% ORSHIN

D3.3

Models for formal verification

Project number:
Project acronym:

Project title:

Project Start Date:
Duration:

Programme

Deliverable Type

Reference Number:
Workpackage:

Due Date:

Actual Submission Date:

Responsible Organisation:
Editor:

Dissemination Level:
Revision:

Abstract:

Keywords:

101070008

ORSHIN

Open-source ReSilient Hardware and software for Internet of
thiNgs

15t October, 2022

36 months

: ‘ HORIZON-CL3-2021-CS-01

: ‘ R — Document, report
CL3-2021-CS-01/D3.3/1.0

Benedikt Gierlichs, Frank Piessens
PU — public

This deliverable reports on the results of WP3. The WP con-
cluded successfully, and several results on countermeasures
against side-channel attacks were obtained and published. To
handle the problem of micro-architectural side-channel leak-
age, we develop hardware models that capture the security
guarantees that processors offer, thus making it possible to
formally verify the security of software running on these pro-
cessors. Concerning physical side-channels, we examine
gaps between theoretical models and practical implementa-
tions, we develop a leakage analysis tool, and we propose
several new countermeasures.

Side-channel attacks, countermeasures, formal verification

Funded by the European Union under grant agreement no. 101070008. Views
and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union. Neither the European Union
nor the granting authority can be held responsible for them.

W ORSHIN

D3.3 - Models for formal verification

Editor

Benedikt Gierlichs, Frank Piessens(KUL)

Contributors (ordered according to beneficiary numbers)

Marton Bognar, Lesly-Ann Daniel, Job Noorman (KUL)
Josep Balasch, S. V. Dilip Kumar, Ingrid Verbauwhede (KUL),
Maria Chiara Molteni (SEC)

Reviewers

Guido Bertoni (SEC)
Aurélien Francillon (ECM)

Disclaimer

The information in this document is provided as is, and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The content of this document reflects only the author's view — the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

ORSHIN D3.3 PU — public Page |

W ORSHIN

D3.3 - Models for formal verification

Executive Summary

This deliverable reports on the research activities carried out in Work Package 3 “Models for
formal verification” of the ORSHIN project. More precisely we report on the research activities
carried out in task 3.1 “Models for formal reasoning about software and micro-architectural side-
channel leakage in processors” and in task 3.2 “Models for formal verification of resistance of
open-source cryptographic hardware against physical side-channel and fault injection attacks”.
To handle the problem of micro-architectural side-channel leakage, we developed hardware mod-
els that capture the security guarantees that processors offer in terms of leakage, thus making it
possible to formally verify the security of software running on these processors. We have defined
three such models. The first model, ProSpeCT, addresses the problem of speculative execution
attacks by combining hardware support for speculative taint tracking with constant time program-
ming at the software level. The second and third model address control flow leakage attacks. The
AMi model provides principled architectural support for balancing and linearizing code, important
techniques that are used to make software programs constant time. The Libra model comple-
ments this with processor support that makes balancing secure on a wider range of processors.
For each of the three processor models, we also designed, implemented and evaluated hard-
ware extensions to a RISC-V open-source processor that make the processor compliant with the
model, and we develop verifiable programming models that make use of the proposed processor
extensions to achieve useful end-to-end security guarantees. In summary, task 3.1 has been
very successful: each of the three models developed in the task has been published at a top-tier
security conference, and full prototype implementations are open-source available and serve as
the basis for the ORSHIN prototype deliverable D3.1.

Concerning physical side-channels, security and implementation cost are of primary importance
for loT devices, which are the focus of the ORSHIN project. Security does not come for free, and
it is important to explore how much the cost of a secure implementation can be reduced.

We designed, implemented and manufactured a real silicon chip featuring three case studies of
state-of-the-art countermeasures, in order to examine gaps between security guarantees pro-
vided by theoretical models and practical implementations. We also performed comparative ex-
periments with state-of-the-art countermeasures on FPGA. In both cases our goal was to gain
deeper insight into discrepancies and help bridge the gap between theory and practice, which is
a primary objective of the ORSHIN project.

We have developed and implemented an open-source tool capable of analyzing hardware de-
signs for potential side-channel leakage. The entire workflow leading up to the use of the tool is
carried out using open-source electronic design automation tools, aligning with the objectives of
the ORSHIN project.

We have also developed several new countermeasures. The first countermeasure challenges an
assumption that is frequently made in current models for formal verification, is secure in practice,
and leads to reduced implementation cost.

The second countermeasure is tailored for applications with a strict requirement for low latency. In
such applications low latency is prioritized at the cost of greater chip area or higher randomness
cost, but they remain secondary design goals. We also implemented and evaluated our counter-
measure. It offers first-order security, is provable secure, and leads to reduced implementation
cost. Our prototype circuits are formally verified and secure in practice.

The third countermeasure is an extension of the second countermeasure to higher security or-
ders. Also here we designed the countermeasure and implemented and evaluated prototype
circuits in practice. The countermeasure provides provable higher-order security, and reduced
implementation cost compared to the state-of-the-art. Our prototype circuits are formally verified

ORSHIN D3.3 PU — public Page I

W ORSHIN

D3.3 - Models for formal verification

and secure in practice.

In summary, task 3.2 has been very successful: each of the three countermeasures developed in
the task has been published at a top-tier conference or journal, and several prototype implemen-
tations of two countermeasures are available under an open-source license and served as basis
for the ORSHIN demonstrators reported in D3.2.

ORSHIN D3.3 PU — public Page Il

D3.3 - Models for formal verification * ORSHIN

Table of Content

1 Introduction 1

2 Models for formal reasoning about software and micro-architectural side-channel

leakage in processors 3
2.1 ProSpeCT: Provably Secure Constant-Time Speculation 3
2.1.1 Introduction e e 4
2.1.2 Problem Statement L 6
2.1.3 Informal Overview e 8
2.1.4 Furtherinformation 10
2.2 Architectural Mimicry: Innovative Instructions to Efficiently Address Control-Flow
Leakage e 10
2.2.1 Introduction e e e 11
2.2.2 Problem Statement L 12
2.2.3 Assumptions and Security Objectives 13
2.2.4 Informal overview of Architectural Mimicry 15
2.2.5 Furtherinformation 17
2.3 Libra: Architectural Support For Principled, Secure And Efficient Balanced Execu-
tion On High-End Processors o e 17
2.3.1 Introduction e 18
2.3.2 Terminology and Background 19
2.3.3 ThreatModel 22
2.3.4 OverviewoflLibra 23
2.3.5 AdvancedFeatures e 25
2.3.6 Hardware-Software Security Contract 26
2.3.7 Furtherinformation 27
3 Models for formal verification of resistance of open-source cryptographic hardware
against physical side-channel and fault injection attacks 28
3.1 Low-cost first-order secure boolean masking in glitchy hardware 29
3.1.1 Introduction e e e 29
3.1.2 Low-Cost Masked AND2 Gadget 30
3.1.3 Composing Secure Masked Circuits 34
3.1.4 Furtherinformation 37
3.2 Time sharing - A novel approach to low-latency masking 37
3.2.1 Introduction e e e 38
3.2.2 Preliminaries e e e e e 39
3.2.3 Time SharingMasking 41
3.24 Advantagesof TSM Lo 45
3.2.5 Furtherinformation 48

ORSHIN D3.3 PU — public Page IV

D3.3 - Models for formal verification * ORSHIN

3.3 Higher-Order Time SharingMasking 48
3.3.1 Introduction 48
3.3.2 Preliminaries e e e e e 50
3.3.3 Higher-Order Time Sharing Masking (HO-TSM) 54
3.3.4 Furtherinformation L 63

3.4 Side-channel analysis of three designs in Tiny Tapeoutboard 64
3.4.1 Introduction 64
3.4.2 Acquisitionsetup 69
3.4.3 Acquisitions withthe LEDconnected 70
3.4.4 Acquisitions with the LED disconnected 76
3.4.5 Conclusionsand Futureworks 90

3.5 Leakage assessment of some implementations of Ascon with countermeasures . 91
3.5.1 Introduction e e e 91
3.5.2 Stateoftheart. 94
3.5.3 Experiments 97
3.5.4 Conclusionsand Futureworks 111

3.6 Side-channel leakages analysis with VoLPE 111
3.6.1 Introduction e 111
3.6.2 Workflow and Exploitedtools 112
3.6.3 Structureof VOLPE 114
3.6.4 Results. e 118
3.6.5 Testingandresults 118
3.6.6 Conclusionsand Futureworks 123

