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Abstract—Given the popularity of low-end microcontrollers,
manufacturers and researchers have proposed memory isola-
tion mechanisms for these devices. However, current propos-
als face two main shortcomings. First, due to a lack of exten-
sible reference implementations of commercial specifications,
academic systems commonly use custom memory isolation
mechanisms, reducing compatibility and the chance of real-
world adoption. Second, recent research has demonstrated
crucial and overlapping vulnerabilities, including in commer-
cial systems. Unfortunately, efforts to mitigate and validate
these issues are hindered by the disconnect in codebases.

This paper proposes openIPE, an open research plat-
form for extensible, industry-compliant hardware-software
co-designs. Our platform introduces minimal hardware ex-
tensions for memory isolation based on Texas Instruments’
specification for Intellectual Property Encapsulation (IPE),
alongside a versatile firmware layer enabling rapid prototyp-
ing of advanced security extensions. We establish a robust
security testing infrastructure and demonstrate the capabil-
ities of our framework through a comprehensive study on
secure interrupt handling, an important research area for
microcontrollers. Our evaluation shows that openIPE allows
for the independent reproduction and comparison of existing
proposals and enables a novel solution that achieves strong
architectural and microarchitectural security with minimal
hardware modifications and low overhead.

Index Terms—embedded security, memory isolation, secure
interrupts

1. Introduction

Effective memory isolation is a fundamental building
block for security. In traditional computing systems, this
is typically achieved through virtual memory mechanisms
supported by advanced operating systems and memory
management unit (MMU) hardware. However, as small
embedded microcontrollers become increasingly prevalent
in daily life, they introduce unique constraints related to
production cost, power consumption, size, and extensi-
bility. Consequently, specialized memory isolation fea-
tures for embedded devices are generally less widespread
and often limited in functionality [1]. In this respect,
recent years have seen the emergence of uniform memory-
isolation features on commodity 32-bit microcontrollers,
including TrustZone-M for low-end Arm processors and
the recently standardized physical memory protection
(PMP) primitive for RISC-V. In contrast, the much more

heterogeneous landscape of low-power 8-bit and 16-bit
microcontrollers lacks effective standardization and re-
mains largely unprotected in practice.

To address this gap, academia has developed a long
line of specialized research prototypes [2]–[13], enabled
in large part by open-source CPU designs [14]. At the
same time, some vendors have begun to introduce limited
hardware features for code protection and, to some extent,
even data isolation in selected off-the-shelf microcon-
trollers [15]–[18]. Among the most advanced offerings
in this area is Texas Instruments’ Intellectual Property
Encapsulation (IPE) [15] technology, included in its pop-
ular ultra-low-power MSP430 microcontrollers. IPE em-
ploys a capable, hardware-level isolation mechanism to
create a secluded “enclave-like” memory region to protect
software intellectual property (IP), such as confidential
code and data. IPE is remarkably similar to indepen-
dently developed academic prototypes based on program-
counter-based access control [2]–[4], [13] or execution-
aware memory isolation [5], [6]. However, recent analy-
ses [19], [20] have revealed that current IPE-enabled mi-
crocontrollers suffer from critical design flaws and imple-
mentation oversights, which were known and successfully
averted in their academic counterparts. Additionally, open-
source academic prototypes often re-implement the same
security functionalities, which has similarly resulted in
design flaws and implementation errors, improper input
sanitization vulnerabilities, and subtle microarchitectural
side channels [21]–[24].

In conclusion, there is a notable disconnect between
industry and academia: industry proposals, such as Texas
Instruments’ IPE, suffer from well-known vulnerabilities
that have been addressed in academic architectures, while
the latter face challenges related to incompatibility and
deployment feasibility. This cycle of duplication and in-
consistency ultimately undermines the overall security and
effectiveness of memory isolation solutions in ultra-low-
end microcontrollers.

openIPE. To bridge this gap, we propose openIPE, an ex-
tensible hardware-software co-design framework provid-
ing industry-compliant memory-isolation building blocks
for rapid prototyping of innovative security features on
low-end microcontrollers. We base openIPE on the mature
openMSP430 [14] open-source softcore implementation,
which lacks any built-in security features but has been
a favored platform in academia. Over the past decade,
more than 20 papers have focused on developing low-end



memory isolation mechanisms on top of openMSP430,
with new research still emerging (cf. Table 1 on page 5).

In contrast to prior academic prototypes, our design
is compatible with TI’s IPE specification, requiring only
a recompilation step for existing IPE applications. As a
result, openIPE enables the development and comparison
of hardware-software security extensions within a unified
open research infrastructure, akin to the prior examples of
Keystone [25] and openSGX [26] for higher-end systems.
As a case in point, we incorporate hardware modifications
into IPE’s access-control logic to protect against recently
disclosed vulnerabilities [19]. Previously, these changes
were only proposed in theory, but now they elevate the
security guarantees to match those provided by state-
of-the-art academic research prototypes. In addition to
minimal hardware extensions, openIPE features a flexible
privileged firmware layer, similar to the XuCode used in
Intel SGX [27] or the Trusted Firmware in Arm CCA.
Compared to existing academic designs, openIPE’s pro-
grammable firmware layer ventures into a largely un-
explored design space, enabling rapid prototyping and
updateability of innovative security features encompassing
hardware, software, and firmware modifications.

Security testing. Security validation can be streamlined
through openIPE by consolidating efforts into a unified,
reusable codebase. We conduct thorough testing for both
hardware and software components. On the hardware side,
we utilize openMSP430’s thorough unit-testing framework
to ensure backward compatibility, developing additional
unit tests to ensure compliance with TI’s base IPE speci-
fication and to validate our additional security features.

On the software side, inspired by recent validation
efforts for Intel SGX enclaves [28]–[30], we employ
Pandora [28], which uses the angr [31] binary sym-
bolic execution tool. We symbolically validate both the
firmware layer and IPE software components, specifically
targeting confused-deputy pointer vulnerabilities and reg-
ister leakage [22], [23], [32]. We contribute enhancements
to angr’s MSP430 backend and identify a previously un-
known vulnerability in the IPE Exposure framework [19]
that permits secret leakage through register values.

Secure interrupts. To show how openIPE can be used
as a unified framework for efficiently reproducing and
comparing related work, as well as exploring new points in
the design space, we conduct an extensive case study. Our
case study concerns secure interrupt handling, a crucial
aspect of providing isolation on embedded systems [5],
[7], [8], [11], [33], [34]. Inadequate sanitization during
interrupts can result in data leakage and corruption [19],
while timing differences can leak side-channel information
about executing instructions [21].

We implement and evaluate four approaches, ranging
from hardware-only to software-only, using openIPE’s
flexible hardware-software co-design framework. This ef-
fort includes independent reproduction of a previously
closed-source [7] proposal, as well as a novel solution
using openIPE’s unique firmware model. Notably, we
demonstrate for the first time that the firmware layer,
combined with trusted software in the IPE application, can
effectively mitigate interrupt-related side-channel leakage,
eliminating the need for inflexible and error-prone [23],

[35] hardware solutions [33], while incurring much lower
hardware overhead.

Evaluation. We synthesize the base openIPE design and
the improved access-control logic and secure interrupt
hardware extensions to an FPGA and report on their
hardware cost. We, furthermore, evaluate and report on
the runtime and code size overhead of our software de-
velopment framework. To showcase a project that can
directly use our isolation primitive, we use VRASED’s [4]
remote attestation codebase with minimal modifications.
The results of the evaluation show that by focusing on
the isolation primitive, we can provide strong security
guarantees with low hardware cost and runtime overhead.

Summary. In summary, our main contributions are:

• We design and implement openIPE, a research plat-
form compliant with TI’s IPE specification and ex-
tended with a trusted firmware layer, enabling re-
search on hardware, software, and firmware exten-
sions for memory isolation.

• We thoroughly validate openIPE’s security and func-
tionality through diverse unit tests and an openIPE-
aware symbolic execution tool, which already found
a bug in related work.

• We reproduce and compare secure interrupt handling
mechanisms and devise a novel solution enabled by
openIPE’s flexible firmware layer, providing security
guarantees against both architectural and microarchi-
tectural attacks.

Ethical considerations and open science. We believe
that openIPE and the surrounding ecosystem, includ-
ing our research into secure interrupts, are important
contributions to embedded security and open science.
The openIPE implementation and evaluation are available
at https://github.com/martonbognar/openipe, together with
documentation and setup code aimed at researchers who
want to build on our work. Additionally, we fixed the bug
discovered in the IPE Exposure framework.

