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Executive Summary

The ORSHIN project has as a goal to build secure and open-source hardware. In Task 3.1, we
designed formal models for reasoning about microarchitectural side-channel leakage and built
several countermeasures. This deliverable describes the RISC-V processor, Proteus, we built to
allow experimenting with these countermeasures. It also contains details of the countermeasures
and their implementations. We chose RISC-V due to its open nature and ease of extensibility with
custom instructions and registers, which are used in all of our security extensions.

Proteus is a software-defined RISC-V CPU built with the explicit goal of supporting security re-
search by allowing users to quickly develop, validate, and evaluate hardware extensions. Much of
the core functionality of Proteus is implemented using a plugin system, simplifying the process of
enabling or modifying certain functionalities. It features textbook implementations of an in-order
and an out-of-order pipeline, making it possible to evaluate extensions in different deployment
scenarios aligning with embedded or high-end settings. To support robust security validation,
we propose to closely integrate several different security testing and verification tools with the
processor, together with benchmark suites for performance evaluation.

We used Proteus to build three security extensions in this project: ProSpeCT, Architectural
Mimicry, and Libra. ProSpeCT proposes a formally verified defense mechanism against all
known Spectre attack variants. Architectural Mimicry extends the processor with new “mimic”
instructions that imitate the side effects of regular instructions without affecting the program state,
enabling novel linearization and balancing techniques in software. Libra introduces a novel pro-
gram transformation, “instruction folding”, which, together with minor hardware changes, enables
eliminating control flow leakage.

The code of the base Proteus processor, the extensions and the evaluation code are all publicly
available under permissive licenses. Two of the extensions have also successfully participated in
artifact evaluation, where an artifact evaluation committee has determined that both satisfy the
highest requirements for reusability.
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2.1 The in-order pipeline of Proteus showcasing the plugin system. The blue plugin
spanning multiple stages is a branch target predictor (BTB), while the orange plugin
represents an arithmetic operation. The plugins are only illustrations, they do not
represent the real logic gates used.
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Chapter 1

Introduction

One of the goals of the ORSHIN project, and specifically of WP3 is building prototypes for mitiga-
tions of microarchitectural side channels. This report describes the motivation behind us building
a RISC-V processor for this purpose, and the security extensions we built on it as part of this
project.

In contrast to the relatively well-established practices of developing and evaluating software-
based countermeasures through codebases like the Linux kernel and software benchmarks, re-
search into hardware changes is still fairly experimental. Early suggestions for hardware changes
often remained theoretical, and making precise claims was difficult as hardware manufacturers
are historically closed-off and do not openly publish their designs. A partial solution to this chal-
lenge is the use of architectural simulators such as gem5 [1] or Simics [15]. While these enable
conducting performance evaluations on effects such as cache or TLB hit rates, they do not give
a good indication of the incurred complexity of the hardware. Evaluating the changes to the area
and the critical path is essential when considering which mitigations to deploy on real hardware,
but this can only be measured by changing a real hardware design. Moreover, these simulation
tools are far less suited to reason about attacks exploiting physical phenomena in hardware such
as physical fault injection or power side-channel attacks.

RISC-V. The ratification of the open RISC-V instruction set in 2019 [18] has caused a noticeable
surge in the development of open-source processors. RISC-V can be freely used in processor
designs and was designed to target CPUs across the computing spectrum, from small micro-
controllers to desktop and server CPUs. In addition, the instruction set was designed to be
easily extensible, which encourages research proposals introducing new instructions to the stan-
dard. Today, RISC-V processors are appearing in commercial products by companies such as
Microchip and Milk-V, and already in 2023 almost 10% of Al accelerators and 5% of microcon-
trollers shipped were RISC-V chips [20].

Open-source RISC-V processors are also increasingly being used in research. Popular low-
end targets include the Ibex [13] chip (previously known as zero-riscy [5]), part of the openTitan
project [14] designing a root-of-trust for embedded systems; and CVA6 [26]. There are also
out-of-order RISC-V cores enabling research for high-end CPUs such as BOOM [27] and Xiang-
Shan [25], the latter of which is also being commercialized.! Security research into these CPUs is
also rapidly evolving with proposals to perform fuzzing [9, 3] or verification [11, 2] on these chips.
At the same time, security vulnerabilities have been shown on these commercial RISC-V CPUs [7,
21], underlining the importance of security research on this platform.

