. In: 2015 11th
European Dependable Computing Conference (EDCC). pp. 245–255 (2015).
https://doi.org/10.1109/EDCC.2015.28

33. Sharif, U., Mueller-Gritschneder, D., Schlichtmann, U.: COMPAS: Compiler-
assisted software-implemented hardware fault tolerance for RISC-v. In: 2022
11th Mediterranean Conference on Embedded Computing (MECO). pp. 1–4.
https://doi.org/10.1109/MECO55406.2022.9797144, ISSN: 2637-9511

34. Timmers, N., Mune, C.: Escalating privileges in linux using voltage fault injection.
In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
pp. 1–8 (2017). https://doi.org/10.1109/FDTC.2017.16

35. Witteman, M.: Security highlight: Multi-fault attacks
are practical (Apr 2023), https://www.riscure.com/

security-highlight-multi-fault-attacks-are-practical/

36. Yuce, B., Ghalaty, N.F., Santapuri, H., Deshpande, C., Patrick, C., Schaumont,
P.: Software fault resistance is futile: Effective single-glitch attacks. In: 2016 Work-
shop on Fault Diagnosis and Tolerance in Cryptography (FDTC). pp. 47–58.
https://doi.org/10.1109/FDTC.2016.21

37. Zhang, Y., Liu, B., Zhou, Q.: A dynamic software binary fault injection sys-
tem for real-time embedded software. In: The Proceedings of 2011 9th Interna-
tional Conference on Reliability, Maintainability and Safety. pp. 676–680 (2011).
https://doi.org/10.1109/ICRMS.2011.5979375

38. Ziade, H., Ayoubi, R., Velazco, R.: A survey on fault injection techniques 1(2)
(2004)

https://doi.org/10.1109/TDSC.2010.50
http://arxiv.org/abs/1903.02623
http://arxiv.org/abs/1903.02623
https://doi.org/10.1109/CGO.2005.34
http://ieeexplore.ieee.org/document/1402092/
http://ieeexplore.ieee.org/document/1402092/
https://eprint.iacr.org/undefined/undefined
http://arxiv.org/abs/2302.06932
https://doi.org/10.1109/TVLSI.2021.3058162
https://ieeexplore.ieee.org/document/9369856
https://ieeexplore.ieee.org/document/9369856
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/MECO55406.2022.9797144
https://doi.org/10.1109/FDTC.2017.16
https://www.riscure.com/security-highlight-multi-fault-attacks-are-practical/
https://www.riscure.com/security-highlight-multi-fault-attacks-are-practical/
https://doi.org/10.1109/FDTC.2016.21
https://doi.org/10.1109/ICRMS.2011.5979375

	Duplication-Based Fault Tolerance for RISC-V Embedded Software