4 Summary, conclusion and outlook 124
Bibliography 139

ORSHIN D3.3 PU — public Page V

W ORSHIN

D3.3 - Models for formal verification

List of Figures

2.1 Syntaxofbase AMIL 13
2.2 Leakage functionsfor AMIL L 15
2.3 Aprogram and its control-flowgrapho Lo oL 20
3.1 secAND2gateschematic. 32
3.2 secAND2 gate with internal FF or secAND2-FF. 33
3.3 secAND2 gate with path delay or secAND2-PD. 34
3.4 Product of four masked variables using secAND2-FF. 35
3.5 secAND2 withinputregisters. 35
3.6 Product of three masked variables using secAND2-PD. 36
37 f=2@yDx-y(SECUrE). o i e e e e e e e e e 37
3.8 Application of TSMtoasingle ANDgate. 42
3.9 Application of TSM to an arbitrary (vectorial) Boolean function described by the

functions g; and h;. L L e e e 42
3.10 Application of TSM to an arbitrary (vectorial) Boolean function described by the set

offunctionsg®and g'. 54
3.11 Application of HO-TSM,: a second-order secure AND gate. 55
3.12 Application of HO-TSM, to an arbitrary (vectorial) Boolean function described by

the functions ¢°, g',and ¢2. 57
3.13 Recursive method of HO-TSM,. o o 59
3.14 Photo of our Tiny Tapeout02 board. 65
3.15 Full GDS for TT02, from the TTO2 datasheet. 65
3.16 Schemes of y function with Tl 2 shares countermeasure. 66
3.17 Scheme of the function x with two shares from GDSfile. 67
3.18 Schemes of yx function with Tl 3 shares countermeasure. 67
3.19 Scheme of the function y with three shares from GDSfile. 68
3.20 Schemes of y function with DOM countermeasure. 68
3.21 Scheme of the function y with DOM from GDSfile. 69
3.22 Setup of the tools for the power traces acquisition. 69
3.28 Simple Power Analysis for y withtwoshares. 72

3.24 Means of the traces in four different sets, with different bits in inputs to the xy gadget

with two shares. Whole graph in (a) and a zoom around the start of the operations

iN(D). . . e 72
3.25 Simple Power Analysis for y withthreeshares. 73
3.26 Means of the traces in four different sets, with different bits in inputs to the y gadget

with three shares. Whole graph in (2) and a zoom around the start of the operations

iN(D). . . 74
3.27 Simple Power Analysis for y with DOM countermeasure. 75

ORSHIN D3.3 PU — public Page VI

W ORSHIN

D3.3 - Models for formal verification

3.28 Means of the traces in four different sets, with different bits in inputs to the xy gadget

with DOM. Whole graph in (a) and a zoom around the start of the operations in (b). 75
3.29 Simple Power Analysis for y with two shares. Situation with LED disconnected. . 77
3.30 Means of the traces in four different sets, with different bits in inputs to the y gadget

with two shares. Whole graph in (a) and a zoom around the start of the operations

in (b). Situation with LED disconnected. 78
3.31 Simple Power Analysis for x with three shares. Situation with LED disconnected.. 79
3.32 Means of the traces in four different sets, with different bits in inputs to the x gadget

with three shares. Whole graph in (a) and a zoom around the start of the operations

in (b). Situation with LED disconnected. 79
3.33 Simple Power Analysis for x with DOM countermeasure. Situation with LED dis-
connected. 80

3.34 Means of the traces in four different sets, with different bits in inputs to the xy gadget

with DOM. Whole graph in (a) and a zoom around the start of the operations in (b).

Situation with LED disconnected. oL 80
3.35 Mean of the traces with random inputs divided into five sets, depending on the

Hamming weight of the input state. Blue: Hamming weight equal to 0. Orange:

Hamming weight equal to 1. Green: Hamming weight equal to 2. Red: Ham-

ming weight equal to 3. Purple: Hamming weight equal to 4. Situation with LED

disconnected. L e e e 81
3.36 Mean of the traces with random inputs divided into five sets, depending on the

Hamming distance between the current and previous inputs. Blue: Hamming dis-

tance equal to 0. Orange: Hamming distance equal to 1. Green: Hamming dis-

tance equal to 2. Red: Hamming distance equal to 3. Purple: Hamming distance

equal to 4. Situation with LED disconnected. 82
3.37 Mean of the traces with random inputs divided into five sets, depending on the

Hamming weight between the current and previous inputs. Blue: Hamming weight

equal to 0. Orange: Hamming weight equal to 1. Green: Hamming weight equal to

2. Red: Hamming weight equal to 3. Purple: Hamming v equal to 4. Situation with

LED disconnected. 15.000 traces acquired. 83
3.38 Selection function g(z9, z1) = x5 + 1. In blue, the mean of the traces in M. In

orange, the mean of the traces in M;. In green, the Difference of mean M; — M,.

Situation with LED disconnected. 15.000 traces acquired. 85
3.39 Mean of the traces with random inputs divided into nine sets, depending on the

Hamming weight between the current and previous inputs. Blue: Hamming weight

equal to 0. Orange: Hamming weight equal to 1. Green: Hamming weight equal

to 2. Red: Hamming weight equal to 3. Purple: Hamming weight equal to 4.

Brown: Hamming weight equal to 5. Pink: Hamming weight equal to 6. Grey:

Hamming weight equal to 7. Gold: Hamming weight equal to 8. Situation with LED

disconnected. 15.000 traces acquired. Lo oL 86
3.40 Selection function fo (29, 23, 23) = x3 + x3 + 2. In blue, the mean of the traces

in My. In orange, the mean of the traces in M;. In green, the Difference of mean

M, — M. Situation with LED disconnected. 15.000 traces acquired. 87
3.41 Selection function f3(29, x5, 23) = 29 + 23 + 23. In blue, the mean of the traces

in My. In orange, the mean of the traces in M;. In green, the Difference of mean

M, — M,. Situation with LED disconnected. 15.000 traces acquired. 88

ORSHIN D3.3 PU — public Page VI

D3.3 - Models for formal verification * ORSHIN

3.42 Mean of the traces with random inputs divided into nine sets, depending on the
Hamming weight between the current and previous inputs. Blue: Hamming weight
equal to 0. Orange: Hamming weight equal to 1. Green: Hamming weight equal to
2. Red: Hamming weight equal to 3. Purple: Hamming weight equal to 4. Brown:
Hamming weight equal to 5. Pink: Hamming weight equal to 6. Grey: Hamming
weight equal to 7. Situation with LED disconnected. 15.000 traces acquired. . . . 89

3.43 Selection function A (2%, 21) = z¢ + z1. In blue, the mean of the traces in M. In
orange, the mean of the traces in M. In green, the Difference of mean M; — M,,.
Situation with LED disconnected. 15.000 traces acquired. 91

3.44 Selection function hy(29, 1) = 29 + 2. In blue, the mean of the traces in M. In
orange, the mean of the traces in M;. In green, the Difference of mean M; — M,.

Situation with LED disconnected. 15.000 traces acquired. 92
3.45 ChipWhisperer-Husky connected with a ribbon cable to the ChipWisperer CW313,

on which is placed the targetboard. 0., 93
3.46 Thetarget Artix AB5. e e 97
3.47 Mean of the traces acquired by varying the key (a), the plaintext (b) and all input

flelds (C) o e 99
3.48 Variance of the traces acquired by varying the key (a), the plaintext (b) and all input

flelds (C) o o e e 100
3.49 T-test of the traces acquired by varying the key (a), the plaintext (b) and all input

flelds (C) o e 101
3.50 Mean (a) and variance (b) of the traces acquired by varying all shares of the input

fields, Ascon with DOM e 102
3.51 T-test of the traces acquired by varying all shares of the input fields (a), and zoom

ontheyaxes (b), AsconwithDOM 103
3.52 Mean (a) and variance (b) of the traces acquired by varying all shares of the input

fields, Ascon with DOM and allthe randomszero 103
3.53 T-test of the traces acquired by varying all shares of the input fields (a), and zoom

on the y axes (b), Ascon with DOM and all the randomszero. 104
3.54 Correlations between the traces and some leakages previsions (Hamming Weight

and Hamming Distance of the initial state of the inizialization state). 105

3.55 In blue the correlation between the traces and the Hamming Distance input/out-
put of the round; in orange the correlation between the traces and the Hamming
Weight of the input of the round; in green the correlation between the traces and
the Hamming Weight of the output of the round. The red vertical solid lines repre-
sent the rounds of the permutation during the inizialization phase. The red dashed

lines represent the cycles (each round is performed in two cycles). 106
3.56 Mean (a) and variance (b) of the traces acquired by varying all shares of the input
fields, Asconwith Tl e 107

3.57 T-test of the traces acquired by varying all shares of the input fields, Ascon with TI 108
3.58 Mean (a) and variance (b) of the traces acquired by varying all shares of the input

fields, Ascon with Tl with randoms for the countermeasure settozero 108
3.59 T-test of the traces acquired by varying all shares of the input fields, Ascon with Tl

with randoms for the countermeasure settozero 109
3.60 P-values varying the number of (training) traces for both TVLA and DL-LA, in all

the three different kinds of acquisitions, 110
3.61 Workflow followed in this work and described in section3.6.2. 113