2. Background and related work

Memory isolation and secure interrupt handling are
active research questions at all levels of the computing
spectrum. On high-end systems, virtual memory and priv-
ilege rings provide isolation across processes, and trusted
execution environments (TEEs) such as Intel SGX and
Arm TrustZone can extend protection against a poten-
tially compromised operating system. In research, multiple
hardware and software extensions have been proposed that
provide memory isolation with a minimal trusted com-
puting base (TCB), often also ensuring secure interrupt
handling and predating many commercial solutions [36]–
[39]. However, most of these research proposals are aimed
at desktops and mobile phones, only a minority of works
target embedded systems [5], [6], [40], some of which
will be discussed later. In this paper, we focus on low-end
MSP430 microcontrollers, but our insights are generaliz-
able to other embedded devices.

https://github.com/martonbognar/openipe
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Figure 1. Memory layout of IPE (not drawn to scale). Arrows indicate
accesses allowed and disallowed by the memory access control logic.

2.1. MSP430 microcontrollers

MSP430 is a family of microcontrollers developed
by Texas Instruments (TI) with a focus on ultra-low-
power operations. Originally a 16-bit architecture, TI has
recently extended the MSP430 address space to 20 bits
(referred to as MSP430X), adding new instructions to
support this change. Recent MPS430 devices also fea-
ture non-volatile Ferroelectric Random Access Memory
(FRAM) technology which enables the persistent storage
of intellectual property on the device [41]. TI has sold
millions of these FRAM MSP430 devices [42] and a
recent embedded survey [43] ranks MSP430 as the second
most popular 16-bit microcontroller. To address increased
demands for security features, these recent devices also
feature a memory protection unit (MPU) and the IPE
technology, explained in Section 2.2.

The MSP430 instruction set has also been imple-
mented in the open-source NEO430 [44] and open-
MSP430 [14] softcores, both of which have been used
for research purposes. In particular, openMSP430 has
been extended in many publications related to memory
isolation, which we systematize later in this section.

2.2. Intellectual Property Encapsulation (IPE)

Intellectual Property Encapsulation (IPE) [45] is a
code and data isolation feature on recent FRAM-based
MSP430 devices. These devices feature a volatile RAM
and a non-volatile FRAM partition (both writeable and
executable), the latter of which can be configured to
contain an isolated IPE region. Figure 1 summarizes the
memory layout and the access control rules. IPE enforces
a program-counter-based memory access control logic,
which ensures that only code executing from within IPE
can access data (or code) stored in the region. Accesses
targeting the IPE region from any other source, including
code executing outside IPE, the debugger unit, or direct
memory access (DMA) requests, are disallowed. Illegal
reads return the constant value 0x3FFF, while illegal
writes are ignored. Optionally, IPE can be configured to
trigger a reset on these violations.

Texas Instruments IP vendor End user

Manufacturing Programming of
the IPE region

Unrestricted use
of the device

Figure 2. IPE deployment model: TI manufactures the device and loads
the bootcode; IP vendor supplies proprietary code or keys; end user
programs arbitrary code that can interact with the secluded IPE region.

The IPE region is defined by two hardware configura-
tion registers, which store the boundaries at a granularity
of 1 kB. These registers can be modified and locked from
software directly, but in most cases, they are set up by the
device’s bootcode, detailed next.

Boot process. IPE-enabled devices execute a proprietary
bootcode on every device reset before user code executes
or the debugger can attach. While this bootcode is not
modifiable and its source or binary code is not available,
its behavior is described in detail by TI [45]. The role
of the bootcode is to set up the IPE configuration reg-
isters based on an 8-byte configuration structure in user
software. To prevent tampering, this structure should be
stored in the protected IPE region itself.

On every reset, the bootcode checks two fixed FRAM
locations which can contain the address of the config-
uration structure and an enable flag. If the enable flag
is set or IPE was activated previously, the structure is
evaluated, and either activates the IPE protection or, in
case the structure is invalid (a potential sign of tampering
or misconfiguration), triggers a mass erase loop that clears
the entire persistent memory to prevent unintentional leak-
age. Since the structure is evaluated on every device reset,
this also enables the IPE region to optionally reconfigure
its boundaries across resets.

Deployment and threat model. IPE, similarly to other
low-end commercial isolation schemes [16], assumes a
deployment model involving multiple stakeholders. After
TI manufactures the device and programs the bootcode, it
is handed over to a second party, who programs the IPE
region with their intellectual property, possibly proprietary
code or secret keys [46]. Finally, the device is deployed in
the field or delivered to an end user, who can arbitrarily
reprogram the rest of the device and have physical access
to it but should not be able to tamper with the protected
code and data. This process is visualized in Figure 2.

More precisely, the attacker is considered to control all
untrusted software on the device (outside the IPE region
and the bootcode), and even external interfaces such as
the DMA controller or JTAG debug units. To protect
against physical threats, the FRAM technology used in
IPE-enabled devices offers additional protections against
attacks such as radiation and voltage manipulation [46].

2.3. Academic low-end memory isolation

Years before TI introduced its security features on
modern MSP430 microcontrollers, several academic pro-
posals for security features have been proposed on this



architecture thanks to the extensible openMSP430 [14]
softcore. The openMSP430 project is a mature, open-
source re-implementation of the base 16-bit MSP430 in-
struction set with no built-in security features. This project
has served as the basis of a long line of security research
prototypes but has also enjoyed popularity in the industry,
including applications in space [47].

As part of our work, we performed a literature study
of MSP430-based security architectures that either provide
memory isolation as their main feature or build on it to
offer more advanced features, such as remote attestation
or over-the-air updates. These systems are summarized in
Table 1. We did not include openMSP430-based papers
that only demonstrate the usage of security features in
certain scenarios without changing the underlying hard-
ware TCB [48]–[55].

This table provides several interesting insights. First,
it is clear that research into the security features of low-
end microcontrollers is an active area, and (open)MSP430
is a popular platform to build on. Second, systems such
as Sancus [2] and VRASED [4] show that research can
build on a useful security primitive to provide additional
guarantees in follow-up work. In the case of Sancus, this
primitive is an embedded TEE, whereas, for VRASED, it
is a hardware-software co-design for remote attestation.
Third, only a few systems comply with a commercial
specification for isolation, such as IPE, most likely be-
cause most of the proposed security architectures re-
quire changes in the hardware. However, such custom,
non-standard-compliant hardware extensions, reduce the
chances of being adopted in the industry or run on off-
the-shelf devices. Finally, multiple systems have known
vulnerabilities (cf. Section 2.4), including IPE itself. This
is especially concerning for systems that serve as a base
for derived architectures, which may inherit such vulnera-
bilities. Moreover, systems building on vulnerable off-the-
shelf IPE hardware can currently not be patched.

With openIPE, we aim to address some of these chal-
lenges, inspired by the observation that extensible security
platforms enable a wide range of research. In our work,
we replicate the behavior of TI’s proprietary devices to
an almost cycle-accurate level, making research findings
on openIPE relevant to TI’s devices. Importantly, openIPE
offers open-source, extensible components for the entire
system stack: hardware, firmware, compiler, software de-
velopment framework, and application software.

2.4. Attacks and mitigations on MSP430

Commercial isolation primitives on microcontrollers
and academic proposals show demand for secure iso-
lation features in this space. Unfortunately, recent re-
search has uncovered numerous vulnerabilities in these
systems. Influential embedded research prototypes based
on openMSP430, like Sancus [2] and VRASED [4] that
have served as the basis for numerous derived systems,
were shown vulnerable to microarchitectural side-channel
leakage [21], [23], [24], subtle software sanitization over-
sights [22], [23], [32], and even design flaws that were
not discovered by formal verification [23], [34], [35].
Furthermore, even the production-quality IPE has recently
been shown [19], [20] to suffer from critical design over-
sights and implementation vulnerabilities opening up the

possibility for remote exploits and eliminating its security
guarantees and those of all systems making use of it.

Importantly, we observe a large overlap in the im-
pacted security features and, therefore, hypothesize that
many of these attacks could have been avoided with
more coordination. In the following, we overview attacks
and mitigations on MSP430-based systems and how they
motivate openIPE’s design goals.

Bootstrap loader attacks. Early work from Goodspeed
et al. exploited timing side channels [76] and ROP-style
attacks [77] against the TI serial bootstrap loader software
to extract code from a locked MSP430 device. This high-
lights the need for principled validation and updateability
of critical firmware components, as supported by openIPE.

Attacks on attestation. Castellucia et al. [78] demon-
strated attacks on early software-based attestation
schemes, one of which was implemented on an MSP430
microcontroller [79]. These attacks show the difficulty of
providing security guarantees on microcontrollers without
any isolation primitives like the one offered by openIPE.