"Thttps://milkv.io/ruyibook
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Proteus. Despite the rising popularity of open-source RISC-V chips and tools operating on them
to validate security properties, these largely exist in isolation. The goal of Proteus is specifically
to enable quick prototyping of security extensions, including thorough security validation and
performance evaluation tools. We tackle this goal from multiple directions. First, Proteus features
a plugin system and many configurable options, making it possible to evaluate extensions in
different configurations and to develop extensions as new plugins. The available configurations
notably include an in-order and an out-of-order pipeline, the latter with a configurable number of
parallel execution units. Second, we develop an extensive software ecosystem around the CPU
which enables security validation and verification, as well as performance evaluation. As Proteus
is written in SpinalHDL [16], which generates Verilog code, it is possible to apply techniques that
operate on Verilog code or require the design to run on an FPGA. Compared to other out-of-order
cores like BOOM, Proteus is relatively small, making it feasible to run it on affordable FPGAs.

Outline. In this document, we first describe the Proteus processor in Chapter 2, then detail the
security extensions built as part of the ORSHIN project in Chapter 3. Finally, we conclude in
Chapter 4.

ORSHIN D3.1 PU Page 2 of 10
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Chapter 2

The Proteus core

This chapter briefly introduces the Proteus RISC-V processor. The code of the processor and
the necessary infrastructure to run simulations and flash it to an FPGA can be found on GitHub,
along with a hands-on tutorial on its Wiki for researchers and developers wanting to work with
Proteus:

https://github.com/proteus-core/proteus/

Aside from the three ORSHIN-related projects described in Chapter 3, Proteus has been used in
other projects [19], even by completely independent research teams [10], showing its versatility
and usability.

2.1 Pipelines

Proteus features implementations of an in-order and an out-of-order pipeline which share large
parts of the codebase. These pipeline implementations enable experimenting with a given se-
curity extension on different designs, the in-order pipeline representing a low-end loT device,
and the out-of-order design representing a more complex and performant microprocessor. Most
of the functionality is implemented using a plugin system similar to that of VexRiscv [17]. This
plugin system enables easy configuration of different components, such as optionally including
the RISC-V extension for multiplications and divisions, and it allows reusing many of the same
building blocks in the in-order and the out-of-order pipeline.

The plugins can either hook into a pipeline stage and define operations on the pipeline registers
(e.g., defining a new arithmetic operation), introduce new pipeline registers and define how the
decoder should populate these for different instructions, or provide functionality across the whole
pipeline (cf. Figure 2.1). Plugins can also cooperate through interfaces called services. Services
can be invoked across the pipeline to provide data or operations for other components. An ex-
ample is the ALU service, which can be invoked from the branch operation plugin to calculate the
target addresses of branch instructions.

2.1.1 In-order pipeline

The in-order pipeline is flexible in the number and order of stages: the plugins implementing differ-
ent parts of the functionality can be assigned to arbitrary stages. For the published version, these
are configured in a textbook 5-stage setting with fetch, decode, execute, memory, and writeback
stages. Figure 2.1 shows the structure of the pipeline with two plugins highlighted. The stages
are indicated at the bottom of the figure with the pipeline registers forwarding data from one stage

ORSHIN D3.1 PU Page 3 of 10
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Figure 2.1: The in-order pipeline of Proteus showcasing the plugin system. The blue plugin
spanning multiple stages is a branch target predictor (BTB), while the orange plugin represents
an arithmetic operation. The plugins are only illustrations, they do not represent the real logic
gates used.

to the next positioned between the stages. Plugins can either add functionality to a single stage,
such as the orange plugin representing an arithmetic operation that performs a transformation on
the values in the pipeline registers; or span across multiple stages and components, such as the
blue plugin representing a branch predictor which analyzes and stores branch targets from the
execute stage and influences the instruction fetching logic in the first stage.

2.1.2 Out-of-order pipeline

The out-of-order design is based on Tomasulo’s algorithm [8] and features a reorder buffer (ROB)
with a configurable number of entries performing register renaming; a number of execution units
wrapped in reservation stations handling instruction dependencies; and load buffers performing
load operations after the target addresses are calculated in an execution unit. The results of
executed instructions and completed loads are communicated on the common data bus (CDB)
to allow dependent instructions to start executing immediately after the dependency is resolved.
Instructions marked as ready in the ROB are retired in program order, and stores and CSR
operations are also performed in this stage.

2.2 Software infrastructure

To ease development with Proteus and the reproduction of results, the processor ships with a
Docker container providing extensive functionality. This container is set up to contain the nec-
essary toolchain to compile and run programs on the simulated processor, and also provides
different benchmarks and evaluation tools (e.g., providing security testing and hardware mea-
surement costs).