ORSHIN D3.3 PU — public Page VI

D3.3 - Models for formal verification * ORSHIN

List of Tables

3.1 Leakage behaviour of secAND2 for different input sequences. '*’ denotes any of the

remaining input shares. 32
3.2 Delay sequence for a product3or4variables 36
3.3 Comparison for a F4 — F4 function of algebraicdegree k — 1. 46
3.4 Comparison of algorithmic costs of HO-TSM and GLM for order d when masking a

function F5 — F% function of algebraicdegree k — 1. 60
3.5 Utilization results of low-latency second-order masked AES S-Boxes. 63
3.6 Sample of a configurationfile. L L Lo 116
3.7 Used delays for inputs and gates in the example, y with two shares. 119
3.8 Correlation results for the example, y withtwo shares. 119
3.9 Mean and Max of the correlation results on 100 executions of VOLPE, y with two

Shares. e e e e e e 119
3.10 Used delays for inputs and gates in the example, y with three shares. 120
3.11 Correlation results for the example, x withthreeshares. 120
3.12 Mean and Max of the correlation results on 100 executions of VOLPE, y with three

Shares. e e e e e 120
3.13 Used delays for inputs and gates in the example, y with DOM scheme. 121
3.14 Correlation results for the example, x with DOM scheme. 121
3.15 Mean and Max of the correlation results on 100 executions of VoLPE, y with DOM

scheme. e e e e 121
3.16 Mean and Max of the correlation results on 100 executions of VoLPE, S-Box of

AES implemented with lookup table. oo o oL 122
3.17 Mean and Max of the correlation results on 100 executions of VoLPE, S-Box of

AES implemented with MUX - only encryption. 122
3.18 Mean and Max of the correlation results on 100 executions of VoLPE, S-Box of

AES implemented with MUX - encryption and decryption. 123

ORSHIN D3.3 PU — public Page IX

W ORSHIN

D3.3 - Models for formal verification

Chapter 1

Introduction

This deliverable contains some material from the interim deliverable iD3.3 provided half way
through the project and a lot of novel material. More precisely, Section 2.1 in this deliverable
corresponds to Chapter 2 in iD3.3 and Section 3.1 in this deliverable corresponds to Chapter 3 in
iD3.3. All other chapters and sections in this deliverable were added or updated since iD3.3.

The ORSHIN project studies open source resilient hardware and software for the Internet of
Things.

In this deliverable we report on the research activities carried out in Work Package 3 “Models for
formal verification” up to project month 33.

More precisely we report on the research activities carried out in task 3.1 “Models for formal
reasoning about software and micro-architectural side-channel leakage in processors” and task
3.2 “Models for formal verification of resistance of open-source cryptographic hardware against
physical side-channel and fault injection attacks”. Following a general introduction into the topic
of side-channels the structure of the document then mainly follows the two-way split.

The security of cryptographic algorithms is typically analyzed in the so called black-box model. In
this model the cryptographic algorithm is an abstract object which the adversary cannot access.
The adversary can only observe or choose inputs to the black-box and observe outputs. The
algorithm is thus analyzed as an abstract mathematical object.

However, a deployment of the algorithm requires it to be implemented in software or hardware.
And such implementations offer the adversary a broader attack surface than the black-box model.
Implementations provide an adversary with additional information about the internal processing
of the algorithm through what is called side-channels. In the following we distinguish software
side-channels and physical side-channels.

The same observation can be made for other, non-cryptographic security building blocks, for in-
stance a password check. In the black-box model the password check algorithm receives an input
and compares it to the correct password. If they match it outputs “OK” and else it outputs “not
OK”. An adversary is not supposed to learn more than this binary response. An implementation
of such a password check is, however, likely to provide additional information to an adversary.
For example the execution time may reveal how many characters were guessed correctly, which
dramatically simplifies a password search.

Chapter 2 deals with micro-architectural side-channels. Micro-architectural side-channel attacks
are mainly relevant for shared computation platforms, where several parties can be running soft-
ware on the same processor. In such a scenario, an attacker program running on the platform can
observe what a victim program is doing by exploiting optimization techniques such as caching,

ORSHIN D3.3 PU — public Page 1 of 139

W ORSHIN

D3.3 - Models for formal verification

pipelining, branch prediction, and speculative and out-of-order execution. These optimizations
require the processor implementation (or micro-architecture) to maintain state, like the contents
of the cache, or the state of the branch predictor. The victim program running on the processor
has effects on this micro-architectural state, and these effects can in turn be observed by an
attacker program running on the same processor.

These micro-architectural attacks, including classic attacks like cache attacks, and more recent
attacks like transient execution attacks, are an important threat to the confidentiality of software
running on a shared platform.

In Chapter 2, we explain how the ORSHIN project contributes countermeasures to such attacks.

Chapter 3 deals with physical side-channels. Processors executing code, and hardware circuits,
require a certain amount of time, consume a certain amount of power, and emit a certain amount
of electromagnetic radiation in order to perform operations. These physical observables thus
carry information about what the processor or the circuit is doing. For typical 10T devices which
are the focus of the ORSHIN project it is particularly true that an adversary may have physical
access to them, and will be able to measure such physical quantities. It is thus naturally important
to protect implementations against physical side-channel attacks. In Chapter 3, we explain how
the ORSHIN project contributes to countermeasures against these attacks.

Finally, Chapter 4 provides a summary of this deliverable as well as conclusions and an outlook
on future activities.

ORSHIN D3.3 PU — public Page 2 of 139

W ORSHIN

D3.3 - Models for formal verification

Chapter 2

Models for formal reasoning about
software and micro-architectural
side-channel leakage in processors

Task 3.1 of the ORSHIN project develops hardware models that capture the security guarantees
that processors offer, thus making it possible to formally verify the security of software running on
these processors.

Our objective is to define such models, to design hardware extensions to a RISC-V open-source
processor to make the processor compliant with these models, and to develop verifiable software
programming models that provably protect against well-specified classes of attacks on processors
compliant with these models.

The project has developed three such models:

« PROSPECT: a generic formal processor model providing provably secure speculation for
the constant-time policy.

« AMi: a model of a processor that supports mimic execution, a processor mode introduced
specifically to enable defending against microarchitectural side channels by software-based
balancing or linearization of program code.

« Libra: a model of a processor with architectural extensions to enable secure balancing of
code even on high-end processors.

For each of these three models, the project has developed the theory (with each model pub-
lished in a peer-reviewed paper at one of the top tier conferences in the field [55, 171, 170]),
implemented a prototype processor that is compliant with the corresponding model, and made
the prototype available open-source. The corresponding prototypes are part of deliverable D3.1
of the project.

This deliverable provides an informal introduction to each of these three models, pointing to the
corresponding papers for a more detailed and formal account.

2.1 ProSpeCT: Provably Secure Constant-Time Speculation

The first model, and prototype processor, was already completed in the first half of the project.
The class of micro-architectural attacks that we protect against with this processor are speculative
execution attacks.

ORSHIN D3.3 PU — public Page 3 of 139

W ORSHIN

D3.3 - Models for formal verification

More specifically, we propose PROSPECT, a generic formal processor model providing prov-
ably secure speculation for the constant-time policy. For constant-time programs under a non-
speculative semantics, PROSPECT guarantees that speculative and out-of-order execution cause
no microarchitectural leaks. This guarantee is achieved by tracking secrets in the processor
pipeline and ensuring that they do not influence the microarchitectural state during speculative
execution. Our formalization covers a broad class of speculation mechanisms, generalizing prior
work. As a result, our security proof covers all known Spectre attacks, including load value injec-
tion (LVI) attacks.

In addition to the formal model, we provide a prototype hardware implementation of PROSPECT
on a RISC-V processor and show evidence of its low impact on hardware cost, performance, and
required software changes. In particular, the experimental evaluation confirms our expectation
that for a compliant constant-time binary, enabling ProSpeCT incurs no performance overhead.
The results reported in this Chapter of the deliverable were published in the Usenix Security 2023
conference [55], and the prototype of the processor is made available open-source at https:
//github.com/proteus-core/prospect.

2.1.1 Introduction

It is well-understood that microarchitectural optimization techniques commonly used in proces-
sors can lead to security vulnerabilities [68]. One of the most recent and challenging problems in
this space is the family of Spectre attacks [95], which abuse speculative execution to leak secrets
to an attacker that can observe parts of the microarchitectural state of the platform on which the
victim is executing.

In response to the discovery of Spectre, a wide range of countermeasures has already been
proposed [39, 14, 157, 134, 45, 64, 154, 90, 107, 17, 6, 146, 145, 167, 175, 179, 155, 91]. ltis
an important and difficult challenge to understand the trade-offs offered by these mitigations in
terms of security, performance, and applicability to legacy hardware or software.

On the one hand, software countermeasures targeting specific transient execution attacks can
still leave other attacks unmitigated [54], and they must be patched every time new speculation
mechanisms are introduced (e.g., the predictive store forwarding feature newly introduced in AMD
Zen3 processors [13]). On the other hand, mainstream hardware mitigations have been recently
shown ineffective [18] against Spectre-v2 (BTB) attacks [95].