Interrupt-latency attacks. Van Bulck et al. [21] first
showed that subtle timing differences in interrupt han-
dlers may reveal instruction lengths of protected San-
cus enclaves. This attack has since been generalized to
VRASED [23] and even TI IPE [19]. SancusV provides
a principled, provably secure hardware mitigation, which
was, however, shown to be vulnerable to several imple-
mentation oversights [23], [34], [35]. This highlights the
need for a single, unified and vetted prototyping frame-
work such as openIPE.

Single entry point. Multiple works [19], [20] have in-
dependently exploited that TI’s IPE does not properly
enforce a single entry point and is, hence, vulnerable
to advanced code-reuse attacks. In contrast, enforcing a
single entry point is a well-understood design requirement
for embedded TEEs [2]–[4], [13], and openIPE concretely
implements such a single entry point as suggested in
previous IPE security analyses [19].

Software sanitization oversights. Both the Sancus [22],
[32] and VRASED [23] implementations were shown to
suffer from subtle software interface sanitization bugs
allowing secret leakage. Similarly, it has also been shown
that the example IPE project provided by TI [80] also
suffers from similar oversights [19]. We address these
challenges by providing a unified software development
framework for transparent interface sanitization, which
can be further vetted using symbolic execution.

Interrupt register leaks. IPE has been shown to straight-
forwardly leak register contents on interrupts [19], [20],
which was properly avoided in Sancus and VRASED via
guaranteed atomic execution or custom secure interrupt
extensions [4], [7], [8], [11], [33], [64]. We provide a
unified research platform to implement and compare these
proposals. As a concrete contribution in Section 6, we re-
implement a previously closed-source secure interrupt pro-
posal [7], as well as explore new points in the hardware-
software co-design space.



TABLE 1. OVERVIEW OF SECURITY ARCHITECTURES BASED ON MSP430 WITH MEMORY ISOLATION. SYSTEMS WITH DEMONSTRATED
VULNERABILITIES ARE HIGHLIGHTED ( q ). THE COLUMNS INDICATE SUPPORT FOR CONFIDENTIAL ( � ) CODE; CONFIDENTIAL DATA;

DYNAMIC CONFIGURATION OF ISOLATION BOUNDARIES; WHETHER THE EXTENSION IS IMPLEMENTED IN HARDWARE, SOFTWARE, OR BOTH;
WHETHER UNTRUSTED CODE CAN INTERRUPT ISOLATED CODE; WHETHER THE CODE IS OPEN SOURCE; AND WHETHER THE SYSTEM COMPLIES

WITH A COMMERCIAL SPECIFICATION FOR ISOLATION.

name year venue �
code

�
data

dyn. �

exten
sio

n

untr.
ISR

open
src

.

ind. spec.

atta
cks

op
en

M
SP

43
0

SMART [3] q 2012 NDSS #  # Hybrid # # # [4], [56], [57]
ERASMUS [58] 2018 DATE #  # Hybrid # # # –

Sancus 1.0 [59] 2013 USENIX #   Hardware #  # –
Soteria [60] 2015 ACSAC    Hardware #  # –
Towards Availability [11] 2016 MASS #   Hardware  # # –
Sancus 2.0 [2] q 2017 TOPS    Hardware #  # [21], [22]

SancusV [33] q 2020 CSF    Hardware   # [23], [34], [35]
Aion [8] 2021 CCS    Hybrid   # –
Authentic Execution [61] 2023 TOPS    Hybrid #  # –

de Clercq et al. [7] 2014 ASAP #   Hybrid  # # –
VRASED [4] q 2019 USENIX #  # Hybrid #  # [23]

APEX [57] q 2020 USENIX #  # Hybrid #  # [23]
ASAP [62] 2022 DAC #  # Hybrid   # –
RARES [63] 2023 arXiv #  # Hybrid # # # –

RATA [64] 2021 CCS #  # Hybrid #  # –
CASU [65] 2022 ICCAD #  # Hybrid   # –
VERSA [66] 2022 S&P #  # Hybrid #  # –
ACFA [67] 2023 USENIX #  # Hybrid #  # –

GAROTA [68] 2022 USENIX G# G# # Hybrid #  # –
IDA [10] 2024 NDSS #  # Hybrid  # # –
UCCA [69] 2024 TCAD   # Hardware   # –
openIPE (this work) 2025 EuroS&P    Hybrid    –

T
IM

SP
43

0

IPE [46] q 2014 –    Hardware # #  [19], [20]
SIA [70] 2019 HOST    Software # #  –
SICP [71] 2020 JHSS #   Software # #  –

Optimized SICP [72] 2022 TECS #   Software #   –
IPE Exposure [19] q 2024 USENIX    Software #   §4.2

Hardin et al. [73] 2018 ATC   # Software # #  –
PISTIS [74] 2022 USENIX    Software    –

FLAShadow [75] 2024 TIOT    Software    –

Controlled call corruption. The most crucial vulnera-
bility on IPE, which was assigned high severity by TI [81],
is controlled call corruption, which can completely by-
pass the protection from software [19]. This vulnerability
was found to be already mitigated via minimal hardware
changes in both Sancus and VRASED. This highlights
the advantage of a unified shared code base. Concretely,
openIPE for the first time allows implementing and evalu-
ating the previously hypothesized hardware changes [19]
to mitigate controlled call corruption.

DMA access control. VRASED’s DMA access control
check was shown to suffer from a subtle implementation
bug that was properly handled in both Sancus and TI
IPE [23]. Furthermore, DMA has been abused as a capable
side-channel attack primitive on Sancus, SancusV, and
VRASED [23], [24]. We believe that openIPE facilitates
specialized compile-time mitigations [24] that rely on a
principled, open-source understanding of the microcon-
troller’s internals and protection mechanisms.

Other systems. Given all these remarkable overlaps and
further evidence from research [21], [22], [82], [83], we
can only assume that other, closed-source prototype imple-
mentations that are more difficult to analyze likely suffer
from similar recurring vulnerabilities.

3. openIPE design and implementation

To tackle the challenges outlined in the previous sec-
tions, we propose a hardware-software co-design for mem-

ory isolation based on the specification of TI’s IPE. The
advantage of such an open platform is that it concentrates
the efforts on implementing, improving, and validating the
security primitives that more complex systems can build
on. By basing our system on openMSP430, we provide a
platform that is familiar to many researchers in the area
and has a proven track record.

Compared to many open-source security architectures
in Table 1, openIPE has a number of advantages. First,
openIPE offers compliance with an industry specification,
potentially leading to a more direct industry impact and
enabling the extension and comparison of security guar-
antees in a unified manner. Second, our design features
a flexible firmware layer inspired by IPE’s bootcode,
allowing rapid prototyping of security features without re-
quiring extensive hardware changes, which are often more
complex to carry out and more challenging to validate. In
Section 6, we perform a case study in secure interrupts to
showcase this rapid prototyping and evaluation capability.

Based on the IPE Exposure work [19], we also imple-
mented an open-source toolchain and software develop-
ment framework, largely providing source-level compati-
bility with current IPE projects that can be recompiled to
run on openIPE. Relying on a fully open-source toolchain
also enables research on compiler modifications [24], [84],
which is currently hindered on commercial IPE platforms
due to reliance on the proprietary TI compiler.
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Figure 3. Our design extends the openMSP430 core with a Firmware
memory and an IPE control peripheral, implementing program-counter-
based access control based on the highlighted added connections.

3.1. Deployment and threat model

As our goal is to enable research and extensions on the
isolation provided by IPE, we aim to stay as close as possi-
ble to its deployment and threat model involving multiple
stakeholders, with some deviations necessary for practical
reasons. When considering software adversaries, we offer
the same protection as intended by IPE: we consider all
untrusted software on the device, the DMA controller, and
the openMSP430 debug unit to be compromised.

As our prototype implementation is not a physical
device, protecting against physical attacks on the memory
as offered by TI is outside our scope. In a real deployment
scenario, it could be possible to implement our design on
an FPGA or as an ASIC and connect an external mem-
ory chip with similar security properties as TI’s FRAM.
Similarly, our small trusted firmware layer, which can
be implemented as an external memory unit, could also
benefit from similar physical protections. Investigating and
implementing these protections is left as future work, in
our contribution we focus on software-driven attacks.

3.2. Processor architecture

As numerous academic prototypes [2]–[4], [7], [10]
discussed earlier, we implement our design on the open-
source openMSP430 [14] softcore. Figure 3 overviews the
high-level design, highlighting the main components and
connections added to the openMSP430 architecture. In
broad terms, the main changes are a new IPE control pe-
ripheral that implements the access-control logic based on
the configuration registers (Section 3.3) and the firmware
that is securely executed on device reset (Section 3.4).

