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Abstract

FIDO2 is the standard technology for single-factor and
second-factor authentication. It is specified in an open stan-
dard, including the WebAuthn and CTAP application layer
protocols. We focus on CTAP, which allows FIDO2 clients
and hardware authenticators to communicate. No prior work
has explored the CTAP Authenticator API, a critical protocol-
level attack surface that deals with credential creation, dele-
tion, and management. We address this gap by presenting the
first security and privacy evaluation of the CTAP Authenti-
cator API. We uncover two classes of protocol-level attacks
on CTAP that we call CTRAPS. The client impersonation
(CI) attacks exploit the lack of client authentication to tamper
with FIDO2 authenticators. They include zero-click attacks
capable of deleting FIDO2 credentials, including passkeys,
without user interaction. The API confusion (AC) attacks
abuse the lack of protocol API enforcements and confound
FIDO2 authenticators, clients, and unaware users into calling
unwanted CTAP APIs while thinking they are calling legiti-
mate ones. For example, if a victim thinks he is authenticating
to a website, they are deleting their credentials. The presented
eleven attacks are conducted either in proximity or remotely
and are effective regardless of the underlying CTAP transport
(USB, NFC, or BLE). We detail the eight vulnerabilities in the
CTAP specification, enabling the CTRAPS attacks. Six are
novel and include unauthenticated CTAP clients and trackable
FIDO2 credentials. We release CTRAPS, an original toolkit,
to analyze CTAP and conduct the CTRAPS attacks. We con-
firm the attacks’ practicality on a large scale by exploiting six
popular authenticators, including a FIPS-certified one from
Yubico, Feitian, SoloKeys, and Google, and ten widely used
relying parties, such as Microsoft, Apple, GitHub, and Face-
book. We present eight practical and backward-compliant
countermeasures to fix the attacks and their root causes. We
responsibly disclosed our findings to the FIDO alliance and
the affected vendors.

1 Introduction

Fast IDentity Online v2 (FIDO2) is the de-facto standard
for single-factor (passwordless) and second-factor (2FA) au-
thentication. Google, Dropbox, and GitHub [44] designed
FIDO to offer a practical and scalable solution for authen-
tication. FIDO has been widely adopted by industries and
organizations, including Google, Microsoft, and the US gov-
ernment [29]. Market forecasts predict the FIDO market to
rapidly grow from USD 230.6 million in 2022 to USD 598.6
million in 2031 [60]. Yubico, a FIDO authenticator market
leader, sold more than 22 million YubiKey authenticators [66].
This growth will continue because of the recent industry-
wide push towards single-factor passkey-based authentica-
tion [21, 30, 56].

FIDO2 involves three entities: an authenticator that gener-
ates and asserts possession of authentication credentials (e.g.,
public-private key pairs), a relying party that authenticates the
user (e.g., challenge-response protocol based on credentials),
and a client who wants to authenticate to the relying party and
manages the communication between the authenticator and
the relying party. Typically, the authenticator is a dongle, the
relying party is a web server, and the client is a web browser
or a mobile app.

The authenticator and the client communicate using the
Client to Authenticator Protocol (CTAP). CTAP works at the
application-layer and is transported over Universal Serial Bus
(USB), Near Field Communication (NFC), or Bluetooth Low
Energy (BLE). CTAP exposes to the client the CTAP Au-
thenticator API, usable to interact with the authenticator, e.g.,
credential creation, management, and deletion. These API
calls might require User Verification (UV) and User Presence
(UP) authorization. The latest CTAP protocol specification is
the version 2.2 [3].

This work focuses on the CTAP protocol and its security
and privacy guarantees. There are only a few research studies
about CTAP. The authors of [10] performed a provable secu-
rity analysis on CTAP, highlighting unauthenticated DH key
exchange. In a follow-up work [11], they proposed an imper-
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sonation attack exploiting CTAP to register an authenticator
with an arbitrary relying party. The authors in [34] propose a
MitM privacy leak attack on CTAP based on unauthenticated
DH. Other works target the authenticator with fault injection
and side channel physical attacks [43, 55]. The literature on
WebAuthn is extensive, featuring, among others, misbinding,
misauthentication, session hijacking, cookie theft, social en-
gineering, and rogue authenticator attacks [38, 42, 46, 50, 65]
(see Section 10 for more FIDO2 related work).

No prior work investigated the CTAP Authenticator API.
This API is a critical protocol-level attack surface as it enables
the creation, management, and deletion of FIDO2 credentials
and the administration of FIDO2 authenticators. FIDO2 cre-
dentials are essential for security and privacy as they authorize
access to sensitive online services, including social media,
banking, data sharing, e-commerce, etc. A protocol-level at-
tack on the CTAP Authenticator API would enable access
and tamper with any FIDO2 credential stored on any FIDO2
authenticator, regardless of the authenticator’s hardware and
software details. Hence, it is crucial to assess the API’s ex-
pected security and privacy properties and whether they hold
them in practice.

We fill this gap by presenting the first security and privacy
assessment of the CTAP Authenticator APIs. We uncover two
classes of protocol-level attacks on CTAP we call CTRAPS.
The client impersonation (CI) attacks exploit the lack of client
authentication to tamper with a victim authenticator. Some of
the attacks are zero-click (i.e., not require user interaction),
while others are one-click (i.e., require expected user inter-
action). The API confusion (AC) attacks abuse the lack of
protocol API enforcements and confound a FIDO2 authen-
ticator, a client, and an unaware user into calling unwanted
CTAP Authenticator APIs while thinking they are calling le-
gitimate ones (e.g., the user thinks he is authenticating to a
website but he is instead deleting his credentials). In total, we
present five CI and seven AC attacks.

The attacks are conducted in proximity (malicious FIDO2
device close to the victim) or remotely (malicious app in-
stalled on the victim’s phone). The AC attacks require a MitM
position, while the CI attacks target the authenticator. Unlike
prior work, they do not require physical access to the au-
thenticator, a compromised client, or side channel and fault
injection [43, 47]. Moreover, the attacks are stealthy because
they employ CTAP-compliant API calls and do not require
unexpected user interactions (unlike phishing [61] or other
deception techniques [50]).

The CTRAPS attacks have a critical and widespread im-
pact on the FIDO2 ecosystem. They are critical as they enable
the violate security, privacy, and availability of FIDO2 de-
vices. For example, a CI or an AC attacker can (remotely)
factory reset an authenticator, deleting all FIDO2 credentials
and locking out the victim from the related service. More-
over, despite targeting CTAP, the attacks have an impact on
FIDO2 relying parties, e.g., they can delete non-discoverable

credentials stored on the relying party using WebAuthn. They
are widespread as they exploit protocol-level vulnerabilities
in the CTAP application-layer protocol. Hence, they can be
conducted against any FIDO2 device regardless of the CTAP
transport (USB, NFC, and BLE).

The isolate eight vulnerabilities in the CTAP specification
enables the CTRAPS attacks. Six of them are novel within
FIDO2 and include unauthenticated CTAP clients, trackable
FIDO2 credentials, and weak authorization (of destructive
API calls). The vulnerabilities are severe as they affect any
FIDO2 authenticator and client implementing any CTAP ver-
sion, including the latest CTAP2.2 draft. They also indirectly
affect FIDO2 relying parties, as we will explain later. More-
over, we find a implementation flaw on Yubico authenticator
firmware, allowing the leak of sensitive data and user tracking
(CVE-2024-35311). We disclosed it to Yubico, who fixed it.

We present CTRAPS, a new toolkit to experiment with CTAP
and conduct the CTRAPS attacks. The toolkit has three mod-
ules: CTAP testbed, malicious CTAP clients, and Wireshark
dissectors. The testbed allows virtual clients and relying par-
ties to test a FIDO2 authenticator locally and safely over
CTAP. The malicious clients include CI and AC proximity
and remote attack implementations that can be tested on real-
world devices. For example, it ships an Android app and Prox-
mark3 scripts to test the CI attacks over NFC. The dissectors
module includes an extended FIDO2 dissector for Wireshark,
adding new and valuable packet information such as status
codes and support for credential management.

We demonstrate the practicality of the attacks by suc-
cessfully evaluating them on popular FIDO2 authenticators,
clients, and relying parties and conducting them over differ-
ent CTAP transports (USB, NFC). We attack six authentica-
tors from Yubico (including a FIPS-compliant one), Feitian,
SoloKeys, and Google. We conducted the attacks over USB
and NFC. We also exploit ten relying parties offering passkeys
and second-factor authentication, including Microsoft, Apple,
GitHub, and Facebook.