Hardware-based secure speculation In a recent paper, Guarnieri et al. [81] propose hardware-
software contracts to compare hardware-based mechanisms for secure speculation and better
understand how these defenses can enable software to provide end-to-end security guarantees.
For instance, they show that certain types of hardware-level taint tracking [179, 167, 17] provide
secure speculation for the sandboxing policy. On processors implementing one of these mecha-
nisms, the software can simply enforce the sandboxing policy under a non-speculative semantics
and does not need to consider the (error-prone and possibly expensive) placement of software
speculation barriers.

However, none of the hardware defenses studied under the hardware-software contract frame-
work enable secure speculation for the constant-time policy, except for completely disabling
speculative execution. Hence, the classic cryptographic constant-time programming model [12]
does not suffice to guarantee security on processors with these countermeasures, and signif-
icantly more complex and costly software programming models are required to recover secu-
rity [116, 79, 43, 80, 54, 23, 162)].

Problem statement We investigate how to provide efficient provably secure speculation for the
constant-time policy under a wide range of speculation mechanisms. Specifically, we apply the

ORSHIN D3.3 PU — public Page 4 of 139

https://github.com/proteus-core/prospect
https://github.com/proteus-core/prospect

W ORSHIN

D3.3 - Models for formal verification

hardware-software contract framework to another class of hardware taint-tracking mechanisms
explicitly tracking secrecy of data in the microarchitecture (e.g., systems like ConTEXT [150],
SpectreGuard [66], or SPT [49]). In such systems, a constant-time program informs the processor
about which memory cells contain secret data. Using this additional information, hardware-based
taint-tracking can provide stronger security guarantees than sandboxing approaches [81]. Addi-
tionally, we consider a wide variety of speculation mechanisms, whereas the model of Guarnieri
et al. considers only speculation on conditional branches.

Our proposal The main contribution of this work is PROSPECT, a generic processor model for-
malizing the essence of such secrecy-tracking hardware mechanisms and a proof that it provides
secure speculation for the constant-time policy. Specifically, off-the-shelf constant-time crypto-
graphic libraries can be run securely on PROSPECT without additional protections for transient
execution attacks.

PROSPECT is modular in the implementation of predictors and covers a broad class of specu-
lation mechanisms, including branch prediction and store-to-load forwarding. As a novel aspect,
PROSPECT additionally covers new mechanisms like predictive store forwarding [13] and even
mechanisms that are not (yet) implemented in commercial processors, such as load value pre-
diction [109] or value prediction [108]. In particular, we rigorously show that PROSPECT protects
against Spectre-v2 (BTB) attacks [95], for which mainstream hardware mitigations have recently
been shown ineffective [18]. As evidence for generality, we show that our mechanism even pro-
tects against Load Value Injection (LVI) attacks [38], which are particularly challenging to mitigate.
Another novel aspect of our formalization is the statement of our security condition, which allows a
program to declassify a ciphertext while still requiring the processor to make sure that the attacker
does not learn anything about the plaintext or the key used to compute the ciphertext.

To demonstrate the viability of our proposed mechanism, we extend a RISC-V processor to be
PROSPECT-compliant and quantify the hardware costs. Results show that the overhead of
PROSPECT in area usage and critical path is reasonable. We also demonstrate that the re-
quired software changes to cryptographic code are minimal and that the performance impact is
negligible if secrets are precisely annotated. Our prototype is the first non-simulated hardware
implementation of a speculative and out-of-order processor that implements secure speculation
for the constant-time policy.

Contribution In summary, our contributions are:

» We present PROSPECT, the first formal processor model providing provably secure spec-
ulation for the constant-time policy. We propose a formal model of a processor that tracks
secrets during execution and temporarily blocks speculative execution if secrets could leak.
The model is generic; it supports a wide range of speculation mechanisms and formalizes
the guarantees provided by prior hardware-based secrecy tracking mechanisms [66, 150,
49].

» We formally prove that PROSPECT provides secure speculation for the constant-time pol-
icy, i.e., programs that comply with the classic cryptographic constant-time discipline will
not leak secrets through microarchitectural channels, including in the presence of declassi-
fication. The proof holds for a large variety of speculation mechanisms, encompassing all
known Spectre and LVI attacks.

» We are the first to consider load value speculation. Interestingly, our formal analysis reveals
that executions resulting from correct load value speculation must sometimes be rolled-
back to avoid attacks based on implicit resolution-based channels [179].

ORSHIN D3.3 PU — public Page 5 of 139

W ORSHIN

D3.3 - Models for formal verification

» We provide the first non-simulated hardware implementation of a processor offering secure
speculation. We implement PROSPECT on a RISC-V processor supporting speculation
and evaluate the costs of the proposed mechanism in terms of hardware, performance,
and manual effort for precisely marking secret data.

Availability Our implementation and the experimental evaluation are open-sourced at https:
//github.com/proteus-core/prospect. Atechnical report containing the full formalization and
proofs is available at [56].

2.1.2 Problem Statement
Transient execution attacks

Modern processors rely on heavy optimizations to improve performance. They can execute in-
structions out-of-order to avoid stalling the pipeline when the operands of an instruction are not
available. Additionally, they employ speculation mechanisms to predict the instruction stream.
The execution of instructions resulting from a misprediction, called transient execution, is re-
verted at the architectural level, but effects on the microarchitectural state (e.g., the cache) are
persistent.

Spectre attacks [95] exploit these speculation mechanisms to force a victim to leak secrets during
transient execution. An attacker can mistrain predictors to force a victim into transiently executing
a sequence of instructions, called a Spectre gadget, chosen to encode secrets in the microar-
chitectural state. Finally, the attacker can use microarchitectural attacks to extract the secret.
To this day, many variants of Spectre attacks have been discovered, exploiting a wide variety of
speculation mechanisms [114, 101, 84, 13, 95, 39, 140].

Transient execution may also arise from incorrect data being forwarded by faulting instructions.
For instance, on some processors, the result of unauthorized loads is transiently forwarded to
subsequent instructions before the load is rolled back. This mechanism has first been exploited
in Meltdown-style attacks [111, 37] to exfiltrate secret data from another security domain. It is
generally accepted that Meltdown-style attacks should be mitigated in hardware by preventing
such forwarding from faulting loads. We consider Meltdown-style attacks out of scope for this
work.

However, these faulting loads have also been exploited to inject incorrect data into the victim’s
transient execution, and, similarly to Spectre attacks, lead the victim to leak their secrets into the
microarchitectural state. In particular, these so-called load value injection (LVI) attacks [38] are
still possible in the presence of Meltdown mitigations zeroing out the results of faulting loads at
the silicon level (i.e., LVI-NULL). LVI attacks are related to Spectre attacks that would exploit value
speculation during loads.

We illustrate variants of Spectre and LVI attacks in Listing 2.1, where programs in Listings 2.1c
to 2.1e abuse different sources of transient execution (/1) to encode SecretVal in the cache
using the leak function in Listing 2.1b. After encoding, the attacker can extract the secret from the
cache using cache attacks. Note that while we illustrate these attacks using a cache side-channel,
transient execution vulnerabilities are independent of the microarchitectural side-channel they
exploit, such as branch predictor state [50], SIMD units [151], port contention [30, 65], micro-op
cache [142], etc. Consequently, the 1eak(x) function can be replaced with any other function
that reveals information on the value of x via a timing or microarchitectural side-channel.

The Spectre-PHT (Pattern History Table) or Spectre-v1 variant [95] exploits the conditional branch
predictor to transiently execute the wrong side of a conditional branch. For instance, in List-
ing 2.1c, an attacker can first mistrain the conditional branch predictor to take the branch and

ORSHIN D3.3 PU — public Page 6 of 139

https://github.com/proteus-core/prospect
https://github.com/proteus-core/prospect

W ORSHIN

D3.3 - Models for formal verification

0 - 15: A[16] 4 if (idx < size_A) A o store ptr_s O
ptr_s (16): SecretVal 5 x < load A + idx i1 x 4 load ptr_s fi
17 - 16400: B[256 x 64] 6 leak (x) 2 leak (x)

(a) Memory (c) Spectre-PHT (v1) (e) Spectre-STL (v4)

1 void leak(x): 7 f 4« trusted_func 13 idx <« load trusted_idx [}
2 idx < x * 64 8 x < load ptr_s 4 x < load A + idx
3 y < load B + idx @ 9 jmp f(x) A 15 leak (x)

(b) Encode x into the cache. (d) Spectre-BTB (v2) (f) LVI

Listing 2.1: Examples of code shippets vulnerable to transient execution attacks. The memory layout given in List-
ing 2.1a where SecretVal is the only secret input and ptr_s = 16 is common to Listings 2.1c to 2.1f. [} indicates
instructions triggering transient executions and & indicates a leakage.

then call the piece of code with idx = 16 to make the victim transiently execute the branch,
accessing SecretVal at line 5 and encoding it to the microarchitectural state at line 6.