To stay as close as possible to TI’s specification and
preserve compatibility with existing IPE software, we
performed a number of modifications in the openMSP430
core. Notably, our design does not necessitate any new
instructions and remains fully backward compatible with

TABLE 2. ACCESS CONTROL RIGHTS (READ, WRITE, EXECUTE) FOR
THE NEWLY INTRODUCED FIRMWARE AND IPE MEMORY REGIONS.

From \ To Untrusted Firmware IPE IPE entry

Untrusted rwx r-- --- --x
Firmware rxw rwx rwx rwx
IPE + entry rwx r-- rwx rwx
DMA rw- r-- --- ---
Debug unit rw- r-- --- ---

existing openMSP430 software, being implemented solely
through new memory-mapped I/O registers. To support
IPE code and data being placed in a continuous mem-
ory region as on TI’s FRAM chip, we modified the
openMSP430 memory backbone and two-stage pipeline
to support write operations to the originally read-only
program memory, enabling dynamic data updates for the
secluded IPE region. In addition, we extended the size of
the peripheral space to allow placing the IPE configuration
registers at the same addresses as on TI’s microcontrollers.

3.3. Memory access control

An important aspect of our system is the implementa-
tion of memory access control based on the IPE specifica-
tion and extended to the trusted firmware region. Access
control is largely handled by the IPE control peripheral,
shown in the bottom right of Figure 3. This peripheral
stores the configuration registers and is connected to the
CPU by several monitoring and control signals, signal-
ing access violations to the memory backbone. Table 2
summarizes the access-control rules enforced by openIPE.
Untrusted code or peripherals are prohibited from writing
to or executing the newly introduced firmware memory
partition, whereas reading is permitted, as maintaining
the secrecy of the firmware is not a design objective in
our current implementation. The privileged firmware has
unrestricted access to the entire memory including the IPE
region, but untrusted code cannot read IPE memory and
can only jump to a newly introduced single entry point at
the start of the IPE region (cf. Section 3.5). Similar to TI’s
design, openIPE currently does not enforce read-write-
execute separation within the single IPE region, leaving
this as a potential area for future work.

The backbone immediately returns the value 0x3FFF
for illegal reads without forwarding the operation to the
memory, preventing possible microarchitectural leakage
by the resulting value’s propagation. Illegal stores are also
suppressed. These access control checks are performed
for accesses by the debug unit and DMA requests as
well. Moreover, during the execution of the IPE region,
the debug unit is disabled, preventing it from leaking or
corrupting register values.

On TI devices featuring a 20-bit address space, the
configuration registers store the most significant 10 ad-
dress bits, aligning the region to 1 kB boundaries. In our
implementation, we adhere to this design for compatibility
reasons, but as the openMSP430 only has a 16-bit address
space, storing the full boundary address and implement-
ing byte-granular protection boundaries is an interesting
alternative in future work.



3.4. Secure firmware

When TI devices are reset, the immutable bootcode
is responsible for setting up the IPE registers before
user code can execute or the debugger can attach. With
openIPE, we took a more general approach: we provide a
flexible protected firmware layer that can implement this
task, but can also be extended to offer broader function-
ality and security features. This firmware layer is stored
in a separate memory partition with a single entry point
and can contain arbitrary machine code that sets up the
CPU state, or, as seen in Section 6, can even be vectored
to during runtime. In the base configuration, openIPE
contains our open-source implementation of TI’s propri-
etary bootcode, reconstructed based on the available doc-
umentation [45]. Implementing the firmware in MSP430
assembly code (or compiling it from C) enables rapid
prototyping of extensions to it, and the use of software
testing and verification tools ensures its correctness and
enforced security guarantees.

Importantly, as shown in Table 2, the firmware mem-
ory must have protections similar to those of the IPE
region to safeguard against tampering by attackers, which
could compromise system security by, for instance, ma-
nipulating the setup of the IPE configuration registers.

Figure 3 shows the firmware memory as a separate
memory partition connected to the core. In practice, this
memory could be implemented in different ways. One
option is connecting an external writeable non-volatile
memory, such as EEPROM or FRAM, possibly including
the physical protections offered by TI [46], which could
also enable firmware updates to the device. The firmware
could also be implemented on the same persistent memory
chip as the one used for user code and data.

Security considerations. As the firmware has complete
access to the protected IPE section, it inevitably opens
up a new attack vector for compromising the IPE protec-
tion. This is similar to how the MSP430 bootloader was
exploited to read out protected Flash memory on earlier
MSP430 devices [76], [77]. The base IPE firmware is
relatively simple, and symbolic execution (cf. Section 4.2)
can be used to validate that it does not perform any
dangerous memory accesses.

For firmware extensions and real hardware deploy-
ments, a number of additional steps can be taken to reduce
the security risks. First, reducing access rights to both the
IPE region and the firmware memory itself might be pos-
sible depending on the desired functionality (e.g., making
parts of the firmware non-writeable or non-executable).
Second, extensions to the firmware should be tested with
the provided security testing mechanisms (Section 4.2),
which can be extended further if new functionality is pro-
vided by the new firmware code. Third, additional security
measures need to be taken if physically switching out
the firmware memory is a potential threat. This could be
achieved either with physical protections or the hardware
could be extended with a secure boot-type mechanism that
verifies the authenticity of the firmware before execution.
We note that our current threat model (cf. Section 3.1)
does not provide protection against physical attackers that
are capable of reading out the IPE memory directly.

3.5. Security improvements over TI IPE

In addition to implementing the base IPE specification,
we integrated hardware fixes suggested by IPE Expo-
sure [19] in response to vulnerabilities uncovered on TI
devices. Our framework, for the first time, enables the
analysis and comparison of these hardware fixes with
the software mitigation framework previously proposed
as a stopgap solution. Moreover, we implemented an
automated stack pointer switching mechanism between the
IPE region and untrusted code, similar to other solutions
in the literature [7].

Single entry point. As opposed to research TEEs [2]–[4],
[13], off-the-shelf TI devices have been shown to allow
jumps to any address inside the IPE region, leading to
practical code re-use attacks [19], [20]. As a mitigation,
we modify the IPE access control logic to restrict access
to the IPE section through a single predefined entry point,
referred to as IPE entry in Table 2. Any illegal jumps trig-
ger a non-maskable interrupt (NMI), allowing the software
to recover without causing a device reset. Care needs to
be taken to enforce the single entry point for all control-
flow transfers, not just direct jumps. This includes return
from interrupt (reti) instructions and interrupt vector
table (IVT) entries, including the NMI handler itself.

We chose the location of the entry point to be placed
8 bytes after the start of the IPE region, automatically
calculated from the configuration registers. In practice,
this is similar to TI devices, where the convention is to
place the IPE configuration structure in the first 8 bytes of
the protected region. Using the software framework of IPE
Exposure [19], software can still vector to multiple logical
entry points through the single physical entry point.

Mitigating controlled call corruption. Controlled
call corruption is an attack that uses the call MSP430
instruction to corrupt memory inside the IPE region,
leading to a complete loss of security guarantees. When
performing a function call, the CPU writes the return
address on the stack. On microcontrollers with IPE, the
access control rules for this write were found to not always
be enforced, enabling untrusted code to corrupt protected
code and data using a poisoned stack pointer register
pointing to IPE, making it possible to leak the contents of
the entire IPE region [19].

The cause of the vulnerability was identified to be
incorrect handling of the program counter register during
the execution of a call instruction [19]. As a mitiga-
tion, buffering the program counter register was proposed,
keeping its value stable until the execution of the call
instruction finishes. Interestingly, it was shown that both
Sancus [2] and VRASED [4] contain similar changes in
their implementation, avoiding this vulnerability.

Since no open-source implementation of IPE previ-
ously existed, the cost and effectiveness of this mitigation
could only be approximated [19]. We implement this
suggested mitigation and demonstrate that it effectively
mitigates the attack with minimal hardware overhead.

Automated stack switching. Controlled call corruption
is not the only attack enabled by attacker-poisoned stack



pointer values. Previous research has identified vulner-
abilities in Sancus and VRASED that involve invoking
the enclave with poisoned stack pointer values, possibly
resulting in the leakage of part of a secret key [22], [23].

While the IPE Exposure mitigation framework im-
plemented secure stack switching in software, a more
efficient and less error-prone solution is to perform it from
hardware on context switches [7], [85]. In our work, we
implemented this automatic stack pointer switching mech-
anism in hardware, reducing the amount of sanitization
code required in the mitigation framework and enabling
better security guarantees, for example in the context of
secure interrupt handling (cf. Section 6).