To fix the CTRAPS attacks and their flaws, we design
eight countermeasures that are backward-compliant with the
CTAP standard. The fixes include CTAP client authentica-
tion, stricter authorization requirements for destructive APIs,
introduce a dedicated PIN for destructive operations (e.g.,
credential deletion), and rotate user identifiers and credentials
to mitigate user tracking. They are practical as they rely on
mechanisms already available on the authenticator (e.g., PIN
and LED) and do not require adding extra hardware (e.g., an
extra display).

We summarize our contributions as follows:

• We perform the first assessment of the CTAP Authenti-
cator API. We unveil two classes of CTAP protocol-level
attacks: CI and AC. The attacks compromise the secu-
rity, privacy, and availability of the FIDO2 ecosystem.
For instance, they (remotely) delete FIDO2 credentials,
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track users via FIDO2 credentials, and DoS authenti-
cators. They are enabled by eight CTAP protocol level
vulnerabilities, six of which are new.

• We provide a toolkit to evaluate the CTAP Authenticator
API surface and test our attacks locally in a virtual envi-
ronment or on actual devices. We successfully evaluate
our attacks against popular FIDO2 devices. We exploit
six authenticators, two transports, and ten relying parties.
The affected vendors include key FIDO2 players like
Google, Apple, Microsoft, and Yubico.

• We fix the attacks and their root causes by propos-
ing eight practical and backward-compliant counter-
measures. We responsibly disclosed our findings to the
FIDO2 Alliance and affected vendors.

Responsible Disclosure We responsibly disclosed our find-
ings to the FIDO Alliance in November 2023 [7]. They ac-
knowledged our report, provided feedback in May 2024, and
shared it with their members. In December 2023, we reported
our findings to the affected authenticator manufacturers (i.e.,
Yubico, Feitian, SoloKeys, and Google). Google assigned pri-
ority P2 and severity S2 to our report. Yubico acknowledged
the implementation bug we found, pushed a fix in production,
published a security advisory [70], and created CVE-2024-
35311 [69]. The other manufacturers acknowledged the report
without commenting on it. We also contacted Apple and Mi-
crosoft regarding their weak credential protection policy that
facilitates user tracking and profiling. They responded that
our report has no security implications for their products.

Ethics and Availability We conducted our experiments
ethically. We evaluated our authenticators and accounts. We
did not collect personal data or involve third parties. We will
open source our contributions, including the CTRAPS toolkit,
after responsible disclosure with the FIDO Alliance, the man-
ufacturers, and the relying parties.

2 Background and System Model

We introduce the FIDO2 standard, its underlying Client To
Authenticator Protocol (CTAP), and our system model.

2.1 FIDO2
FIDO2 [4] is an open standard for user authentication based
on asymmetric cryptography and curated by the FIDO Al-
liance. Four entities compose the FIDO2 ecosystem: an au-
thenticator, a client, a user, and a relying party. In a typical
scenario, a user connects his authenticator to the client to
access an online service hosted by a relying party.

The FIDO2 specification includes the WebAuthn and CTAP
application-layer protocols. WebAuthn provides a secure and
private communication channel between a relying party and a
client, and its latest version is WebAuthnL2 [62]. CTAP, the

focus of this work, enables a secure and private connection
between an authenticator and a client via the CTAP Authen-
ticator API. For example, calling MakeCred registers a new
credential, and GetAssertion authenticates an existing one.

A FIDO2 credential is a key pair used to sign and ver-
ify challenges by applying standard cryptographic tech-
niques, such as the Elliptic Curve Digital Signature Algorithm
(ECDSA). Access to the private key of a FIDO2 credential
is safeguarded by encryption using a credential master key
unique to each authenticator and securely stored within the
authenticator’s Secure Element. FIDO2 credentials can be
discoverable or non-discoverable. Discoverable credentials,
also known as passkeys, are stored on the authenticator and
used for passwordless authentication. Non-discoverable cre-
dentials are stored on the web by the relying party and used
for multi-factor authentication.

A FIDO2 credential is bound to three identifiers: the cre-
dential identifier (CredId), the relying party identifier (RpId),
and the user identifier (UserId). CredId is derived from the cre-
dential master key and uniquely identifies a credential. Before
deleting a credential, the client needs to specify a CredId. The
RpId identifies a relying party, usually coincides with its ori-
gin (e.g., login.microsoft.com), and should be considered
public. A relying party randomly generates a UserId when a
user creates his first credential and associates the UserId to
all credentials generated by that user. At registration time, a
relying party can attach additional data to a credential, includ-
ing sensitive or personally identifying information, using the
optional CredBlob FIDO2 extension.

2.2 CTAP
As part of the FIDO2 standard, CTAP has considerably
evolved over time. CTAP1, also known as FIDO U2F (Uni-
versal 2nd Factor), provides phishing-resistant 2FA. CTAP2.0
maintains backward compatibility with CTAP1 while intro-
ducing passwordless authentication. CTAP2.1 [1] adds the
credential protection policy, discoverable credential manage-
ment (i.e., the CredMgmt API), and biometric authentication.
The draft for CTAP2.2 [3] is the latest available version, of-
fering new features such as support for hybrid authenticators
equipped with cameras to scan QR codes.

CTAP relies on two core user authorization mechanisms to
secure API calls: (i) User Verification (UV), which requires
the user to enter a PIN or biometric data, and (ii) User Pres-
ence (UP), which requires the user to press a button on the
authenticator or to bring it into the client’s NFC range. Table 1
shows the most common CTAP Authenticator APIs and their
UV and UP requirements. We describe each API:

MC: MakeCred registers a new credential bound to an online
account with a relying party.

GA: GetAssertion authenticates to a relying party by prov-
ing possession of a credential.
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Table 1: CTAP Authenticator API entries, short names (SN),
UV and UP authorization requirements and support for sub-
commands. Yes1: depends on the client and relying party
configuration, Yes2: depends on API subcommand. In the
CTAP standard, MakeCred is called MakeCredential and
CredMgmt is called CredentialManagement.

CTAP API SN UV UP Subcmd

MakeCred MC Yes Yes No
GetAssertion GA Yes1 Yes1 Yes
CredMgmt CM Yes No Yes
ClientPin CP Yes2 No Yes
Reset Re No Yes No
Selection Se No Yes No
GetInfo GI No No No

CM: CredentialMgmt manages the authenticator’s discover-
able credentials (e.g., enumerate, modify, and delete).

CP: ClientPin handles UV based on a user PIN to be sub-
mitted via the client’s UI.

Re: Reset factory resets the authenticator (i.e., wipes all
discoverable and non-discoverable credentials by re-
generating the credential master key).

Se: Selection selects an authenticator to operate among
the available ones.

GI: GetInfo returns the authenticator’s details (e.g., manu-
facturer, transports, extensions, and settings).

CTAP offers other optional security and privacy mecha-
nisms. The authorization requirements for GetAssertion
depend on the client and relying party configuration. A client
can specify the option up=false to skip UP. At registration
time, a relying party can enforce access control by specifying
a credential protection policy via the optional CredProtect
extension. However, the default policy skips UV, weakening
privacy protection. Authenticators may also feature additional
security mechanisms unrelated to CTAP, such as the FIDO
authenticator certification level [5] and the FIPS [51] certifi-
cation.

The GetAssertion, CredMgmt, and ClientPin APIs of-
fer multiple functionalities through API subcommands. For
example, CredMgmt(GetCredsData) returns the amount of
stored discoverable credentials and CredMgmt(DelCreds)
deletes all discoverable credentials. Compared to their origi-
nal API, some API subcommands have more relaxed require-
ments. For example, ClientPin(KeyAgreement) requests
the authenticator’s public key without requiring UV.

CTAP WebAuthn Relying 
Party

Authenticator Client

UVUP

Client

CTAP

User

MitM

Figure 1: CTRAPS threat model. The user authenticates to
the relying party using a client (e.g., browser) and an authenti-
cator (hardware dongle). The user, when needed, grants UP by
pressing a button on the authenticator and UV by submitting
a PIN to the client. We study two attacker models: (i) a client
impersonation attacker targeting the authenticator over CTAP
(left), (ii) a MitM attacker in the CTAP channel between the
authenticator and the client.

2.3 System Model

Figure 1 shows the standard FIDO2 system model [4], com-
posed by an authenticator, a client, and a relying party. The
user connects the authenticator to the client to authenticate on
a service hosted by the relying party. The entities support up
to CTAP2.2 and WebAuthnL2 (i.e., the latest and supposedly
most secure FIDO2 protocols). We describe each entity in
detail.