The Spectre-BTB (Branch Target Buffer) or Spectre-v2 variant [95] exploits indirect branch pre-
diction to transiently redirect the control flow to an attacker-chosen location. For example, the pro-
gram in Listing 2.1d calls a trusted function, which performs secure computations using SecretVal.
An attacker can mistrain the branch predictor such that, after line 9, the victim transiently jumps
to the 1eak function instead of the trusted function and leaks SecretVal. The Spectre-RSB (Re-
turn Stack Buffer) variant [101, 114] is similar to Spectre-BTB but exploits target predictions for
ret instructions.

The Spectre-STL (Store-To-Load-forwarding) or Spectre-v4 variant [84] exploits the fact that load
instructions can speculatively bypass preceding stores. In Listing 2.1e, the secret located at
ptr_s is overwritten at line 10, followed by a load to the same address, which should return 0.
With Spectre-STL, the 1oad may bypass the store at line 10 and transiently load SecretVal,
which would then be leaked to the microarchitectural state at line 12.

Finally, LVI (Load Value Injection) attacks [38] exploit a faulting 1oad to directly inject incorrect
data into the victim’s execution. For instance, in Listing 2.1f, an attacker can prepare the microar-
chitectural state so that the value 16 is forwarded to idx by the 1oad instruction at line 13, hence
accessing SecretVal at line 14 and leaking it at line 15.

Secure speculation approaches

Since transient execution attacks were discovered, several studies have focused on adapting
program semantics, security policies, and verification tools to take into account the specula-
tive semantics of programs and place extra software-level protections against Spectre attacks,
e.g., [47, 132, 43, 174, 23, 80, 162, 165, 82, 137, 166, 54]. However, reasoning about transient
execution attacks at the software level only can be burdensome and fragile. Firstly, it necessitates
knowledge of microarchitectural details that are often not publicly available. Secondly, it requires
changing security policies and applying software patches every time new speculation mecha-
nisms are introduced (e.g., the predictive store forwarding feature newly introduced in AMD Zen3
processors [13]). Finally, software countermeasures targeting specific transient execution attacks
can still leave the door open to other attacks [54].

Instead, we argue that, for a given policy P, enforcement mechanisms at the software level should
only consider an architectural (non-speculative) semantics, while the hardware should guaran-
tee that transient execution does not introduce additional vulnerabilities. We call this approach
hardware-based secure speculation for P.

Hardware-based secure speculation for sandboxing A sandboxing policy isolates a poten-
tially malicious application by restricting the memory range it can access. A program is said to

ORSHIN D3.3 PU — public Page 7 of 139

W ORSHIN

D3.3 - Models for formal verification

be sandboxed if it never accesses memory outside its authorized address range. Sandboxed
programs are vulnerable to Spectre attacks, as out-of-bounds memory locations may still be ac-
cessed transiently and have their contents leaked to the microarchitectural state. As an example,
the program in Listing 2.1c is sandboxed but can still access and leak out-of-bounds data when
the condition is misspeculated.

Some hardware taint-tracking mechanisms [179, 167, 17] have been shown to enable secure
speculation for sandboxing [81]. For instance, Speculative Taint Tracking (STT) [179] taints spec-
ulatively accessed data and prevents tainted values from being forwarded to instructions that may
form a covert channel. In Listing 2.1c, STT taints the variable x at line 5 until the condition at line 4
is resolved. As x is tainted, its value is not forwarded to the insecure 1oad in the 1eak function.
Unfortunately, hardware-based secure speculation for sandboxing only protects speculatively ac-
cessed data, meaning that secret data loaded in registers during sequential execution may still
be transiently leaked. For instance, STT does not protect the program in Listing 2.1d against
Spectre-BTB. At line 5, a secret is loaded during sequential execution. As a result, x is not tainted
by STT, and its value can still be forwarded to an insecure instruction if the jmp is misspeculated.
Hardware-based secure speculation for sandboxing is therefore insufficient to guarantee secu-
rity for programs that compute on secrets, such as cryptographic primitives. To protect these
programs, we need to enable hardware-based secure speculation for the constant-time policy.

Hardware-based secure speculation for constant-time A constant-time policy specifies that
program secrets should not leak through timing or microarchitectural side channels. Before the
advent of transient execution attacks, the constant-time policy was enforced with a coding disci-
pline ensuring that the control-flow of the program, addresses of memory accesses, and operands
of variable-time instructions do not depend on secret data. This coding discipline is the de facto
standard for writing cryptographic code; it has been adopted in many cryptographic libraries [28,
180, 11] and is supported by many tools, e.g., [168, 16, 12, 61, 104, 53, 44, 36, 60, 83, 169].

A standard definition for constant-time programs (i.e., programs adhering to the constant-time
policy), and the one we use in this work, is the following:

Definition 1 (Constant-time program). A program is constant-time if the observation trace that it
produces during sequential execution is independent of secret data (where the observation trace
records the control flow and memory accesses).

Unfortunately, adhering to this definition is insufficient to guarantee security on modern proces-
sors vulnerable to transient execution attacks like Spectre or LVI. Indeed, all programs in List-
ing 2.1 are constant-time according to Definition 1, but they are vulnerable to transient execution
attacks.

Hardware-based countermeasures guaranteeing secure speculation for sandboxing do not guar-
antee secure speculation for the constant-time policy. Therefore, to enforce the constant-time
policy on speculative processors, it is still necessary to insert specific protections (typically fence
instructions or retpolines [157]) to protect against transient execution attacks. Software develop-
ers still have to reason about speculation when they want to enforce the constant-time policy. In
this work, we address the problem of providing hardware-based provably secure speculation for
the constant-time policy.

2.1.3 Informal Overview

In this section, we motivate our design choices, make explicit what guarantees have to be en-
forced by software, and sketch the requirements the hardware must enforce. Finally, we illustrate
how PROSPECT protects the programs in Listing 2.1.

ORSHIN D3.3 PU — public Page 8 of 139

W ORSHIN

D3.3 - Models for formal verification

Design choices

PROSPECT relies on a hardware-software co-design where developers annotate their secret
data, and the hardware guarantees that no information about these secrets can leak during tran-
sient execution. The design of PROSPECT is motivated by two main objectives. The first objective
is to support existing constant-time code with minimal software changes. To this end, we base
our annotation and declassification mechanism on ConTExT [150] in which developers partition
the memory into public and secret regions and can declassify secrets by writing them to pub-
lic memory. The second objective is to support secure code while maintaining full performance
benefits of speculative and out-of-order execution. Specifically, PROSPECT delays speculative
execution only when a secret is about to be leaked; hence in constant-time programs (which do
not leak secrets) PROSPECT only blocks mispredicted instructions.

Software contracts Software developers must comply with three contracts:

Contract 1. Secret memory locations are labeled.

For instance, in Listing 2.1, address 16 is labeled as secret (or high), denoted H, whereas other
addresses are labeled as public (or low), denoted L.

Contract 2. The program is constant-time.

Contract 3. Secret values written to public memory are intentionally declassified by the program.

Contract 3 allows, for instance, cryptographic code to declassify ciphertexts. However, software
developers must make sure to not unintentionally declassify secrets by writing them to public
memory.

We prove in [56] that if programs comply with these three contracts, then execution on PROSPECT
does not leak secrets through timing and microarchitectural side channels.

Hardware requirements On the hardware side, PROSPECT must realize the following:

Requirement 1. During the execution of a program, the processor tracks security levels. Con-
cretely, it labels values loaded from memory with their corresponding security level (L or H) and
soundly propagates these security levels during computations.

Requirement 2. The processor prevents values with security level H to be leaked during specu-
lative execution. Hardware developers identify insecure instructions that may leak data through

1. changing the microarchitectural state,
2. influencing the program counter, or
3. exhibiting operand-dependent timing.

The processor prevents these instructions from being speculatively executed with secret operands.
Requirement 3. Predictions do not leak secret data, in particular:

1. predictor states are only updated using public values, and
2. speculations are rolled back (even the correct ones) when their outcome depends on se-
crets (otherwise, it would leak whether the public prediction is equal to the secret value).
PROSPECT through illustrative examples

Consider the program in Listing 2.1c, assuming that idx = 16 and the condition is misspeculated
to true. When executing the load instruction at line 5, PROSPECT tags the register x with the

ORSHIN D3.3 PU — public Page 9 of 139

D3.3 - Models for formal verification * ORSHIN

security level corresponding to address 16, denoted x +— (vSecretVal:H) (by Req. 1)." Then,
when the 1eak function is executed, the 1oad instruction (line 3, Listing 2.1b) is blocked because
it would leak a secret-labeled value during speculative execution (by Req. 2). Conversely, if
register x contains a public-labeled value, i.e., x — (vv:L), the load instruction is not blocked.
PROSPECT only blocks speculative execution in a few restricted cases, namely when secret data
is about to be leaked.