3.6. Software toolchain

While we cannot offer full binary compatibility with
TI IPE due to practical limitations of the openMSP430
core, such as lack of support for the 20-bit address space
and the extended MSP430X instructions [45], we strive
to provide full software compatibility for C projects,
only requiring recompilation of code written for TI. Our
software development framework is based on TI’s exam-
ple IPE project [15] and the software mitigation frame-
work introduced in IPE Exposure [19]. Our framework
transparently inserts hand-crafted assembly stubs on IPE
entry and exit transitions, taking care of low-level con-
cerns such as vectoring multiple logical entry functions
through the single physical entry point and sanitizing and
cleansing CPU registers [22]. Importantly, openIPE devel-
opment is fully compatible with open-source compilers
for MSP430, opening up the space to investigating and
applying compiler-based mitigations and extensions that
require changes in the compiler [24], [84].

As part of our work, we discovered and fixed various
bugs in the open-source MSP430 ecosystem, including the
angr MSP430 backend and the original IPE Exposure
framework. Additionally, we discovered and reported a
null pointer dereference bug in the proprietary disassem-
bler tool shipped by TI, which has been confirmed by
the developers, but to the best of our knowledge, has not
yet been fixed. These contributions underline the impor-
tance of having an open-source toolchain for development,
where the community can contribute to fixing issues and
improving the development tools.

4. Functional and security testing

As evidenced by prior work [23], inductive testing
and deductive methods are complementary approaches for
early detection of implementation bugs and mismatches
with the specification in security architectures. Following
this advice, we took a multi-faceted approach to validat-
ing the correctness and security of our implementation,
using a combination of diverse unit testing and symbolic
execution with angr. By using multiple tools, we can test
changes across all layers of our implementation: hardware,
firmware, and software.

4.1. Unit test framework

The original openMSP430 core includes a regression
test suite of 94 test cases, 62 of which are applicable to our

TABLE 3. OVERVIEW OF THE UNIT TESTS.

# tests Tested functionality

62 Original openMSP430 regression tests

6 IPE boundary setup and modification
3 IPE protection from untrusted code
3 IPE protection from the debugger
2 IPE protection from DMA
1 Allowed internal IPE access
4 IPE protection from known attacks
4 Protection of the firmware region
3 Secure interrupt handling case study (Section 6)

Verilog simulator setup. These tests can be run using the
cycle-accurate iverilog simulator. First, we validated
that all of these tests finish successfully on openIPE, even
with the IPE firmware implementation included, validating
that our changes do not interfere with the normal execu-
tion of the device when IPE is not enabled.

To validate the correct behavior and security guaran-
tees of our implementation, we extended this test suite
with 26 new tests, summarized in Table 3. These tests
examine the behavior of the bootcode implementation
and the memory access control logic, including DMA
and debugger accesses to both the IPE and the firmware
region. Additionally, some of the tests confirm the pres-
ence of known vulnerabilities on the base IPE platform,
such as controlled call corruption or unrestricted entry
points [19], [20]. These tests are subsequently used to
validate the effectiveness of the security improvements
added in Section 3.5.

These unit tests are run in the continuous integration
(CI) environment of the open-source openIPE release and
can serve as the basis for evaluating the compatibility and
correctness of future openIPE extensions. In this spirit,
three of the unit tests relate to the extensions developed
as part of our case study (cf. Section 6).

4.2. Symbolic execution

Framework. Recent findings [28]–[30] on Intel SGX have
shown that symbolic execution tools are particularly ef-
fective at detecting software sanitization vulnerabilities in
TEEs. Even for MSP430 applications, symbolic execution
has been used in the past to discover memory safety
issues [86]. For our work, we extended Pandora [28],
a recent open-source symbolic execution tool that was
specifically designed for the principled validation of In-
tel SGX enclaves. We selected Pandora because it in-
cludes a capable plugin system to detect a wide range of
vulnerabilities, including confused-deputy pointer deref-
erences, control-flow hijacking, and register sanitization
bugs. Additionally, Pandora features a mature command-
line interface and can generate actionable, human-readable
analysis reports. While initially limited to validating Intel
SGX enclaves, recent work [32] has extended Pandora
with a hardware abstraction layer, which we utilize for
our openIPE extension. Specifically, we implemented an
openIPE enclave loader extension to automatically recog-
nize openIPE binaries, expose protection boundaries to
Pandora’s enclave-aware symbolic memory model, and
accurately model execution semantics according to our
implementation with security improvements. Our loader



recognizes both firmware and application binaries, allow-
ing the security validation of the critical bootcode as well
as IPE applications, including the entry and exit assembly
stubs inserted by the software framework.

Under the hood, Pandora utilizes angr [31] as its
symbolic execution engine. Unlike alternative tools like
KLEE [87], angr performs symbolic execution at the
binary level, enabling it to reason about low-level con-
cerns such as compiler optimizations and CPU regis-
ter cleansing. However, during our research, we found
angr’s MSP430 backend to be unstable. To support future
symbolic execution research on MSP430 platforms, we
contributed essential patches to upstream angr, fixing
several bugs that led to the incorrect lifting of MSP430
assembly code into the VEX intermediate representation.

Evaluation. We validate both the firmware code devel-
oped in assembly and a sample IPE application developed
in C and compiled with our framework, which includes
the critical entry and exit stubs. We focus our symbolic
exploration on validating the basic firmware and assembly
stubs, i.e., excluding the extensions for secure interrupts
(Section 6), which could potentially be validated simi-
larly. We utilize Pandora’s built-in ptrsan, cfsan, and
abisan plugins to rule out (i) confused-deputy attacks
via attacker-tainted pointers resolving within the currently
executing region; (ii) arbitrary control flow hijacking; and
(iii) leakage through unscrubbed registers during context
switches, respectively. These issues have been shown to
cause severe vulnerabilities in both openMSP430-based
systems [22], [23] and TI IPE [19].

Notably, abisan autonomously discovered a sub-
tle bug1 in the previously published IPE Exposure [19]
framework where the secret registers were not properly
cleared during one of the exit flows from IPE, clearly
showing the power of this approach. This specific bug,
which we reproduced on a TI microcontroller and patched
in our framework, left five registers uncleared after the
invocation of an IPE function, leaving their contents ex-
posed to the calling untrusted code. Depending on the
implementation of the called IPE function, this might leak
secret data to the calling code.

When validating the firmware, ptrsan correctly
identified the potential for confused-deputy reads through
the attacker-provided IPE configuration structure (cf. Sec-
tion 2). However, since we explicitly excluded the secrecy
of the firmware from our objectives, we determined that
these instances do not require mitigation.

Discussion. Symbolic execution is notorious for suffering
from state explosion. However, we found this to be less
of a concern for the small embedded programs we aim
to validate, specifically the firmware and IPE assembly
entry/exit stubs. When run on a minimal IPE “hello world”
C program, our Pandora port finishes in seconds, making
it suitable to run in a CI environment. Similarly, validating
the main firmware execution path completes in seconds,
but the failure path, which includes a mass-erase loop to
clear the entire program memory (cf. Section 2), would
require much longer.

Additionally, symbolic execution is known to produce
false positives. Indeed, our modified abisan reports

1. https://github.com/martonbognar/ipe-exposure/commit/92c01ef2

TABLE 4. HARDWARE COST OF OUR IMPLEMENTATIONS IN
LOOK-UP TABLES (LUTS) AND FLIP-FLOPS (FFS). OPENIPE REFERS

TO OUR DESIGN WITH ALL HARDWARE-BASED SECURITY
IMPROVEMENTS OF SECTION 3.5.

Design LUTs ∆ LUTs FFs ∆ FFs
openMSP430 (baseline) 2,311 - 1,110 -

IPE specification 2,510 +8.6% 1,162 +4.7%
openIPE 2,582 +11.7% 1,191 +7.3%

false-positive warnings for non-zeroed registers that are
used as return values or untrusted bridge parameters.
Furthermore, the ptrsan plugin flags the mass-erase
loop as a false positive when validating the firmware and
warns for a benign attacker-provided index in the dispatch
table with logical entry points when validating the IPE
stubs. The cfsan plugin similarly reports a false-positive
warning for benign callbacks to untrusted code. Thanks
to Pandora’s detailed and interactive analysis reports, we
were able to efficiently sift through these false positives.

Similarly to the unit test suite, we integrated our
symbolic execution framework into openIPE’s CI envi-
ronment. We intend this to be extended in the future to
provide additional security guarantees, possibly relating to
future openIPE extensions.