Authenticator The authenticator is a FIDO2 roaming au-
thenticator: a physical device carried around by the user that
can be connected to the client (e.g., a USB/NFC dongle). The
authenticator runs a CTAP server that exposes the CTAP Au-
thenticator API. The API is accessible over USB, NFC, and
BLE, which are the standard CTAP transports. The authenti-
cator supports FIDO2’s UP (e.g., via a button press) and UV
(e.g., via a user PIN) user authorization mechanisms. It stores
discoverable credentials and the credential master key.

Client The client is a FIDO2 client handling the commu-
nication between the authenticator and the relying party. It
exposes a CTAP client to the authenticator and a WebAuthn
client to the relying party. The client could be a web browser,
a mobile app for Android [26] or iOS [27], or a command line
tool like the Yubico CLI [68].

Relying party The relying party is an online service that
relies on FIDO2 passwordless or multi-factor authentication.
It runs a WebAuthn server that responds to FIDO2 registration
and authentication requests over TLS from the client. The
relying party stores non-discoverable credentials, and user and
credential identifiers. Offline operations on the authenticator,
like deleting discoverable credentials, indirectly affect the
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relying party by making the user unable to log into their
online service.

User The user owns an authenticator and a device running
the client, e.g., a YubiKey and a laptop. He utilizes his authen-
ticator to register FIDO2 credentials and authenticate to the
associated relying party. To do so, he connects his authentica-
tor to the client and provides UV and UP, if necessary. The
user locally manages the authenticator via the client without
connecting to a relying party. For example, he can check his
discoverable credentials and change the authenticator’s PIN.

3 CTRAPS Client Impersonation Attacks

3.1 Introduction and Motivation

We unveil the four CTRAPS Client Impersonation (CI) at-
tacks exploiting the CTAP Authenticator API. The attacks
factory reset the authenticator via the Reset API, track the
user via GetAssertion, lock the authenticator via ClientPi
n, and profile the authenticator via GetInfo. They exploit five
protocol-level vulnerabilities described later in Section 5.1
and the unrealistic FIDO reference threat model we discuss
in Section 8.2.

The attacks advance the state of the art. Prior CI attacks
required: (i) to trick the user to obtain authorization [38], (ii)
a compromised CTAP client (e.g., malicious browser exten-
sion) [11], (iii) or physical access to the authenticator [65].
Our attacks instead are: (i) zero-click, as we bypass UV and
UP authorizations which require user interaction; (ii) require
no client compromise as they are conducted from an attacker-
controller device (e.g., an NFC reader); and (iii) require no
physical access but rely on a proximity-based attacker con-
ducting the attacks over NFC. Next, we introduce the CI
attacker model and describe the attacks.

3.2 CI Attacker Model

The CI attacker model assumes an adversary impersonating a
CTAP client to an authenticator, as shown in Figure 1. The
attacker is in proximity (e.g., an NFC reader) or can connect
to the authenticator remotely (e.g., a mobile app with Internet
access). The attacker can send legitimate CTAP commands
to the authenticator. She cannot modify the authenticator’s
firmware or compromise a legitimate FIDO2 client and rely-
ing party. She has no physical access to the authenticator.

The attacker goal is to compromise the authenticator secu-
rity, privacy, and availability by exploiting the CTAP Authen-
ticator API (introduced in Section 2). For example, she wants
to tamper with discoverable credentials stored on the authen-
ticator (security), track a user via the authenticator (privacy),
or DoS the authenticator (availability).

Authenticator Attacker

Reset, UP

NFC bypasses User Presence (UP)

Deletes
all creds

Resets
settings
and data

Reset OK

Figure 2: CI1 attack. Factory reset authenticator via Reset.
While in NFC range, the attacker calls the Reset API. Over
NFC, the authenticator skips UP and instantly factory resets,
deleting its discoverable and non-discoverable credentials.

3.3 CI Attacks Description

We describe the four CI attacks. We label them CI1, CI2, CI3,
and CI4.

CI1: Factory reset authenticator In CI1, the attacker
abuses the Reset API to factory reset an authenticator, as
shown in Figure 2, deleting discoverable and non-discoverable
credentials, PIN, user preferences, and stored data. The at-
tacker connects to the authenticator and, despite not authenti-
cating, issues a factory reset command (requiring UP). She
bypasses the UP check as, according to the CTAP standard,
connecting over NFC implies user presence. This novel trick
results in a zero-click factory reset over NFC. Instead, CI1 is
a one-click factory reset when deployed over USB, as the UP
bypass is only available to the NFC transport. A factory reset
wipes out all credentials, as it erases the credential master key
necessary for decryption. It also deletes the authenticator’s
settings, including the PIN, user preferences, and stored data.
Then, the authenticator confirms the successful reset.

CI2: Track user from credentials In CI2, instead of us-
ing GetAssertion API for authentication, the attacker ex-
ploits it to leak identifying information and track the user,
as shown in Figure 3. The attacker does not require UV as
she only targets relying parties that register credentials using
the weak and default CredProtect=UVOptional default pol-
icy, such as Microsoft and Apple. She does not require UP
either, as her GetAssertion command contains the up=false
option. As a result, she achieves a zero-click leak of all cre-
dential and user identifiers registered with specific relying
parties. With the identifiers, she fingerprints the users and
tracks them over multiple connections by performing CI2
each time and looking for matching fingerprints. CI2 is ef-
fective even on credentials protected by stronger credential
protection policies (i.e., CredProtect=UVRequired and Cred-
Protect=UVOptionalWithCredIDList), but requires UV or the
knowledge of credential identifiers.
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Authenticator Attacker

RpIdList using CredProtect=UVOptional

GA, RpIdList, up=false

GA OK, CredIdList, UserIdList

FingerprintList =
HASH(CredIdList, UserIdList)

Figure 3: CI2 attack. Track user from credentials via
GetAssertion. The attacker connects to the authenticator
and calls the GetAssertion API (GA in the figure). She skips
UV by targeting relying parties using the weak and default
CredProtect default policy and skips UP by passing up=false.
The authenticator returns a list of credential and user identi-
fiers used by the attacker to fingerprint the authenticator and
track the user.

CI3: Force authenticator lockout In CI3, the attacker
abuses the ClientPin, which protects the authenticator from
PIN brute-forcing, to lock the authenticator or even force a
factory reset. Through the GetPinToken subcommand, she
submits several wrong PIN guesses in a row to the authen-
ticator. After three wrong guesses, the device enters a soft
lock mode preventing further actions until a reboot (i.e., leav-
ing and re-entering a client’s NFC range or detaching and
re-attaching to a USB port). After a maximum number of
failed PIN attempts (CTAP mandates eight), the authentica-
tor enters a hard lock mode that is only restorable through a
factory reset, which wipes out all credentials and can lead to
account loss.

CI4: Profile authenticator In CI4, the attacker calls Ge
tInfo to leak the authenticator details as a stepping stone
to more advanced attacks, profile the user, and track him in
future connections, and assess whether the authenticator is
vulnerable to an implementation-specific attack like [69], The
leaked details include the manufacturer, model, and FIDO2
version, and the supported algorithms, transports, options, and
extensions. The authenticator also discloses user settings, such
as FIDO2 being disabled over a specific transport.

4 CTRAPS API Confusion Attacks

4.1 Introduction and Motivation

We present the seven CTRAPS API Confusion (AC) attacks
taking advantage of a novel attack technique we define as API
confusion.

API confusion tricks a client, an authenticator, and their
user into calling an unwanted CTAP Authenticator API. The
unwanted API call must have the same or lower UV and UP

requirements of the confounded API. This technique is very
effective as it does not require social engineering [61] or other
deception techniques [50] to trick the user into calling a bad
API. The user cannot detect ongoing API confusion because,
unlike prior attacks, he only performs expected actions (e.g.,
does not grant UV if the API he calls does not require it).
The attacks exploit protocol-level vulnerabilities we outline
in Section 5.1 and the FIDO reference threat model in Sec-
tion 8.2.

The AC attacks represent a new class of attacks that has
not been explored. As shown in Table 7, prior work on CTAP
eavesdropped on unencrypted CTAP traffic and exploited the
unauthenticated Diffie-Hellman in a MitM attack but did not
inspect the Authenticator API. Physical access and side chan-
nel attacks targeted the authenticator to leak its credential mas-
ter key, while the remaining works put CTAP on the sidelines,
targeting WebAuthn instead with authenticator rebinding and
session hijacking. Next, we introduce our attacker model and
describe the AC attacks.