Notice that, contrary to sandboxing-based approaches, PROSPECT also protects secrets loaded
in architectural registers from being transiently leaked. For example, in Listing 2.1d, when the
secret is loaded at line 8, x is labeled with H, which prevents the secret from being transiently
leaked later (by Req. 2) if the jmp instruction at line 9 transiently jumps to the 1eak function.

So far, we have seen examples of PROSPECT applied to Spectre-PHT and Spectre-BTB (Spectre-
RSB is similar to the latter). The protection generalizes to any other source of speculation, such
as load value prediction (which encompasses LVI and Spectre-STL). Take, for instance, the pro-
gram in Listing 2.1f. Here, the source of speculation is the load instruction, which transiently
forwards an incorrect value at line 13. Until the 1oad is resolved, PROSPECT considers the fol-
lowing instructions speculative. Consequently, (by Req. 2) it does not forward the secrets to the
load in the leak function (Listing 2.1b, line 3) and prevents the LVI attack.

Finally, PROSPECT also guarantees (by Req. 3) that predicted values do not depend on secrets.
In particular, secret values cannot be speculatively forwarded to other instructions. For example,
in Listing 2.1e, the 1oad instruction at line 11 cannot speculatively load SecretVal, because the
corresponding address is labeled as secret. Notice that PROSPECT still allows forwarding public
values.

2.1.4 Further information

For more information about PROSPECT, including the full formal model, a description of the
prototype implementation, and the experimental evaluation of the implementation, we refer the
reader to the technical report [56].

2.2 Architectural Mimicry: Innovative Instructions to Efficiently
Address Control-Flow Leakage

The control flow of a program can often be observed through side-channel attacks. Hence, when
control flow depends on secrets, attackers can learn information about these secrets. Widely
used software-based countermeasures ensure that attacker-observable aspects of the control
flow do not depend on secrets, relying on techniques like dummy execution (for balancing code)
or conditional execution (for linearizing code). In the current state-of-practice, the primitives to
implement these techniques have to be found in an existing instruction set architecture (ISA) that
was not designed a priori to provide them, leading to performance, security, and portability issues.
To counter these issues, our second processor model proposes lightweight hardware extensions
for supporting these techniques in a principled way. We propose (1) a novel hardware mechanism
(mimic execution), that executes an instruction stream only for its attacker-observable effects,
and suppresses (most) architectural effects, and (2) ISA support (called AMi, for Architectural
Mimicry) and programming models to effectively use mimic execution to balance or linearize

A more conservative design choice, adopted by ConTEXT [150], would be to prevent such speculative loads from
accessing secret memory locations and to prevent the execution of line 5. However, we formally show that secure
speculation is possilbe with this more liberal design choice.

ORSHIN D3.3 PU — public Page 10 of 139

W ORSHIN

D3.3 - Models for formal verification

code. We show the feasibility and benefits of our proposal by implementing mimic execution and
AMi for a 32-bit out-of-order RISC-V core that leaks control flow in multiple ways (via e.g., the
branch predictor, instruction timings, and the data cache). Our experimental evaluation shows
that the hardware cost is low (most importantly, no impact on the processor’s critical path), and
that AMi enables significant performance improvements. In particular, AMi reduces the overhead
of state-of-the-art linearized code by 60% in our benchmarks.

2.2.1 Introduction

Control flow that depends on confidential information discloses (parts of) this information to an ad-
versary that can observe the control flow via side channels. For instance, the outcome of a condi-
tional branch might be inferred by measuring the execution time, one of many (micro)architectural
timing measurements that expose control flow [69]. Countering this leakage in software typically
relies on two classes of countermeasures. First, code balancing balances the two sides of a
secret-dependent branch to equalize their observable behavior [5, 57, 135, 172, 34]. If the two
different execution paths of a conditional branch exhibit the same observable behavior, an at-
tacker can no longer distinguish them. Unfortunately, for most types of computing platforms this
approach is insecure, but, when applicable, it can have performance benefits compared to other
approaches [172, 34]. Second, linearization [35, 52, 118, 173] ensures that control flow does not
depend on program secrets at all.

Balancing and linearization are important ingredients in state-of-practice software-based coun-
termeasures (such as constant-time programming [10]), as well as in recent research proto-
types [172, 34, 35, 153, 173]. They are based on techniques like dummy execution (i.e., using
architectural no-ops with an appropriate side-channel footprint) and conditional execution (e.g.,
conditional moves). In the current state-of-practice, the primitives to implement these techniques
have to be found in an existing instruction set architecture (ISA) that was not designed a priori to
provide them, leading to performance, security, and portability issues.

Our proposal

In contrast to the above, this work investigates how to offer hardware support and a small ISA
extension to support control-flow balancing and linearization in a principled way instead. We
propose a novel hardware mechanism, called mimic execution. Mimic execution can be thought
of as a mode in which the processor executes instructions only for their attacker-observable
effects, and suppresses (most) architectural effects: every instruction becomes a no-op, but a
side-channel attacker cannot see the difference with a normal execution of the instruction.

Mimic execution is a powerful primitive, but using it correctly in software to obtain secure and
correct code is non-trivial. We design and formally specify suitable ISA support (called AMi, for
Architectural Mimicry) to activate and deactivate mimic execution, and we show how to use it to
develop efficient and portable side-channel resistant code. We provide two implementations; for
a pipelined in-order, and an out-of-order 32-bit RISC-V processor. We show that AMi enables sig-
nificant performance improvements for hardened code, while only incurring low hardware costs.

Contributions

In summary, we contribute the following:

» Mimic execution, a novel and lightweight hardware primitive for imitating computational be-
havior.

ORSHIN D3.3 PU — public Page 11 of 139

W ORSHIN

D3.3 - Models for formal verification

* Architectural Mimicry (AMi), a set of innovative instructions to control mimic execution in an
efficient and portable way.

» Programming models showing how to balance and linearize control flow correctly and se-
curely with AMi.

+ A simple formal ISA model of AMi and a formal characterization of AMi programming mod-
els.

* An implementation of AMi for RISC-V.

+ An experimental evaluation showing that the hardware cost is low, and that AMi enables
significant performance improvements for hardened code.

We evaluate the benefits of AMi when manually writing hardened code, in line with the state-
of-practice for writing constant-time cryptographic code. But we see very interesting avenues
for future work to build compilers or binary rewriters that automatically (and provably) harden
code against side channels by relying on AMi. To support and enable such future work, and to
improve reproducibility of our results, our RISC-V implementation of AMi, as well as the full set of
benchmarks and experiments are open sourced.

2.2.2 Problem Statement

Prior work addressing the problem of control-flow leakage via software-based side channels can
broadly be categorized into two classes with the common goal that the trace of observable side
effects produced by a program’s execution does not depend on secrets. The first approach is
based on the insight that if the code is carefully balanced in such a way that all possible targets
of a single control-flow transfer induce exactly the same observable behavior, then executing the
code does not reveal via side-effect observations which target has been executed [5, 57, 135,
172, 34]. Unfortunately, this balanced form does not prevent control-flow leakage in general as
it is not possible on all platforms to balance out all side effects of a control-flow transfer. For
instance, to predict the most likely target of a control flow transfer, modern CPUs are equipped
with a branch predictor unit, which maintains a history of recent transfers. The predictor state
encodes in a direct manner which target has been selected, and consequently, balanced control
flow cannot prevent this shared microarchitectural state from being exposed. For this reason,
the second approach avoids secret-dependent control flow altogether and linearizes the control
flow using different techniques [25, 35, 52, 118, 141, 153, 173]. Control flow in linearized form
always executes the instructions from all possible targets in a fixed order, but makes sure that
architectural state is only modified by the instructions whose associated path condition holds. The
linearized form has been adopted by both the security and the architecture community as the de
facto standard to prevent applications from leaking confidential data via the control flow. Avoiding
secret-dependent branches is a key principle of the constant-time programming discipline [10],
which is broadly adhered to for writing security-critical code.

Performance

Both the balanced and the linearized form have in common that they rely on clever software
tricks to achieve some form of dummy execution. The balanced form relies on the availability
of dummy instructions (i.e., no-ops) to compensate for side-effects induced by instructions in
alternate execution paths. The linearized form relies on the ability to neutralize the architectural

ORSHIN D3.3 PU — public Page 12 of 139

W ORSHIN

D3.3 - Models for formal verification

effects of instructions that should not be executed according to program semantics. Implementing
these forms of dummy execution incurs a significant performance overhead due to the use of extra
instructions and additional registers.

Security

More than 25 years after Kocher introduced the concept of timing attacks [97], it is well understood
how to systematically harden applications to prevent control flow from exposing secrets: the tim-
ing behavior and the hardware resource utilization due to a control-flow transfer must not depend
on confidential data. Unfortunately, despite this fundamental understanding, vulnerabilities of this
kind are being found on a regular basis, even in high-profile code [7, 8, 117]. This is partially due
to the common practice of hardening applications at the level of the source code [89], which is
typically written in a high-level programming language. This enables so-called cross-layer vulner-
abilities [133, 152], when lower layers such as the compiler or the underlying hardware are not
made aware of the security semantics of the application.