5. Performance evaluation

This section evaluates the changes of openIPE to the
openMSP430 hardware and the IPE Exposure software
mitigation framework, including the security improve-
ments over TI’s implementation (Section 3.5). The evalu-
ation of our case study in secure interrupts follows later
in Section 6.

5.1. Hardware cost

When proposing extensions to the hardware, the in-
curred overhead on the physical realization of the design
is an important metric for evaluating the feasibility of the
proposal. To evaluate this cost for our design, we follow
the strategy of related work in the literature [4], [59] and
report on the number of look-up tables (LUTs) and flip-
flops (FFs) used when synthesizing the hardware design
for an FPGA. Concretely, we synthesize variants of our
design for the Basys 3 FPGA using Xilinx Vivado 2024.2
configured with the default optimization strategy.

Table 4 summarizes the results of this evaluation,
showing synthesis results for designs with a connected
1024-byte external firmware memory, such as an EEP-
ROM chip. Compared to the unmodified openMSP430
core, shown in the first line, implementing the (insecure)
IPE specification incurs an 8.6% overhead in the number
of look-up tables and a 4.7% overhead in the number of
flip-flops. Adding the security improvements to enforce a
single entry point to the IPE region, mitigate the controlled
call corruption attack, and perform automated stack
switching increases the overhead only slightly, mostly due
to storing the extra stack pointer register.

Including the firmware memory using RAM blocks on
the FPGA naturally increases the overhead. Adding a 128-
byte firmware block to openIPE (which is enough to store

https://github.com/martonbognar/ipe-exposure/commit/92c01ef2


our implementation of IPE bootcode) uses 2640 LUTs and
1197 FFs, while a 1024-byte firmware memory uses 2900
LUTs and 1200 FFs (in addition to 32 and 256 memory
blocks, respectively).

When comparing the hardware cost of openIPE to
other openMSP430-based systems, we see that it is similar
to the reported overhead of VRASED (+7% LUTs, +5%
FFs [4]) while offering a more flexible isolation primitive,
and is much smaller than Sancus (+62% LUTs, +80%
FFs [59]). It is important to note that hardware cost is
not a straightforward comparison, as the different systems
serve different purposes and extend different versions of
the openMSP430 core.

5.2. Binary size and runtime overhead

Besides hardware cost, another important evaluation
aspect is the size and execution time of the additional
software introduced by openIPE. First, we evaluate our
implementation of the IPE bootcode. Second, we measure
the impact of our changes on the assembly stubs used
by the IPE Exposure framework [19]. All execution time
measurements in this section were obtained through the
cycle-accurate openMSP430 simulator.

Bootcode. The performance impact of the IPE bootcode
is negligible. Our implementation consists of 78 bytes of
code, which takes at most 58 cycles to execute unless a
mass reset needs to be performed as a result of miscon-
figuration or tampering.

Case study: code attestation. To evaluate the impact
of our changes on the mitigation framework, we ported
VRASED’s remote attestation primitive to openIPE as a
case study. VRASED [4] provides a hardware-software
co-design for attestation to validate the integrity of un-
trusted code running on the device. For this purpose,
they apply an HMAC algorithm to the untrusted memory,
provided by the HACL* library [88]. To protect the soft-
ware running the attestation, they modify openMSP430 to
provide a read-only code memory region for the attestation
code, together with a private data memory section.

In IPE Exposure [19], this application has been mod-
ified to make use of the isolation primitive of IPE, co-
locating the code and the stack in the isolated IPE region,
performing attestation on the code and data outside the
IPE region. We used this IPE-based version to show that
IPE applications written in C can be recompiled to run
on openIPE as long as they do not use special peripherals
unavailable on openMSP430. Interestingly, openIPE also
enables the possibility of moving the attestation code to
the firmware, which in turn would enable the attestation
of IPE-protected applications or a secure boot mechanism.

Case study results. Compared to the IPE Exposure mit-
igation framework [19], our security improvements in
hardware allow us to relax the responsibilities of the
software, reducing the overhead of the framework. The
most significant improvement comes from the fact that
IPE Exposure had to rely on the MPU to provide protec-
tion against the controlled call corruption vulnerability
and to enforce the single entry point. These features ne-
cessitated performing a brown-out reset on every context

switch from untrusted to IPE code to remove the MPU
protection. Eliminating these brown-out resets improves
performance, as they took between 0.3-0.6 ms to complete
on TI devices [19]. Moreover, openIPE is better suited for
implementing systems with hard real-time guarantees that
could not be ensured with nondeterministic reset times.

Table 5 shows the assembly stubs of the mitigation
framework and microbenchmarks obtained from IPE Ex-
posure [19], together with our evaluation after adapting
the framework to openIPE. These results show that even
beyond eliminating the brown-out resets, the hardware
mitigations such as the automated stack switching enable
further optimizations in the code.

As an end-to-end benchmark, we also measured the
execution time of the VRASED attestation routine on
openIPE, which was used as the macrobenchmark of IPE
Exposure. We measured an execution time of 3,651,333
cycles for the attestation of a 2 kB region, corresponding
to a wall clock time of 456.42 ms at 8 MHz, a figure
in line with the numbers reported in IPE Exposure and
the original VRASED benchmark [4]. As the execution
time of some instructions differs between TI MSP430
and openMSP430 [14], the 43 ms speedup compared to
running the code on TI devices cannot be solely attributed
to the improvements in the framework and the lack of
brown-out resets, but they are certainly a factor.

6. Case study: Secure interrupt handling

Interrupt handling is a crucial feature to enable real-
time functionality in microcontrollers, which is often
required in safety-critical applications [7]. At the same
time, numerous studies have demonstrated that enabling
interrupts can compromise architectural [19], [20] and
microarchitectural [21], [23] security. As a result, many
security architectures choose to disable interrupts.

In the following, we survey different approaches to
secure interrupt handling from the literature and imple-
ment three of them on openIPE. Additionally, we design
and implement a secure interrupt handling scheme that
utilizes openIPE’s flexible firmware layer to act as a
trusted security monitor and handle interrupts. As part of
our case study, we compare the security guarantees and
the overhead of these different approaches.

Security concerns. Improper handling of interrupts can
cause security violations in different scenarios. First, the
attacker may have control over an untrusted interrupt ser-
vice routine (ISR) that gets triggered during the execution
of IPE code. From the ISR, the attacker can then read
out the current register values or corrupt them, leading
to secret leakage or other unintended behavior if the
register values are not cleared and restored before and
after executing the untrusted ISR [19], [20], [89].

Second, the interrupt handling mechanism itself can
leak information. Nemesis [19], [21] is a microarchitec-
tural attack that exposes timing differences in the interrupt
handling mechanism based on the currently executing
instruction in the IPE region at the time of the interrupt.
The attack reveals the execution time of this individual
instruction, which, if it depends on a secret condition, can
leak this information.



TABLE 5. OVERVIEW OF ASSEMBLY STUBS IN OUR FRAMEWORK, COMPARED TO THOSE REPORTED FOR THE IPE EXPOSURE FRAMEWORK.
STUBS MARKED WITH A (*) COULD BE COMPLETELY ELIMINATED THANKS TO THE HARDWARE IMPROVEMENTS (SECTION 3.5).

Stub # instances Old size Old execution time (cycles) New size New execution time

ipe_entry global 76 B 63 84 B 62
ipe_ocall global 60 B 51 56 B 50
ocall_stub per ocall fn 20 B 25 20 B 23

ecall_table per ecall fn 6 B - 4 B -
ipe_ocall_cont global 72 B 54 6 B 6

ecall_ret global 68 B 51 2 B 3
Untrusted ecall_stub per ecall fn 12 B 16 12 B 13

_system_pre_init (*) global 72 B 28/42 - -
_system_post_cinit (*) global 36 B 28 - -

reset_into_ipe (*) global 66 B 49 - -
new_reset_isr (*) global 120 B 45/62 - -

Third, an improperly set up stack pointer in combi-
nation with interrupt handling can also lead to security
issues. On MSP430, when handling an interrupt, the in-
terrupted instruction’s address and the status register are
backed up on the stack, pointed to by the stack pointer
register. If the attacker can control the value of the stack
pointer, e.g., because there is no automated stack switch-
ing mechanism during context switches, this behavior can
be exploited. By pointing the stack pointer inside the IPE
region and triggering an interrupt after calling protected
code, the attacker can force the interrupt handler mecha-
nism to corrupt code or data inside the region. On TI IPE,
this attack reportedly does not succeed [19] (which also
means that interrupt handling will always fail if the stack
points inside the IPE region as the ISR cannot return), but
it does on our base implementation. On the other hand,
if the stack pointer points to unprotected memory when
the IPE code is interrupted, the backed-up values of the
program counter and the status register will be visible
to the attacker, which can again leak information. These
attack vectors show the importance of correctly managing
the stack pointer across context switches.