4.2 AC Attacker Model
The AC attacker model assumes a man-in-the-middle (MitM)
attacker between the authenticator and the client, as shown in
Figure 1. The attacker is either in proximity to the authenti-
cator (e.g., a NFC skimmer) or can contact the authenticator
from remote (e.g., using a remotely controllable USB hub).
She maintains stealthiness by not triggering unexpected be-
haviors. For example, she calls APIs when the user is oper-
ating the authenticator and does not require extra UV and
UP authorizations. She cannot modify the authenticator’s
firmware or compromise a legitimate FIDO2 client and rely-
ing party. She has no physical access to the authenticator.

The attacker goal is to violate the authenticator security,
privacy, and availability by exploiting the CTAP Authenti-
cator API (introduced in Section 2). For example, she wants
to leak and delete the discoverable credentials stored in the
authenticator, including passkeys (security), track a user via
the authenticator (privacy), or DoS the authenticator (avail-
ability).

4.3 AC Technique and Combinations
The seven AC attacks rely on the API confusion attack tech-
nique. The attacker intercepts a call to API A and changes (i.e.,
confounds) it to API B. The adversary only requires that API B
has the same or lower UV and UP authorization requirements
than API A. The AC technique has six steps:

1. The user calls API A through the client. The API might
require UV and/or UP.

2. If required by API A, the attacker obtains UV by exe-
cuting the CTAP PIN/UV authentication protocol v1
(via ClientPin). The user inputs the PIN on the client,
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Table 2: There are 49 ways to perform AC against 7 CTAP
Authenticator APIs. The user intends to call API A, instead is
tricked into calling API B. ✓1: proximity-based attacker, ✓2:
default CredProtect=UVOptional if credential protection is
enabled, n/a: not applicable.

CM Re GA MC CP Se GI

MC ✓ ✓ ✓ n/a ✓ ✓ ✓

GA ✓ ✓ n/a ✓ ✓ ✓ ✓

CM n/a ✓1 ✓ ✓1 ✓ ✓ ✓

CP ✓ ✓1 ✓ ✓1 n/a ✓ ✓

Re n/a n/a ✓2 n/a ✓ ✓ ✓

Se n/a ✓ ✓2 n/a ✓ n/a ✓

GI n/a ✓1 ✓2 ✓ ✓ ✓ n/a

Total 3 6 6 4 6 6 6

which encrypts it and submits it to the authenticator. The
authenticator responds with an encrypted User Verifica-
tion Token (UVT) that will be attached to any API call
requiring UV.

3. The attacker calls API B rather than API A based on the
AC combinations in Table 2.

4. If required by API A, the attacker obtains UP from the
user, who is unable to realize he is under attack. The
attacker can only obtain UP once, as multiple requests
would alarm the user. This step is skipped over NFC as
proximity implies UP.

5. The authenticator executes API B and returns a success
message.

6. The attacker informs the victim via the CTAP client
that API A was successfully executed with compatible
authorizations,

The AC strategy is effective on 7 CTAP Authenticator
APIS and provides 49 ways to confound the victim as shown
in Table 2. Multiple (API A, API B) pairs achieve the same
goal. The amount of available pairs depends on their UV and
UP requirements and, in the case of AC3, also on the Cred-
Protect policy. The first column lists seven APIs the user
intends to call (API A), and the remaining columns represent
the API called by the attacker (API B). For instance, AC1 is
available whenever the user calls MakeCred, GetAssertion,
or ClientPin, confounding the call to CredMgmt. Some com-
binations are only feasible by a proximity-based attacker or
under the default CredProtect policy. An API cannot be con-
founded with itself or APIs with incompatible authorization
requirements.

Authenticator Attacker User

API A, UV

User Verification (UV)

CM(GetCredsData), UV

StoredCredsAmount

CM(EnumRps), UV

RpIdList

CM(EnumCreds), UV, RpIdList

CredIdList

CM(DelCreds), UV, CredIdList

Deletes all
disc. creds

CM(DelCreds) OK API A OK

Figure 4: AC1 attack. Delete discoverable credentials at-
tack with proximity. The user intends to call API A, requiring
UV but not necessarily UP. For example, GetAssertion,
ClientPin, or MakeCred. The attacker obtains UV from the
unsuspecting user. Instead of API A, she calls CredMgmt (CM
in the figure). She executes four CredMgmt subcommands,
which list and then delete all discoverable credentials on the
authenticator.

4.4 AC Attacks Description

We describe the seven AC attacks. We label them AC1, AC2,
AC3, AC4, AC5, AC6, and AC7. The attacks are related to the
second to last column of Table 2. AC1 exploits all possible
ways to call CM, AC2 to call Re, and so on.

AC1: Delete discoverable credentials In AC1, the attacker
abuses the CredMgmt API to delete the discoverable creden-
tials on the authenticator, as shown in Figure 4. The user in-
tends to call API A, which requires UV but not necessarily UP,
such as GetAssertion, ClientPin, or MakeCred. Instead,
the attacker executes four separate CredMgmt subcommands,
none of which require UP. First, she checks the existence of
discoverable credentials to erase (StoredCredsAmount) via Cr
edMgmt(GetCredsMetadata). Second, she retrieves the list
of relying parties stored on the authenticator (RpIdList) via
CredMgmt(EnumRps). Third, she uses RpIdList to retrieve
the list of stored credential identifiers (CredIdList) via CredM
gmt(EnumCreds). Fourth, she uses CredIdList to delete all
discoverable credentials via CredMgmt(DelCreds). Finally,
she falsely returns API A OK to the user.

AC2: Factory reset authenticator In AC2, the attacker
exploits the Reset API to factory reset the authenticator,
similar to CI1. Since Reset over USB requires UP, but not
UV, an attacker can confound MakeCred, GetAssertion, and
Selection into a Reset call. An attacker over NFC, able to
bypass UP, can also confound CredMgmt, ClientPin, and G
etInfo.
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AC3: Track user from credentials In AC3, the attacker
misuses the GetAssertion API to leak unique identifiers
as fingerprints and track the user, similar to CI2. She can
confound MakeCred, CredMgmt, and ClientPin into a GetAs
sertion call, if she wants to access credentials protected by
the CredProtect=UVRequired or CredProtect=UVOptional
WithCredIDList policies. Additionally, the attacker can also
confound Reset, Selection, and GetInfo if she only wants
to access credentials protected by the weak CredProtect=UV
Optional default policy.

AC4: Fill authenticator credential storage In AC4, the
attacker repeatedly calls MakeCred to register new discover-
able credentials, until the authenticator’s credential storage is
full. She exploits the rk=true option to enforce the generation
of discoverable credentials over non-discoverable ones. A full
storage compromises the authenticator’s availability as the
user cannot register new discoverable credentials.

AC5: Force authenticator lockout In AC5, the attacker
abuses the ClientPin API to lock the authenticator and force
a mandatory factory reset, similar to CI3. Although Clien
tPin requires UV, the attacker wants to fail multiple PIN
attempts (i.e., she does not need UV). Consequently, she can
confound any API call into a ClientPin call, as she does not
need authorization.

AC6: Authenticator DoS In AC6, the attacker calls the S
election API to trigger an unwanted UP check to keep the
authenticator busy and to deny availability. Since the attacker
can detect when the busy state ends (e.g., the user pressed the
authenticator’s button or 30 seconds have passed), she can
prolong the attack indefinitely.

AC7: Profile authenticator In AC7, the attacker invokes
the GetInfo API to retrieve the authenticator’s details. Then,
similar to CI4, she uses this information as a stepping stone to
other attacks, to track the user, or to check whether the authen-
ticator is vulnerable to implementation-specific attacks [69].
Not requiring UV or UP, the attacker can confound any API
call into a GetInfo call.

5 CTRAPS Vulnerabilities and Impact

5.1 Vulnerabilities
The CTRAPS attacks are enabled by eight vulnerabilities we
discovered in the CTAP specification. Six of them are novel,
while V2 was discussed in the misbinding and misauthentica-
tion attacks of [64]. Still, this is the first work exploiting V2
via AC. We describe them and how they map to the CI and
AC attacks presented in Sections 3 and 4.