Portability

It is determined by the underlying hardware implementation what observable side effects are
exposed. Since application hardening is typically done at high abstraction levels [89], a com-
prehensive defense is needed that is effective for all target platforms, ranging from low-cost mi-
crocontrollers to high-end servers. Current practice adopts a worst-case adversary model and
assumes that the control flow leaks in all situations and on all hardware. This is a secure as-
sumption, but overly conservative. More importantly, it tightly couples the security policy to the
source code and leaves no room to adopt more relaxed policies on simpler architectures that
leak less information, which could have performance benefits. Furthermore, decoupling the se-
curity policy from the source code also improves other software qualities such as readability and
maintainability.

2.2.3 Assumptions and Security Objectives
System model

Our goal is to develop an extension for widely used ISAs, such as the RISC-V RV32IM ISA used
by our implementation. In our formalization, however, we use a simplified ISA called AMIL. Base
AMIL (i.e., without the AMi extensions) is defined in Fig. 2.1. We assume a set of registers Regs,
a set of values V (including memory addresses), and a set of program locations Loc C N. We
let Inst be the set of instructions. A program P : Loc — Inst is a mapping from locations to
instructions and P[¢] denotes the instruction at location /.

(Expr)e:=v | x
(Inst) i :=add x,e1,e5 | mul z,e1,e5 | beqz el |
call /| jmp e | load z,e | store e;,e5

Figure 2.1: Syntax of base instructions where x ranges over Regs, v ranges over V and ¢ ranges over Loc.

An architectural configuration is a tuple (m,r,pc) € A where m : V — V is a memory, which
maps addresses to values; r : Regs — V is a register file, which maps registers to values; and
pc is the program counter, a special register pointing to the next instruction to execute. The se-
mantics of base AMIL can be defined straightforwardly as a transition system over configurations.

ORSHIN D3.3 PU — public Page 13 of 139

W ORSHIN

D3.3 - Models for formal verification

Attacker model

We consider software that manipulates secrets such as cryptographic keys and that aims to
protect these secrets against attackers who can observe microarchitectural timing side-channels
[69], revealing access to shared resources such as the instruction cache, data cache, branch
predictor and TLB. Physical side-channel attacks [96], and other software-based side-channel
attacks, such as fault attacks [124] and power attacks [110], are out of scope for this paper and
subject of orthogonal mitigations.

Leakage model

We model the observational power of an attacker by defining a leakage model, which we integrate
in the AMIL semantics. The semantics of base instructions is given by the relation « ﬁa’. It
denotes the evaluation of a base instruction inst in an architectural configuration a resulting in
configuration «’. Additionally, it produces an observation o € O defining the architectural infor-
mation that leaks through microarchitectural side channels (which we abstract from) during the
evaluation of the instruction. This is similar to existing work [24]. We parameterize the seman-
tics by a set of leakage functions A\, : A — O, which define for each instruction inst what
parts of the architectural configuration leak. The observation trace of an n-step execution, written
a ﬁ”a’, is the concatenation of observations produced by individual execution steps.

In this paper, we consider two countermeasures to prevent control-flow leakage: control-flow bal-
ancing and linearization. To study these two techniques, we reduce the leakage space to two
leakage models by defining two versions of the leakage functions in Fig. 2.2. For both leak-
age models, the A,y and \,,.; leakage functions return a fixed (i.e., configuration-independent)
observation, such as the instruction latency. The functions \;,.q and A4, model the exposure
of the accessed memory address (e.g., through the data cache) when executing a 1load and a
store instruction. Finally, Acuu, Ajmp @and Ay, model the observations produced by call, jmp
and beqz instructions, which are instantiated differently for the two leakage models:

* In the first leakage model, it is possible to avoid exposure of the program counter. An
attacker can only infer the value of the program counter when the targets of a control-
flow transfer produce different observations. In this model, it is secure to balance secret-
dependent branches, i.e., to make sure that the different execution paths produce the
same observation trace and thus remain indistinguishable by an attacker. Hence, a de-
veloper can choose between balancing and linearizing based on a profitability analysis.
This model represents the leakage of low-end microcontrollers, typically not equipped with
performance-enhancing hardware.

* In the second leakage model, the program counter is inevitably exposed to an attacker. In
this model, it is not secure to balance secret-dependent branches. Branch elimination (by
linearizing the branch) is the only secure hardening option. This model corresponds to the
constant-time leakage model [10], commonly employed in security analyses. It represents
the leakage of high-end processors that typically feature performance-enhancing hardware
such as a branch predictor and an instruction cache.

Security objectives

The developer identifies what parts of the program state should remain secret, and the security
objective of the developer is to avoid that these secrets leak to the attacker. We model this in

ORSHIN D3.3 PU — public Page 14 of 139

W ORSHIN

D3.3 - Models for formal verification

Common leakage

Nadd((m, 7, pc)) = add
Amaut ((m, 7, pc)) = mul
MNoad({m,7,pc)) = load a

Astore(<7n7 r, PC>) = slore a

Leakage model 1 (Control flow exposure can be avoided)

Aeatt({m, 7, pc)) = call
Njmp({m, T, pC)) = jmp
Abegz({m, 7, pc)) = br

Leakage model 2 (Control flow is inevitably exposed)

Aeatt((m, 7, pc)) = call £
Njmp((m, 7, pc)) = jmp €

if Plpc|] = add x, el, e2

if Plpc] =mul x, el, e2

if Plpc] = load x, e
and a = [e],

if P[pc] = store el, e2
and a = [e2],

call/’

if Plpc]
if P[pc] = jmp e
if Plpc]

J
beqz e, ¢

if Plpc] =call/
if Plpc] = jmp e and ¢ = [e],

if P[pc] = beqgz e, ¢ and

- 14 [e]. =0
B pc+1 [e], #0

Abeqz({m,r,pc)) = br A

Figure 2.2: Leakage functions for AMIL where add, mul, load, store, call, jmp, br are (fixed) observations. Notice
that in leakage model 1 the locations ¢ are absent (i.e., only the fixed cost leaks). The expression evaluation function
[e]» evaluates expression e using register file r.

the classic way, using a lattice with two security levels: public (low) and secret (high). A security
policy P is a mapping from registers and memory locations to security levels, identifying them
as secret or public. Two configurations o and ¢’ are low-equivalent with respect to a policy P,
written o=p0o’, if they agree on the public part of their register file and memory as defined by P.
A program is secure if two executions starting from low-equivalent initial configurations produce
the same observation trace.

Definition 2 (Secure program). A program P is secure w.r.t. a security policy P if for all initial

/
configurations o, and o}, and for all n such that oy =p), 0o = "0, and o}, =+ "c’,, then we have
/
0O=20.

2.2.4 Informal overview of Architectural Mimicry

We now present Architectural Mimicry (AMi). Recall that on the hardware side, we propose a
new primitive, called mimic execution. Mimic execution imitates instructions in terms of their
timing and microarchitectural behavior, but suppresses (most of) their architectural effects. It
is left to the hardware designer how to mimic an instruction since this heavily depends on the
implementation.

To control mimic execution in software, AMi extends the base ISA from Section 2.2.3 with qual-
ifiers ¢ € Q@ = {s,m, a, g, p} that can be associated with base instructions, denoted ¢.i. At the

ORSHIN D3.3 PU — public Page 15 of 139

W ORSHIN

D3.3 - Models for formal verification

1 if (c = 0) t+ beqz ¢, 5
2 { 2 ; ¢ I= 0
3 v = 2 x a + 7 3 add v, a, a
4} 4 add v, v, 7
5 else 5 jmp 6
6 1 6 ; ¢ == 0
7 v = a 7 add v, a, O
s 8
9 9
10 10
(a) C code (b) Vulnerable code

Listing 2.2: Code with secret-dependent control flow.

assembly level, each instruction has an instruction-dependent default qualifier (discussed in de-
tail later), which can be omitted. For instance, the add instruction has the standard qualifier (s)
by default. In machine code, the qualifier is always present. Additionally, we propose a number
of programming models that rely on AMi to balance and linearize control-flow in a correct and
secure way.

We informally introduce the basics of AMi and the programming models by example and refer to
the published paper for more details.

Balancing branches

We assume leakage model 1, where we can securely balance secret-dependent control flow.
Consider the insecure program in Listing 2.2b. This produces an observation trace that depends
on the secret condition. When the branch is not taken (lines 3-5), the observation trace is [br -
add - add - jmp]. When the branch is taken (line 7), the observation trace is [br - add]. As a
consequence, an attacker is able to infer the outcome of the secret-dependent branch.