6.1. Disabling interrupts in software

The most straightforward solution, also employed by
the IPE Exposure [19] framework, is to disable interrupts
from software. This is also the recommended approach by
TI to “ensure that the registers or RAM are cleared before
servicing any ISR outside of the IPE region” [15]. The
IPE Exposure framework includes instructions to disable
both maskable and non-maskable interrupts on context
switches to the IPE region, either when calling a protected
function or when returning from an outside call. This
mitigation can be easily adapted to openIPE by changing
the instructions managing non-maskable interrupts.

Of course, applying this mitigation comes with the
obvious downside of not being able to handle interrupts
during IPE execution, which might be prohibitive for
certain applications. Disabling interrupts limits the func-
tionality of the protected code, as it cannot communicate
with peripherals that rely on interrupts to communicate
with the CPU, or reduces performance by relying on
polling instead. Moreover, it makes time-sharing the CPU
very difficult, as an operating system cannot use interrupts
to pause the execution of the enclave to run another
process. A malicious enclave can also easily hijack the

CPU and never return control to untrusted code, although
this is already a concern on MSP430 as untrusted code
can always disable interrupts.

There is an additional risk that an interrupt might be
triggered and handled between the start of IPE execution
and the interrupt-disabling instructions finishing. Espe-
cially if automatic stack switching is not enabled, this
can already open up the device to some of the previously
described vulnerabilities.

6.2. Disabling interrupts in hardware

Instead of relying on the previous error-prone ap-
proach of disabling interrupts from software, the hardware
can also be modified to disable interrupt handling during
the execution of protected code. This is the approach taken
by VRASED [4] and the original Sancus [2] architecture
to avoid secret leakage with minimal hardware modifica-
tions. Of course, this comes with the same limitations in
functionality as disabling interrupts from software.

6.3. Secure interrupts

In prior work, de Clercq et al. investigated secure
interrupts on low-end embedded devices with enclaved
execution [7]. Their goal was to share the responsibilities
of interrupt handling between trusted and untrusted code,
enabling interrupt requests during the execution of both
while allowing ISRs to reside in either section. They
proposed two approaches, called “software-based” (which
we will call SW-IRQ) and “hardware-based” implemen-
tations. The two designs are very similar and have the
same goals, with SW-IRQ aiming to minimize the amount
of required hardware changes. In our work, we focus on
this implementation as it offers more extensibility. Unfor-
tunately, the authors did not release their code. As part
of our case study, we implemented SW-IRQ on openIPE
while staying as close as possible to the original design,
making it the first available implementation of this system
which could inspire further research in this domain.

Figure 4 shows the main components of the SW-IRQ
design. Both security domains have their own IVT, and,
depending on the currently executing domain at the time
of the interrupt, the hardware selects the handler from the
corresponding IVT. As a convention, we store the secure
IVT at the highest addresses of the IPE region, determined
by the configuration registers. We modify the software



IVT IVT

ISR 1 ISR 2

Trampoline Trampoline

Entry point
// untrusted code

mov #dmem, r5

add r5, r6

// trusted code

sub r7, r8

xor r8, r9

Trusted domain Untrusted domain

Figure 4. Control flow transfers on interrupts in SW-IRQ, showing
how an untrusted ISR is invoked during enclaved execution. Solid lines
indicate jumps and dotted lines indicate returns.

framework to add trampoline functions in both domains
that handle the case in which a context switch is required
to handle the interrupt. The trampoline inside IPE needs to
back up and clear registers before invoking the untrusted
ISR. The entry stub of the framework is also modified
to handle the case when the IPE is invoked to handle an
interrupt from untrusted code, or when control is returned
after handling an interrupt in untrusted code.

While this solution offers strong isolation guarantees
and a high degree of flexibility, it lacks certain availability
guarantees. The two domains rely on each other’s cooper-
ation to set up the IVT and trampoline functions correctly,
meaning that malicious untrusted code can prevent inter-
rupts from being handled in the IPE region by replacing
the entries in the untrusted IVT.

The “hardware-based” approach by de Clercq et al.
uses a single IVT and additional hardware modifications to
perform the vectoring based on whether a context switch
is required. Their paper does not mention where this IVT
should be located, but if untrusted software can access it,
it suffers from the same limitation as SW-IRQ.

6.4. Novel firmware-based solution

Inspired by these prior proposals, we design a new
secure interrupt scheme, FW-IRQ, outlined in Figure 5.
The main insight we offer is that openIPE’s firmware layer
can be used as a trusted secure monitor that is responsible
for handling the interrupt vectoring. Our design splits the
IVT into two parts, both the IPE enclave and the untrusted
code can register handlers that are located in their own
domain. The firmware maintains for each interrupt source
whether the corresponding handler is stored in IPE or
untrusted code. Upon an interrupt, the control flow is
always redirected to the firmware, which executes an
interrupt dispatcher function that checks whether a context
switch is required for handling the interrupt, saving and
clearing registers accordingly. Similarly to SW-IRQ, small
modifications in the IPE stubs and untrusted code are
required to correctly handle all control transfers, and a
second entry point is added to the firmware for interrupts.

By moving the interrupt handling responsibilities to
the firmware, we strengthen the availability guarantees
compared to the SW-IRQ approach, making designs with
enforceable (and secure) resource sharing possible [6],
[8], [11], [12]. Moreover, by using the firmware for this
functionality, we could quickly prototype our design and
enable further modifications and improvements. As an

ISR 1
ISR 2

Entry point
// untrusted code

mov #dmem, r5

add r5, r6

// trusted code

sub r7, r8

xor r8, r9

Interrupt
dispatcher

Trusted domain Untrusted domain

Firmware layer

IPE IVT
out IVT

Interrupt
padding

padding

Figure 5. Control flow transfers on interrupts in FW-IRQ when vectoring
from trusted code to an untrusted handler. Solid lines indicate the flow
to the handler, and dotted lines indicate the return flow.

example, if support for multiple distrusting enclaves was
added to openIPE, the firmware could be modified to con-
tain a mapping of interrupt sources to different enclaves.

Eliminating side-channel leakage. To showcase the
strength of extensibility in the firmware-based approach,
we integrate a defense against the Nemesis interrupt la-
tency attack [21], which has been extensively demon-
strated on a range of low- and high-end CPUs, including
Sancus [21], VRASED [23], and TI IPE [19]. Our defense
is inspired by the design of SancusV [33], a hardware-
based extension that adds a variable amount of padding
to the interrupt handler logic to mask the execution time
of the interrupted instruction. This padding needs to be
applied before handing control over to an untrusted ISR
that could deduce the execution time of the interrupted
instruction by measuring the start of its own execution. In
addition, the padding needs to be complemented by addi-
tional padding cycles before returning from the interrupt
handler to ensure that the execution time of the rest of the
enclaved code also remains constant.

We divide the responsibility of padding between the
firmware and the IPE software itself. When enclaved
execution is interrupted, the firmware layer calculates
the interrupted instruction’s execution time based on the
current timer value and performs the appropriate padding
with no-op instructions. To handle the return padding, the
firmware writes the number of required padding cycles
into IPE memory, which is used by the IPE entry point
logic after the return from interrupt for a similar padding
routine before continuing the execution.

Our prototype implementation suffers from a number
of limitations that could be addressed in future work.
The padding is currently only performed for interrupts
caused by the primary timer peripheral of openMSP430
and requires that the timer’s period is set higher than the
longest available instruction (≥ 7 cycles). An alternative
approach could perform the padding based on examining
the interrupted instruction (the address of which is saved
on the stack) and determining its execution time. This
would make the mitigation agnostic from the timer at the
cost of added complexity.



TABLE 6. THE EFFECT OF DIFFERENT APPROACHES TO SECURE INTERRUPT HANDLING ON FUNCTIONALITY AND SECURITY.

Approach Secure scheduling Architectural protection Nemesis mitigation Untrusted ISRs

Software disable # G#  #
Hardware disable #   #

SW-IRQ [7] G#  #  
FW-IRQ G#    

TABLE 7. OVERHEAD OF DIFFERENT INTERRUPT HANDLING
APPROACHES ON OPENIPE.