V1: Unauthenticated CTAP client The CTAP client does
not authenticate to the user, the authenticator, or the relying
party. FIDO2 clients (and, by extension, CTAP clients) have
no identity, meaning that the authenticator cannot distinguish
an official client developed by its manufacturer from a third-
party client. The authenticator has no choice but to trust any

connecting client, including compromised ones.
V2: No authenticator feedback about API calls Despite

having an LED, the authenticator does not provide the user
with visual feedback when invoking APIs or granting UV
and UP. The user cannot confirm whether the intended API
has been called (or confounded) and which API utilized the
granted UV and UP authorizations.

V3: NFC range provides UP Authenticators inside the
NFC range of a FIDO2 client automatically obtain UP without
the user pressing a button on the authenticator. Bypassing UP
decreases the security protections of MakeCredential, G
etAssertion, and Reset to only UV or no authorization
requirement at all.

V4: Weak destructive APIs authorization Destructive
API calls, such as credential deletion (CredMgmt) or authen-
ticator factory reset (Reset), and non-destructive ones, like
authentication (GetAssertion) are authorized by the same
UV PIN. For example, the user intends to authenticate (non-
destructive) and provides UV and UP, instead the attacker
factory resets the authenticator (destructive).

V5: User trackable via CredId and UserId Discoverable
credentials contain static and unique CredId and UserId, ex-
ploitable to reliably track users. These values can be obtained
without UV or UP via the GetAssertion API. We note that
the more credentials are stored in the authenticator, the more
this vulnerability is effective as each credential contributes to
the user fingerprint.

V6: Reset does not require UV The Reset should en-
force stricter authorization requirements. Despite being de-
structive, the Reset API does only require UP. Anyone close
to the authenticator can obtain UP by pressing its button or
being in NFC range.

V7: CredMgmt does not require UP The CredMgmt API
does not require UP, but only UV, to delete discoverable
credentials. The user submits the PIN only once but can delete
any number of credentials. In contrast, creating N credentials
also requires N UP checks.

V8: Selection is usable for DoS The Selection API
can be used to continuously request UP checks to the Authen-
ticator and put it in an unresponsive state as the API is not
rate limited.

Mapping to attacks Table 3 maps the eight vulnerabilities
(columns) to the eleven CTRAPS attacks. V1 is the root
cause of CI and AC attacks, as it allows an untrusted client
or a MitM attacker to connect to the authenticator without
authenticating it. V2 provides stealthiness to AC attacks since,
without visual feedback, the user cannot confirm whether the
API he called has been confounded. Due to V3, CI1 and CI2
over NCF require zero clicks instead of one (i.e., UP check).
V3 also unlocks several new API confusion combination, such
as GetInfo (no authorization requirement) into Reset (V3
bypasses UP.

V4 allows to perform the destructive CI2, CI3, AC1, AC2,
and AC5 even when the user calls a non-destructive API, such
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Table 3: Mapping the eight vulnerabilities (columns) to the
four CI and seven AC attacks.

V1 V2 V3 V4 V5 V6 V7 V8

CI1 ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗

CI2 ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

CI3 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

CI4 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

AC1 ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗

AC2 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗

AC3 ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

AC4 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

AC5 ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

AC6 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

AC7 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

as Selection. V5 enables the usage of identifiers as persis-
tent fingerprints, resulting in two user tracking attacks (i.e.,
CI2 and AC3). V6 allows for a zero-click factory reset attack
(i.e., CI1) over NFC. V7 allows for a one-click credential dele-
tion attack (i.e., AC1). V8 enables a persistent and reliable
DoS attack on the authenticator (i.e., AC6).

5.2 Impact

The eleven CTRAPS attacks break the security, privacy, and
availability of the FIDO2 ecosystem, with widespread and
severe implications. We support our claims with the experi-
mental results in Section 7.

Our attacks exploit protocol-level CTAP vulnerabilities,
working regardless of the transport and the implementation
details of the authenticator, the client, and the relying party.
They threaten millions of authenticators in the wild, and their
respective users, with destructive and scalable attacks. Being
at the protocol-level, the root causes are complex to fix, and
most authenticators (e.g., Yubikeys) do not support firmware
updates anyways, leaving them vulnerable forever.

Our attacks affect users, authenticators, relying parties, and
clients alike. For example, by erasing credentials, we remove
the ability to perform web authentication from users and rely-
ing parties, by locking the authenticator, we prevent its usage,
and by performing API confusion, we trick the client into be-
lieving that a confounded API call was executed legitimately
instead.

Anyone can deploy our practical and low-cost attacks, as
they require minimal equipment, such as an NFC reader or a
smartphone. However, their realistic outcome causes concrete
and immediate damage with limited or no user interaction
and notice. For instance, we lost access to our test Google
and Apple ID accounts because we could not pass 2FA after
deleting our credentials with AC1. No prior attack achieved
similar goals, such as credential tampering and user tracking.

The CI attacks over NFC do not require compromising the
user device or any interaction. They work out-of-the-box on
any NFC-enabled device. The AC attacks are stealthy and
persistent. They do not trigger abnormal behavior, only asking
for UV and UP when the user expects it. As a direct conse-
quence, the user will likely trigger the attacks on multiple
occasions, not realizing the lingering threat. CI and AC at-
tacks can even be combined. For example, the attacker can
obtain a fingerprint with AC7 and track the user with CI2.

6 Implementation

We present CTRAPS, a novel toolkit implementing the
CTRAPS attacks. It has three modules: a CTAP testbed (Sec-
tion 6.1), the malicious CTAP clients (Section 6.2), and the
Wireshark dissectors (Section 6.3). We describe how we im-
plemented each module and their novelties.

6.1 CTAP Testbed
Our CTAP testbed is a Python3 module that includes a virtual
relying party with a customizable WebAuthn server and a
virtual client talking to a real authenticator over CTAP and
a virtual relying party over WebAuthn. The testbed has two
benefits: (i) It allows to perform experiments locally, safely,
and without an Internet connection, without interacting and
tampering with real relying parties. (ii) It allows to simulate
different attack scenarios by realistically replicating client
and server configurations, including the credential protection
policy (CredProtect). Our virtual relying party and client are
extensions of the python-fido2 [67], Yubico’s open-source
Python library for FIDO2.

The virtual relying party is implemented as a customizable
WebAuthn server running on our testbed, and not on a network
like an ordinary relying party. We extended existing code by
adding standard relying party templates and fast customiza-
tion of the server’s parameters. For example, we implemented
a template imitating Microsoft relying party, including the
same identifier (i.e., login.microsoft.com). Options such as the
credential protection policy and the attestation verification.
The virtual relying party was instrumental in setting up the
authenticator in the correct state for our CI and AC attacks
(e.g., registering credentials with a weak protection policy)
quickly and without involving real relying parties. A separate
malicious client deploys the actual attacks.

The virtual CTAP client offers a low-level API to interact
with the authenticator and the virtual relying party. It can send
CTAP commands in any order with custom or even malformed
payload values. We extended the existing code by adding a set
of common and abnormal use cases useful for security testing
and vulnerability assessment. For example, authentication to
a relying party or a mass credential registration that fills the
entire memory of the authenticator. Each use case includes
appropriate and configurable settings and capabilities, such as
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Figure 5: Our malicious Android CTAP client performing
zero-click CI2 over NFC, leaking relying party and credential
identifiers.

the CTAP authorization requirements, challenge, origin, and
CTAP rk and up options.

The testbed requires the user to authorize direct access to
the authenticator. Linux requires adding extra udev rules, Ma-
cOS asks to accept a notification on the screen, and Windows
needs admin privileges. However, this behavior is expected by
the user and does not hinder the effectiveness of our attacks
(i.e., the user approves the notification on MacOS as he is the
one plugging in the authenticator and wanting to use it).

6.2 Malicious CTAP Clients
In our toolkit, we develop three malicious CTAP clients, de-
ploying the CI and AC attacks. We also release five video
demonstrations of our attacks on real authenticators.

We implemented the CI attacks on a malicious CTAP client
running on an Android app. Currently, only attacks over NFC
are fully functional, but we plan to add the USB transport in
the future, as it only requires engineering effort.

The app supports both a proximity and a remote CI attack
mode. In the proximity mode, the attacker controls the app
and constantly scans for authenticators to connect to and
exploit. For example, the app can perform CI2 to track the
user with leaked identifiers, as shown in Figure 5. In the
remote mode, the app spoofs a legitimate NFC app, enticing
the user to connect their authenticator (e.g., by asking for
FIDO2 authentication). We include in the app a CBOR parser
for CTAP that we wrote.

The app does not need root privileges and asks at runtime
for the dangerous android.permission.NFC, required to
access the android.nfc [24] API. However, this is not an
issue, as we are not trying to hide the app’s NFC capabilities.
The app also needs the standard install-time android.permi
ssion.INTERNET to exfiltrate the data collected through CI2
and CI4.