ORSHIN D3.1 PU Page 4 of 10
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Chapter 3

Security extensions

This chapter provides a brief introduction of the security extensions of Proteus developed as part
of the ORSHIN project. These extensions were implemented to show the feasibility and enable
the evaluation (performance overhead, security guarantees, hardware cost) of these designs. For
further information about the details of the developed security models and their security guaran-
tees, we refer to Deliverable 3.2 and the publications [4, 22, 23].

The source code for the extensions and the evaluations are publicly available in the following
repositories:

* https://github.com/proteus-core/prospect
* https://github.com/proteus-core/ami
* https://github.com/proteus-core/libra

Notably, the code for ProSpeCT and Libra went through the artifact evaluation process of USENIX
Security ’23 and ACM CCS 24 respectively, earning the highest level of badges, showing that the
evaluators independently reproduced our evaluation results.

3.1 ProSpeCT

ProSpeCT [4] is a countermeasure against all known Spectre [12] variants, which works by pre-
venting secret values from being forwarded to unsafe instructions during speculation.

Implementation. This extension was the first to make use of the out-of-order pipeline and im-
plemented both speculation tracking and secret taint tracking. To mark secret sections of the
memory, CSRs storing the boundary addresses of secret regions were introduced. Most of the
modifications relate to the reservation stations, making sure that the secret and speculation taints
are correctly propagated, and that instructions cannot start executing if they are speculative and
use a secret value.

Evaluation. The design and implementation were evaluated in three ways: The hardware cost
was estimated by synthesizing the design to an FPGA. The performance overhead was measured
using the SpectreGuard [6] benchmarks with the protection applied to secrets grouped in one
memory region. Finally, the developer effort required to manually mark secrets was measured by
annotating cryptographic primitives in HACL* [28].
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3.2 Architectural Mimicry

Architectural Mimicry introduces the concept of mimic execution, a new processor mode that ex-
ecutes instructions without writing their results to the register file to protect against attackers that
observe the program’s side-channel leakage. It also adds new activating instructions to toggle
this processor mode and qualifiers to existing instructions to make their behavior depend on the
processor mode. These changes allow writing performant and secure balanced or linearized
code.

Implementation. The extension was added to both the in-order and the out-of-order pipeline.
Both implementations make use of three internal registers for keeping track of the processor state
and activation conditions, which have to be updated by the activating instructions enabling mimic
mode. Then, based on the instruction qualifiers and the processor mode, the retirement stage
decides whether the result should be committed.

On the out-of-order pipeline, instruction dependencies need to be tracked explicitly, as forwarding
the value of a mimicked instruction or not waiting for the result of a mimicked instruction could lead
to either functional or security issues. To keep track of activation changes, a queue of activating
instructions was also introduced in the ROB.

Evaluation. Both the security and the performance evaluation were conducted on a subset
of the Winderix benchmarks [24]. This was the first publication to introduce a more rigorous
framework that tests the leakage of the benchmarks during simulation with different inputs. The
hardware cost was also estimated by synthesizing the design to an FPGA.

3.3 Libra

Libra proposes a code transformation technique called folding that interleaves the instructions of
secret-dependent branches in the compiled binary. This transformation, combined with changes
in the hardware, ensures that secret-dependent branches can be executed without leaking the
secrets.

Implementation. Libra adds a new instruction called the level-offset branch, which informs the
hardware about the upcoming folded secret-dependent branch to enable its correct and secure
execution. In the pipeline, the fetching unit needs to be modified to take the new code layout
into account and to prevent instruction accesses from leaking secrets. The only other required
change was disabling the branch target buffer (BTB) in secret-dependent regions.

Evaluation. Similar to Architectural Mimicry, the work used a subset of the Winderix benchmark
suite [24] for both security and performance evaluation and used a similar approach for validating
the security. The hardware cost was estimated by synthesizing the design to an FPGA.
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Chapter 4

Summary and Conclusion

This deliverable described Proteus, a RISC-V processor developed as part of the ORSHIN project
to enable rapid prototyping and evaluation of security extensions. The processor features a plu-
gin system providing most of the functionality, and implementations of in-order and out-of-order
pipelines, allowing to evaluate extensions that target heterogeneous devices. We also briefly
described three security extensions, ProSpeCT, Architectural Mimicry, and Libra, that were de-
veloped during the project and that offer diverse security guarantees in the context of microarchi-
tectural security by extending the Proteus core.

All of our code for the base processor and the extensions is publicly available, including a tutorial
and the evaluation performed in the publications. Moreover, ProSpeCT and Libra have success-
fully participated in artifact evaluation at their conferences, where members of a committee have
successfully reproduced our results independently.
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