Design LUTs FFs ∆ Software
openIPE (baseline) 2,582 1,191 –

Software disable – – 8 bytes / 6 cycles
Hardware disable 2,581 (-1) 1,191 –
SW-IRQ 2,597 (+15) 1,191 282 bytes / 198 cycles
FW-IRQ 2,577 (-5) 1,190 (-1) 674 bytes / 417 cycles

6.5. Evaluation

Table 6 summarizes the different approaches we im-
plemented on openIPE. We see that primitive approaches
that completely disable interrupts cannot be used to im-
plement secure scheduling where the scheduler runs in
an enclave and can interrupt untrusted code on a compro-
mised device [7], [8], [12]. However, without interruptible
enclaves, the Nemesis attack is also impossible to carry
out. As explained earlier, disabling interrupts from enclave
software is an error-prone process, which cannot necessar-
ily guarantee the protection of IPE memory unless stack
switching is implemented in hardware.

A current limitation of all our secure interrupt schemes
is that, as on the original openMSP430, interrupts can
be disabled from untrusted code and nested interrupts are
also not supported. This enables denial-of-service attacks
that trigger an untrusted ISR and never return control
to the CPU. To address this issue, additional minimal
hardware extensions for bounded atomicity [8], [12] could
be implemented on openIPE, thereby enabling hard real-
time applications.

Software and hardware overhead. Table 7 shows the
results of our evaluation of the software and hardware
overheads of the different approaches we implemented
(without focusing on optimizations) on openIPE. All pro-
posals incur negligible or no additional hardware cost
when evaluated with our strategy from Section 5, and
interestingly, FW-IRQ even outperforms SW-IRQ. Our
evaluation of SW-IRQ gives similar results as those re-
ported in the original paper, +10 LUTs and +2 FFs [7].
This is in contrast to their hardware-based approach,
which, while offering weaker security guarantees than
FW-IRQ (no Nemesis defense), incurs an overhead of
+186 LUTs and +34 FFs. SancusV, the hardware-based
Nemesis defense requires +142 LUTs and +260 FFs,
mainly due to saving the register state in hardware [33].

While FW-IRQ has the smallest hardware overhead,
transferring the responsibilities to the firmware is a trade-
off in terms of code size and execution time. The soft-
ware overhead is clearly the lowest for the approaches
disabling interrupts completely, as these do not need
code to handle the context switches between domains.
SW-IRQ and FW-IRQ duplicate the IVT and add code

in the IPE and the untrusted region. FW-IRQ additionally
adds code for the interrupt padding and dispatching in
the firmware. The table lists the worst-case execution
latency between the arrival of an interrupt and the start
of the ISR’s execution. The main reason for the worse
performance of FW-IRQ is due to the calculation and
execution of the interrupt latency padding, which we also
did not spend time optimizing. While these latencies are
much larger than insecure context switches (6 cycles),
they are deterministic, making it possible to apply these
mitigations in systems with hard real-time requirements
that need knowledge of worst-case latencies.

7. Future work

Our extensible memory isolation framework provides
an excellent foundation for prototyping new hardware and
software extensions. Below, we outline several directions
that demonstrate openIPE’s versatile potential for the rapid
prototyping of innovative hardware-software co-designs.

Other proprietary TI hardware features. To investigate
the security of and propose changes to proprietary TI
MSP430 microcontrollers [15], openIPE could be ex-
tended with more of their features. This includes the MPU,
which was used in IPE Exposure to support the software
mitigation framework [19], and which could be used to
enforce a no-execute policy on protected data inside IPE.
Other interesting features include a hardware AES acceler-
ator and even TI’s extended 20-bit MSP430X instruction
set. Especially relevant may be the addition of a small
cache to prototype mitigations against microarchitectural
side channels [19]. Lastly, openIPE-enabled FPGAs could
be interfaced with TI’s FRAM [46] persistent memory
technology to investigate protection against physical at-
tacks, e.g., through the use of a transparent memory-
encryption engine similar to Intel SGX [90].

Advanced memory isolation. Future work could also en-
hance IPE’s currently limited access-control policies. This
could include supporting multiple protected regions [2],
[73], securing I/O devices through dedicated driver en-
claves [2], [3], [51], or even enabling support for multi-
CPU environments that share the same physical memory
space. We anticipate that implementing such refined se-
curity policies will be relatively straightforward, as our
design already channels all access-control logic decisions
through a dedicated openMSP430 peripheral hardware
component (cf. Figure 3). Support for multiple protected
regions could use the firmware as a secure monitor without
requiring additional hardware changes [73].

Compiler extensions. Using compilers to analyze and
harden code against security vulnerabilities is a popular



practice in research, also on openMSP430 [24], [84].
By integrating the open-source msp430-gcc compiler
into our framework, we facilitate similar research op-
portunities for openIPE. Furthermore, future work could
involve upstreaming native support for IPE in both the
msp430-gcc and clang compilers, as well as conduct-
ing security analyses of the TI toolchain, particularly in
light of the issue identified in TI’s proprietary disassem-
bler (see Section 3.6). Additionally, incorporating support
for memory-safe systems programming languages such as
Rust could further enhance the security and reliability of
the development process.

Secure direct memory access (DMA). One of the mi-
croarchitectural attacks demonstrated on openMSP430-
based platforms such as Sancus and VRASED is a DMA-
based contention attack [23]. To date, the only available
mitigation against this attack is a compiler-based code bal-
ancing approach, which incurs a sizeable overhead [24].
We believe that openIPE can serve as a research plat-
form for prototyping hardware- or firmware-based mitiga-
tions against this attack. Additionally, openIPE’s adaptable
memory-isolation model could provide a foundation for
creating enclave-aware DMA solutions, enabling trusted
devices to access a specific subset of enclave memory.

Side-channel resistance. On TI microcontrollers, three
different sources of side-channel leakage were discov-
ered: interrupt latency, cache contention, and MPU vi-
olations [19]. In Section 6, we demonstrated how the
firmware and the IPE code can cooperate to eliminate side
channel leakage through interrupt latency. Future work
could investigate whether this protection can be extended
to the other two sources of leakage by modifying the
trusted software, similar to reset-based switching [40].

Hard real-time support. The secure interrupt case study
presented in Section 6 provides an excellent foundation
for enhancing openIPE’s capabilities in mixed-criticality
systems that require hard real-time support. For example,
incorporating minimal additional hardware extensions to
achieve limited atomicity [8], [12] would facilitate guar-
anteed real-time execution of security-critical, interrupt-
driven functions within the protected IPE region. This
enhancement could be particularly beneficial within IPE’s
deployment model (see Figure 2), ensuring that essential
functionalities from the IP vendor remain operational even
after the microcontroller is handed over to the end user.

Security testing and verification. Currently, our sym-
bolic validation tool checks attacker-controlled memory
operations and register clearing on context switches. To
enhance the security guarantees, this tool could be ex-
panded to check additional properties, such as the proper
setup of the IPE region and the configuration registers.
Another promising direction is to extend our symbolic
validation tool to ensure the absence of timing-based side
channels [91]. Additionally, employing formal verification
tools [4] could assist in validating the correct and secure
implementation of the hardware or firmware code, while
taking into account model-implementation gaps [23].

Cross-testing TI features. Our goal when building
openIPE was to maintain compatibility as much as pos-
sible with TI’s specification. While we test this using
our unit test suite, future work could investigate more
thorough ways of ensuring that the two implementations
behave identically. Automated testing of TI devices is
currently difficult due to the proprietary development
toolchain, future work could develop tooling to aid re-
searchers in this task and enable more robust methodolo-
gies such as fuzz testing on TI microcontrollers.

Other avenues. We believe that the availability of open-
source implementations of commercial security technolo-
gies, such as openSGX [26] and openIPE are important to
drive research with industry impact. The open instruction
set RISC-V already has a number of open-source CPUs
with standard security features implemented, but other
technologies such as TrustZone [85] would also benefit
from such research tools.

8. Conclusion

Responding to the pressing need for specialized
memory isolation mechanisms in low-end embedded
microcontrollers, we proposed openIPE, an extensible
openMSP430-based implementation and enhancement of
Texas Instruments’ proprietary IPE specification. By im-
plementing mature hardware support and a configurable
firmware layer, openIPE offers a unified approach to
enhance security while ensuring extensibility for future
research. Our evaluation of the base design, as well as
a case study into secure interrupt handling serve as a
validation of openIPE’s potential as a unified research
platform to explore flexible hardware-software co-designs
for future research proposals on trusted execution. Apart
from extensions to the security functionality, we would
also like to further improve a mature testing and verifica-
tion framework built around this design that can be reused
for future extensions.
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[48] Jan Tobias Mühlberg, Job Noorman, and Frank Piessens.
Lightweight and flexible trust assessment modules for the internet
of things. In European Symposium on Research in Computer
Security (ESORICS), pages 503–520, 2015.
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