We also deployed the CI attacks using a Proxmark3 [54],
an open-source and programmable development kit for NFC

Table 4: Details about the six authenticators we attack. All
authenticators support USB and NFC, except OpenSK, which
only supports USB. FVer: firmware version, OSF: open-
source firmware, DCr: discoverable credentials.

Authenticator Manuf Year FVer OSF DCr

YubiKey 5 Yubico 2018 5.2.7 No 25
YubiKey 5 FIPS Yubico 2021 5.4.3 No 25
Feitian K9 Feitian 2016 3.3.01 No 50
Solo V1 SoloKeys 2018 4.1.5 Yes 50
Solo V2 Hacker SoloKeys 2021 2.964 Yes 50
OpenSK Google 2023 2.1 Yes 150

(RFID). By equipping the Proxmark3 with a long-range high-
frequency antenna, we were able to extend the reach of our
attacks. The long-range antenna has an indicative range of
100 to 120 millimeters, as opposed to the 40 to 85 millimeters
of the built-in antenna. We developed the CI attacks in a
custom Lua script using the Proxmark3 ISO14443 Type A
module (i.e., read14a). The Proxmark communicates with
the authenticator utilizing the same APDU commands we use
for the Android app.

We implemented the AC attacks in an Electron app simu-
lating a MitM attacker. The app runs a malicious CTAP client
developed as a Javascript library. Our code imports the node-
hid module to access the USB HID traffic. It scans for local
HID devices, identifies the authenticator from their properties
(e.g., the product and manufacturer fields), and connects to it.
The client sends binary data over USB to the authenticator,
achieving the same results as MitM attackers.

6.3 FIDO Wireshark Dissectors

We extended the official Wireshark FIDO2 dissectors [71]
with new and valuable features. We add support for the Cred
Mgmt API. We include parsers for WAITING and PROCESSING
keepalive status codes that identify when authenticators are
unavailable waiting for UP. We parse the authenticator’s capa-
bilities in the CTAPHID_INIT message, which helps test AC7.
We provide an improved way to display CTAP data when
dissecting CTAPHID (USB) and ISO7816/ISO14443 (NFC).
Finally, we add missing vendor and product identifiers to the
dissector tables. We release the dissectors as a Lua script (i.e.,
fido2-dissectors.lua) that can be found in our toolkit.

7 Evaluation

We successfully evaluated our eleven attacks against six popu-
lar authenticators from Yubico, Feitian, SoloKeys, and Google
supporting CTAP over USB and NFC, and ten well-known
relying parties, including Microsoft, Apple, GitHub, and Face-
book. Our evaluation includes relying parties because their

10



Table 5: CI and AC attacks on six authenticators. The first column lists the authenticators’ names. The remaining columns report
our four CI and seven AC attacks on CTAP. ✓: attack is effective on the authenticator, n/a: not applicable as the authenticator
does not implement the Selection API.

Authenticator CI1 CI2 CI3 CI4 AC1 AC2 AC3 AC4 AC5 AC6 AC7

YubiKey 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

YubiKey 5 FIPS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

Feitian K9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

Solo V1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

Solo V2 Hacker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OpenSK ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CI1: Factory reset authenticator, CI2: Track user from credentials, CI3: Force authenticator lockout, CI4: Profile authenticator, AC1: Delete
discoverable credentials, AC2: Factory reset authenticator, AC3: Track user from credentials, AC4: Fill authenticator credential storage, AC5:

Force authenticator lockout, AC6: Authenticator DoS, AC7: Profile authenticator.

credential protection policy affects our attacks (i.e., by requir-
ing UV). At the same time, operations on the authenticator
(i.e., deleting credentials) indirectly affect relying parties due
to the user losing access to his online accounts.

We tested the CI attacks using the malicious Android CTAP
client and the Proxmark3, and the AC attacks using the Elec-
tron app that simulates a MitM position in the USB traffic
(for more details about our toolkit, refer to Section 6).

We present our evaluation setup and results.

7.1 Setup
Authenticators We evaluate six popular FIDO2 authentica-
tors. Table 4 shows their technical details. The YubiKey 5
NFC, YubiKey 5 NFC FIPS, and Feitian NFC K9 are closed-
source and do not support firmware updates, The Solo V1,
Solo V2 Hacker, and Open Security Key (OpenSK) have an
open-source firmware (OSF) that we updated to their latest
version. The authenticators support USB and NFC, except for
OpenSK, which has an NFC module but supports only USB.
The Solo V1 requires a button press to activate NFC. We did
not find any FIDO2 authenticator supporting BLE.

The authenticators store a maximum of 25 (Yubico), 50
(Feitian and SoloKeys), or 150 (OpenSK) discoverable cre-
dentials. The YubiKey 5 FIPS is FIPS140-2 compliant. Hence,
it should provide strong security guarantees. We run OpenSK
on an NRF52840 dongle, but the attacks could be tested on
any board supporting OpenSK.

Relying parties Our list of relying parties covers perva-
sive and heterogeneous online services, including software as
a service, social, gaming, cryptographic signing, authentica-
tion, and cloud storage. We registered our authenticators with
ten FIDO2 relying parties: Adobe, Apple, DocuSign, Face-
book, GitHub, Hancock, Microsoft, NVidia, Synology, and
Vault Vision. Some offer Single Sign-On (SSO), enabling ac-
cess to multiple services. For example, a single set of FIDO2
credentials can log into Microsoft, OneDrive, Outlook, and
Minecraft. Consequently, erasing a single credential has a

widespread effect on multiple online services.
CTRAPS toolkit We ran the CTAP testbed and the Elec-

tron app on a Dell Inspiron 15 3502 laptop (OSes: Ubuntu
22.04.3 LTS and Windows 11 Home) and on a MacBook Pro
M1 (OS: MacOs Ventura 13.4). We connected the authentica-
tor by plugging it into a USB port.

We installed the malicious CTAP client Android app on a
rooted Google Pixel 2 (OS: Android 11), a non-rooted RealMe
11 Pro (OS: Android 14) and Xiaomi Redmi Plus 5 (OS:
Android 8.1). Root access was not required and did not affect
the attack in any way. We equipped a Proxmark3 RDV4 with a
long-range high-frequency antenna to extend the range of our
NFC attacks. We connected the authenticator to the Android
app and the Proxmark3 by placing it within NFC range.

7.2 Authenticators Results
Table 5 shows the evaluation results for the CI and AC attacks.
We tested the CI and AC attacks in proximity (NFC) and re-
motely (malicious app). We successfully ran the attacks on all
tested authenticators, including a recent and FIPS-compliant
YubiKey. Four AC6 attacks are not applicable as the related au-
thenticators do not support the Selection API. As expected,
since we attack CTAP at the protocol level, the attacks are
effective regardless of the CTAP transport (i.e., USB or NFC)
or the authenticator’s software and hardware.

We also found a CredMgmt implementation vulnerability
on the YubiKey 5 and YubiKey 5 FIPS, now tracked with
CVE-2024-35311 [69]. An authenticator should not execute
the subcommand CredMgmt(EnumRpsGetNextRp), unless C
redMgmt(EnumRpsBegin) was called first. This is relevant
because the latter requires UV, the former does not. How-
ever, Yubico failed to implement this requirement due to an
incorrect handling of the authenticator’s state. We exploit
this flaw to perform a zero-click relying party leakage. We
repeatedly call CredMgmt(EnumRpsGetNextRp), which does
not require UV and is not affected by CredProtect, to reveal
all relying parties, except one, linked to the discoverable cre-
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Table 6: CTRAPS attacks on ten relying parties. The first and second columns list the relying parties’ names and identifiers.
The third column highlights whether they register discoverable (Disc, DiscWeak) or non-discoverable (NonDisc) credentials.
We indicate with DiscWeak a relying party using the default and weak CredProtect=UVOptional policy. Columns four, five,
and six specify the effect of each attack. n/a: the attack is not applicable because the relying party currently does not support
discoverable credentials.

Rp RpId Cred Delete Creds Track User DoS Authenticator

Adobe adobe.com Disc AC1, CI1, AC2 CI2, AC3 AC4, CI3, AC5, AC6
Apple apple.com DiscWeak AC1, CI1, AC2 CI2, AC3 AC4, CI3, AC5, AC6
DocuSign account.docusign.com NonDisc CI1, AC2 n/a CI3, AC5, AC6
Facebook facebook.com NonDisc CI1, AC2 n/a CI3, AC5, AC6
GitHub github.com Disc AC1, CI1, AC2 CI2, AC3 AC4, CI3, AC5, AC6
Hancock hancock.ink Disc AC1, CI1, AC2 CI2, AC3 AC4, CI3, AC5, AC6
Microsoft login.microsoft.com DiscWeak AC1, CI1, AC2 CI2, AC3 AC4, CI3, AC5, AC6
NVidia login.nvgs.nvidia.com Disc AC1, CI1, AC2 CI2, AC3 AC4, CI3, AC5, AC6
Synology account.synology.com Disc AC1, CI1, AC2 CI2, AC3 AC4, CI3, AC5, AC6
Vault Vision auth.vaultvision.com Disc AC1, CI1, AC2 CI2, AC3 AC4, CI3, AC5, AC6

dentials stored on the authenticator. Given a sufficiently large
amount of relying parties, this information can also be used
to fingerprint and track the user.

Depending on their complexity, the proximity CI and AC
attacks required 50 to 500 milliseconds within the NFC range.
For example, AC1 takes the longest because it involves signif-
icantly more CTAP messages than any other attack. Typically,
a smartphone’s NFC range is four centimeters or less [8], but,
on authenticators, we only achieved up to two centimeters
of range. The Proxmark3 built-in antenna also reached up
to two centimeters, which we extended up to six and a half
centimeters with a long-range antenna. However, prior work
demonstrated that, with specialized equipment, the NFC range
can be extended up to 50 centimeters [41].

We confirmed on all six authenticators that, as prescribed
by CTAP, a factory reset over USB can only be executed if
the device has been plugged into the USB port within the last
ten seconds. Therefore, we CI1 and AC2 over USB features
this additional constraint.

7.3 Relying Parties Results

Table 6 shows that the CTRAPS attacks directly or indirectly
affect all evaluated relying parties, even without sending We-
bAuthn messages. We exploit eight relying parties supporting
discoverable credentials, including two using a weak Cred-
Protect policy, and two employing non-discoverable ones.

AC1, CI1, and AC2 prevent access to a relying party via
credential deletion. CI2 and AC3 utilize the user identifiers a
relying party provides to track users. AC4, CI3, AC5, and AC6
indirectly prevent relying parties from authenticating regis-
tered authenticators. Since AC1 and AC4 target discoverable
credentials, they do not apply to relying parties registering
non-discoverable ones, like DocuSign and Facebook.

Among the relying parties supporting discoverable creden-
tials, we found that Microsoft and Apple rely on the weak and
default CredProtect policy. As a consequence, performing
CI2 and AC3 on them does not require UV.

8 Discussion

8.1 Comparison with prior FIDO attacks

Table 7 compares our work with relevant attacks on FIDO2.
The CI attacks are the first client impersonation attacks on
FIDO2 (CTAP2+). While the AC attacks are the first API con-
fusion attack on FIDO2. The CI attacks are low-cost as they
do not require a compromised client or user device or prior
knowledge of user secrets (e.g., credential identifiers). The
AC attacks have a moderate cost, as they require a man-in-the-
middle position between the authenticator and the client. The
CTRAPS attacks have a higher impact than most other pre-
vious attacks, as, for example, they can permanently destroy
all credentials and track users. We now directly compare our
work with a selection of the attacks from Table 7.

In [50], the authors presented WebAuthn deception attacks
through a terminal-based malware, redirecting the user to an
attacker-controlled authentication page and stealing creden-
tials via a keylogger. Our attacker model is weaker, relying
solely on a compromised (CTAP) client instead of a malware,
keylogger, and malicious browser session.

In [10] and [11], the researchers formally verified FIDO2
and then demonstrated the feasibility of client impersonation
by exploiting the unauthenticated CTAP ECDH also discussed
in [34]. They required a compromised client (i.e., a browser)
running on the user’s device to decrypt the authenticator’s
PIN necessary for UV. In contrast, we focus on bypassing
or stealing UV and UP, granted by the user to other CTAP
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APIs, without needing to decrypt the PIN or resorting to social
engineering, UI deception, or other manipulative tactics [42].

The authors of [65] examined attacks involving local (i.e.,
browser extension) and physical (i.e., temporary access to
the authenticator) adversaries, including misbinding, MitM,
and session hijacking. They identify two protocol-level flaws
in FIDO2: a lack of confidentiality and integrity and broken
clone detection. In comparison, we evaluate a proximity-based
attacker (e.g., an NFC reader) never considered before in
FIDO2. Moreover, we find six new FIDO2 protocol-level
issues in addition to theirs.

8.2 FIDO2 Reference Threat Model Issues

FIDO2 has a non-normative reference threat model [2] that in-
cludes security assumptions, goals, and threats against clients,
authenticators, and relying parties. We found three issues (IS1,
IS2, and IS3) with their threat model:

IS1: Unclear security boundaries The threat model
presents six broad security assumptions but then violates them
when discussing threats. For example, SA-4 states that the
FIDO user device and applications involved in a FIDO oper-
ation act as trustworthy agents of the user. This implies that
the FIDO client (e.g., the user’s browser or mobile app) must
be inherently trusted. However, the threat model includes
threats breaking SA-4 like T-1.2.1: FIDO client corruption
that identifies an attacker with code execution on a FIDO
client. Instead, security assumptions should hold to enable a
security analyst to draw security boundaries (i.e., differentiate
what we trust from what can be attacked).

IS2: Proximity threats are missing Despite FIDO support-
ing proximity transports like NFC and BLE, their reference
model classifies proximity-based threats as physical access,
even though these two categories have significant differences.
For example, compared to physical access, the range of a prox-
imity attack can be extended. Hence, our proximity attacks,
which do not require physical access, cannot be accurately
described within this reference threat model.

IS3: Security goals are narrow The threat model has nar-
row security goals based on [18] (2006) and [14] (2012). The
security goals focus on web authentication but overlook FIDO
clients and roaming authenticators. For example, there are no
security goals for the Authenticator API (i.e., addressing all
AC attacks) or discoverable credentials (i.e., addressing AC1,
CI1, and AC2).

9 Countermeasures

We present the design and evaluation of eight practical
and backward-compliant countermeasures fixing the eleven
CTRAPS attacks and their related eight vulnerabilities. Each
countermeasure addresses a vulnerability (e.g., C1 fixes V1)
and reduces the CTAP attack surface. The countermeasures

are implementable as amendments to the FIDO2 standard or
as FIDO2 extensions. We describe each countermeasure.

C1: Trusted CTAP clients We address V1 by recommend-
ing that FIDO provide a list of trusted CTAP clients. FIDO
offers several certifications, including the FIDO Functional
Certification [6] which only attests the interoperability of
clients, servers, and authenticators. We suggest extending this
certification also to cover the trustworthiness of CTAP clients.
For instance, FIDO could implement a Software Bill Of Ma-
terials (SBOM) solution to monitor trusted CTAP clients and
their vulnerabilities [63].

C2: Authenticator visual feedback We address V2 by
requiring the authenticator to provide visual feedback of the
called APIs. For instance, the authenticator’s LED could blink
once for non-destructive API calls and twice for destructive
ones. The CTAP wink command, which blinks the LED, must
be disabled during this visual feedback.

C3: User interaction for UP over NFC We address V3 by
requiring user interaction during UP checks over NFC. For
example, the user could press a button on the authenticator to
grant UP over NFC, similar to UP checks over USB.

C4: Dedicated PIN for destructive APIs We address V6
by introducing a dedicated PIN to authorize destructive API
calls (e.g., CredMgmt and Reset) and by repurposing the
current PIN to authorize non-destructive API calls (e.g., Se
lection and GetInfo). The new PIN should have the same
or stricter requirements as the non-destructive PIN (i.e., four
to sixty-three Unicode characters [1]).

C5: Dynamic and UV-protected CredId and UserId We
address V5 by implementing dynamic CredId and UserId and
mandating CredProtect=UVRequired. CredId and UserId
should rotate after a set amount of logins (e.g., every ten lo-
gins) or a time interval (e.g., once per month). Hence, we
raise the bar for user profiling and tracking attacks on authen-
ticators. Currently, the user can indirectly change a CredId by
calling MakeCred to generate a new credential for his account,
replacing the old one. However, the user cannot change the
UserId, which the relying party determines and, based on our
experience, remains fixed to the user account.

C6: Reset must require UV We address V6 by requiring
UV to call Reset. Hence, the user must validate a factory
reset by entering a valid PIN.

C7: CredMgmt must require UP We address V7 by re-
quiring UP to call CredMgmt. Hence, the user must authorize
credential deletion one by one, making it impossible to delete
multiple credentials with a single API call.

C8: CredMgmt must require UP We address V8 by en-
forcing temporal rate limiting on Selection calls to a maxi-
mum of three calls within two minutes. We are not expecting
issues with our rate limiting, akin to the limiting already exist-
ing for ClientPin(GetPinToken), as a client typically calls
Selection once per session.

Usability We believe that the stronger security granted by
our countermeasures is worth the inevitable usability trade-
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Table 7: Recent attacks on FIDO. We assign each attack a cost and impact. For example, the cost for a MitM attacker is Mid, and
for a proximity-based attacker is Low. Similarly, hijacking a session has a Mid impact, and permanently destroying credentials
has a High impact.

Attack Class Protocol Transp Surface Impl Reqs Cost Impact

CTAP MitM [34] DH MitM CTAP2.0 All ClientPin ✗ MitM Mid Mid
Privacy leak [34] Eavesdropping CTAP2.0 All MakeCred ✗ n/a Low Low
Auth rebind [34] Auth rebind WebAuthn All Creds.create ✗ n/a High High
Parallel session [34] Session hijack WebAuthn All Creds.get ✗ n/a Mid Mid
Evil maid [47] Phys access n/a n/a Auth TEE ✗ Phys access High High
Titan phone imp [47] Impersonation U2F BLE Android ✓ Proximity Low Mid
Titan key imp [47] Impersonation U2F BLE Google Acc ✓ Proximity Low Mid
Auth imp [11] DH MitM CTAP2.0/2.1 USB ClientPin ✓ Mal browser Mid Mid
Web MitM [11] Session hijack WebAuthn USB Creds.get ✓ Mal browser Mid Mid
Rogue key [11] Auth rebind WebAuthn USB Creds.create ✓ Mal browser Mid High
FIDOLA [50] Session hijack WebAuthn USB Creds.get ✓ Malware High Mid
CTRAPS CI Impersonation CTAP2.0/2.1/2.2 All Auth API ✓ Proximity Low High
CTRAPS AC API confusion CTAP2.0/2.1/2.2 All Auth API ✓ MitM Mid High

offs. C1, C2, and C8 do not affect usability. C5 only introduces
one additional UV and UP check every time the credential
and user identifier need to rotate out (e.g., once per month),
barely affecting usability. On the other hand, C4 requires the
user to remember a second PIN, and C6 and C7 add more
authorization requirements to Reset and CredMgmt. C3 also
adds user interaction when connecting to the authenticator
over NFC.

Adding a display We do not consider adding a display
to a roaming authenticator an optimal solution as it is not
backward-compliant. Millions of deployed authenticators
would remain vulnerable. Moreover, it would require sig-
nificant hardware and software modifications, such as adding
a secure display, a display controller firmware, and a battery,
that would introduce usability, performance, and cost issues.

10 Related Work

Attacks on FIDO(2) Researchers demonstrated practical
attacks on older FIDO versions, such as authenticator re-
binding, parallel sessions, and multi-user attacks [37, 46],
USB HID man-in-the-middle attacks [16], BLE pairing [15],
relying party public key substitution [58], bypassing push-
based 2FA [38], real-time phishing [61], and side chan-
nel attacks [39, 55]. FIDO2 was also found vulnerable to
side-channel attacks [47] and rogue key or impersonation
threats [11]. Moreover, attacks on lower layers trusted by
FIDO2 were presented including IV reuse on Samsung Key-
store [59]. No prior attack investigated API confusion on
CTAP, including its latest version.

Formal Analysis The formal analysis and verification com-
munity extensively researched FIDO. The community for-
mally verified FIDO’s Universal Authentication Framework

(UAF) [28, 53], FIDO2 (including its privacy, revocation, at-
testation, and post-quantum crypto) [10, 12, 13, 35]. Yubico
proposed a key recovery mechanism based on a backup au-
thenticator that was proven secure using the asynchronous
remote key generation (ARKG) primitive [31]. The formal
analyses are not covering our CI and AC attacks.

Extensions FIDO supports extensions to add optional fea-
tures in a backward-compliant way. For instance, FeIDO [57]
proposes an extension to recover a FIDO2 credential using
an electronic identifier. Extensions are not secure by default,
and researchers proposed a fix to protect them against MitM
attacks [17]. We suggest to update the CTAP specification
rather than implementing our countermeasures as FIDO ex-
tensions that would be optional and insecure by design.

Enhancements Researchers proposed (cryptographic) en-
hancements to FIDO protocols. In [32], the authors present a
hybrid post-quantum signature scheme for FIDO2 and tested
it using OpenSK [33] (which we exploit in this work). In [36],
the authors propose a global key revocation procedure for
WebAuthn that revokes credentials without communicating to
each individual relying party WebAuthn server. True2F [23]
presented a backdoor-resistant FIDO U2F design, protect-
ing the authenticator from a malicious browser by requiring
the authenticator interaction during every authentication, and
from fingerprinting by rate limiting credential registration.
Proposed enhancements are not addressing our attacks, which
are effective regardless of the FIDO2 cryptographic primi-
tives.

Usability Researchers performed extensive usability stud-
ies on FIDO U2F [19, 20, 22, 45], FIDO2 roaming authenti-
cators [25, 52], passkeys [40], and cross-site 2FA [48]. Our
paper is orthogonal to usability studies.

Surveys There are several FIDO survey papers. In [9] the
authors describe the evolution of FIDO protocols, security
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requirements, and adoption factors. In [49], the authors sur-
veyed the adoption of passwordless authentication among a
large user base, considering users’ perceptions, acceptance,
and concern with single-factor authentication without pass-
words. Our paper is orthogonal to surveys.

11 Conclusion

No prior work assessed the CTAP Authenticator API, a crit-
ical API exposed by a client to an authenticator to manage,
create, and delete credentials. We address this gap by pre-
senting the first security and privacy evaluation of the CTAP
Authenticator API. We uncover two classes of protocol-level
attacks capable of abusing the API. The CI attacks spoof a
CTAP client to a victim authenticator to factory reset, track,
and DoS the authenticator. The AC attacks utilize a MitM
position to change user CTAP API calls to an API desired
by the attacker, potentially destructive while stealing their
authorization. We deploy the first CTAP client impersonation
in FIDO2, enabling an attacker to call CTAP APIs without
authorization or user interaction. We also introduce a novel
attack strategy called API confusion, which changes, without
user consent, the API called by the user to an API chosen by
the attacker.

We uncover eleven new proximity-based and remote at-
tacks that can severely impact millions of FIDO2 users. For
example, our attacks delete FIDO2 credentials and master
keys (security breach) and track users through their creden-
tials (privacy breach). The attacks are effective on the entire
FIDO2 ecosystem as they target eight vulnerabilities we dis-
covered in the CTAP specification. These flaws include the
lack of CTAP client authentication and improper API autho-
rizations. CTRAPS attacks are low-cost, as they do not require
specialized or expensive equipment, and stealthy, as they do
not trigger unexpected user interactions.

We develop the CTRAPS toolkit to test our attacks with a
low-cost setup and on a large scale. It includes a CTAP testbed
with a virtual relying party and a virtual client, a CTAP client
NFC impersonator (i.e., malicious Proxmark scripts and An-
droid NFC app), and enhanced Wireshark dissectors for CTAP.
We successfully exploit six authenticators and ten relying par-
ties from leading FIDO2 players such as Yubico, Feitian,
Google, Microsoft, and Apple. We develop eight effective and
legacy-compliant countermeasures to fix our attacks and their
root causes.

We share three lessons we learned about FIDO2 credential
storage and passwordless-ness, which are valuable for the
current transition from single-factor authentication to 2FA
and passkeys [21, 56]: (i) Being stored on the authenticator,
FIDO2 discoverable credentials are protected from third-party
data breaches. However, this introduces new attacks that work
exclusively on discoverable credentials (i.e., AC1, CI2, AC3,
and AC4); (ii) FIDO2 users cannot prevent attacks targeting
discoverable credentials, as they cannot choose the type of

credentials they register and their protection policies, decided
by the relying party and the client instead. (iii) The FIDO2
core message is to steer away from passwords because they
are vulnerable to phishing. However, digging deeper, we real-
ized that FIDO2 still relies on phishable mechanisms, even for
passwordless authentication. For instance, a passwordless cre-
dential is protected by an alphanumeric PIN (i.e., a phishable
sequence the user must remember).
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