A solution to harden this program is to insert instructions to balance the two sides of the branch
so that they produce the same observation trace. AMi provides hardware support to do so using
mimic instructions, which are prefixed with the mimic qualifier m. A mimic instruction m.inst
produces the same observations as the instruction inst but does not update the architectural
state. Therefore, mimic instructions can be used to securely balance branches (with hardware
guarantees), instead of relying on ad-hoc techniques using existing instructions.

The program in Listing 2.3a illustrates how AMi can be used to build a (secure) balanced version
of the code in Listing 2.2b. First, notice that instructions on lines 3 and 7 are already balanced
as they produce the same observation. Second, the add instruction on line 4 is balanced with a
mimic add on line 8: it produces the observation add but does not change the value of v. Finally,
the jmp instruction on line 5 is also balanced with a jump on line 9. In this version, both sides of
the branch produce the same observation trace [br- add- add - jmp], while the functional behavior
of the program is equivalent to the one in Listing 2.2b.

Linearizing branches

We now assume leakage model 2. Under this leakage model, the balanced program in List-
ing 2.3a is insecure because the conditional branch on line 1 leaks its target, resulting in an
observation trace starting with [br 2] if ¢ # 0, and [br 5] otherwise. This way, an attacker can gain
information on the secret c. Linearizing the secret-dependent region by eliminating the branch

ORSHIN D3.3 PU — public Page 16 of 139

W ORSHIN

D3.3 - Models for formal verification

1+ beqz c¢, b5 1+ a.beqz c, 4
2 ; ¢ !I=0 2 ; Start activating region c == 0
3 add v, a, a 3 add v, a, a
4 add v, v, 7 4 add v, v, T
5 jmp 8 5 ; End activating region c ==
6 ;, ¢ == 0 6 a.bnez c, 6
7 add v, a, O 7 ; Start activating region c != 0
8 m.add v, v, 7 8 add v, a, 0
9 jmp 8 9 ; End activating region c != 0
10 10
(a) Balanced form (b) Linearized form

Listing 2.3: Balancing and linearizing a secret-dependent region with AMi instructions.

on line 1 makes the program secure. AMi provides hardware support for linearization through
activating branches. An activating branch is a branch instruction prefixed with the activating qual-
ifier a. An activating branch always falls through to the next instruction, but if the branch condition
evaluates to true (i.e., the branch should be taken), the processor enables mimicry mode for the
duration of the branch (i.e., until the branch target is reached). When in mimicry mode, the CPU
mimics standard instructions. It is important to understand that the activating branch is not a
branch per se but an instruction to efficiently linearize secret-dependent control flow, which, just
like any other linearization technique, turns (insecure) control dependencies into (secure) data
dependencies. Importantly, the activating branch instruction does not introduce extra sources of
overhead compared to other linearization techniques. In particular, because activating branches
deterministically fall through to the next instruction, there is no uncertainty about what instruc-
tions to fetch after an activating branch and the CPU can fetch and issue subsequent instructions
without any delay (the code is effectively linear). Hence, it is not necessary for security reasons
to delay the fetch (and stall the pipeline) until the outcome of the activating branch condition is
known.

The program in Listing 2.3b illustrates how to eliminate a branch leveraging AMi. If ¢ = 0, mimicry
mode is enabled on line 1, the instructions on line 3 and 4 are mimicked, and line 8 is executed
normally. If ¢ # 0, lines 3 and 4 are executed normally, but the activating branch on line 6
activates mimicry mode and line 8 is mimicked. In both cases, the observation trace produced by
the execution of the program is [br 2 - add - add - br 5 - add], thus no secret information is leaked.

2.2.5 Further information

For more information about AMi, including the advanced features, the formalization, a description
of the prototype implementation, and the experimental evaluation of the implementation, we refer
the reader to the published paper [171].

2.3 Libra: Architectural Support For Principled, Secure And
Efficient Balanced Execution On High-End Processors

Control-flow leakage (CFL) attacks enable an attacker to expose control-flow decisions of a vic-
tim program via side-channel observations. Linearization (i.e. elimination) of secret-dependent
control flow is the main countermeasure against these attacks, yet it comes at a non-negligible
cost. Conversely, balancing secret-dependent branches often incurs a smaller overhead, but is

ORSHIN D3.3 PU — public Page 17 of 139

W ORSHIN

D3.3 - Models for formal verification

notoriously insecure on high-end processors. Hence, linearization has been widely believed to
be the only effective countermeasure against CFL attacks. In this work, we challenge this belief
and investigate an unexplored alternative: how to securely balance secret-dependent branches
on higher-end processors?

We propose Libra, a generic and principled hardware-software co-design to efficiently address
CFL on high-end processors. We perform a systematic classification of hardware primitives leak-
ing control flow from the literature, and provide guidelines to handle them with our design. Im-
portantly, Libra enables secure control-flow balancing without the need to disable performance-
critical hardware such as the instruction cache and the prefetcher. We formalize the semantics
of Libra and propose a code transformation algorithm for securing programs, which we prove
correct and secure. Finally, we implement and evaluate Libra on an out-of-order RISC-V pro-
cessor, showing performance overhead on par with insecure balanced code, and outperforming
state-of-the-art linearized code by 19.3%.

2.3.1 Introduction

In recent years, software-based microarchitectural attacks [69, 112] have emerged as a critical
security threat. When multiple stakeholders run code on the same computing device, this type
of side-channel attack makes it possible for an attacker to infer program secrets just by monitor-
ing from software how a victim uses shared hardware such as the cache, branch predictor, or
prefetcher.

Of special interest to this work are so-called control-flow leakage (CFL) attacks [33, 48, 105,
118, 136, 160, 178] whereby an attacker tries to expose the program counter (PC) trace of a vic-
tim program via side-channel observations with the aim of revealing the outcome of conditional
control-flow decisions. The program’s conditional control flow exposes the outcome of the condi-
tion that determines the control flow, which poses a security threat if that condition depends on
secret information. In the presence of a microarchitectural attacker, a program’s control flow can,
in general, be observed in the microarchitectural state of shared hardware or through contention.
A possible software countermeasure against CFL attacks is control-flow balancing [5, 34, 57, 100,
135, 172], a program transformation which aims to make the execution of all possible targets of
a control-transfer instruction appear the same to an attacker. So far, control-flow balancing has
been shown to be secure only for a class of low-power embedded processors [34, 172]. This is
because modern superscalar processors feature critical performance-enhancing hardware that
maintains state as a function of the PC, thus leaking the PC in an unbalanceable way when this
hardware is shared between different security domains. For this reason, it is widely accepted
that, to counter CFL attacks on higher-end processors, programs must be PC-secure [118], i.e.,
their PC should be independent from secret information. PC-secure programs are created by
avoiding secret-dependent control flow and the techniques for doing so are well-documented in
the literature [35, 118, 141, 161, 173].

Unfortunately, this advice has not been questioned much. Over the years, it has been evolv-
ing into a dogma and it has become an established practice to hardcode it in constant-time [10]
source code, preventing the adoption of more relaxed policies (for simpler architectures or for
weaker attacker models). Furthermore, this trend creates the fallacy that secret-dependent con-
trol flow is inherently insecure and, consequently, it discourages the search for novel mechanisms
to securely execute PC-insecure programs on higher-end processors.

On the other hand, there still exists a strong desire to keep the secret-dependent control flow
for performance reasons, even on high-end processors. Vendors of cryptographic libraries, for
instance, sometimes take the risk and do balance secret-dependent branches [178] instead of

ORSHIN D3.3 PU — public Page 18 of 139

D3.3 - Models for formal verification * ORSHIN

eliminating them. As another example, numerous offensive research papers have been published
that develop new CFL attacks, accompanied by ad-hoc defenses, which are later found to be
vulnerable by other offensive research, a trend that has been recently described as the CFL arms
race [178].

Our Proposal In this work, we challenge the widely-held belief that secret-dependent con-
trol flow is inherently insecure on high-end processors and propose a well-founded hardware-
software co-design for secure and efficient balanced execution. In contrast to prior works that
target a single vulnerability and propose ad-hoc, incremental defenses, we propose a principled
solution that addresses the CFL problem in a generic way with the goal of ending the CFL arms
race. Also in contrast to prior works, we do not assume a simple processor pipeline and schedul-
ing but support modern out-of-order processor designs.

We conduct a rigorous analysis of how hardware optimizations leak a program’s control flow. A
key finding is that hardware optimizations can be partitioned into two categories; those that yield
balanceable observations and those that yield unbalanceable observations. Balanceable obser-
vations can be securely balanced by software-only approaches. Unbalanceable observations
require hardware support. Based on the findings of our analysis, we propose Libra, a hardware-
software security contract that lays the principled foundation for secure balanced execution. We
introduce a novel memory layout, called folded layout, and an algorithm for folding balanced code
regions, which makes it possible to keep enabled performance-critical hardware optimizations
without compromising security. Additionally, we propose an ISA extension for executing folded
regions.

In a nutshell, we make the following contributions:

« A novel hardware-software contract, called Libra, for secure and efficient balanced execu-
tion.

+ A formalization of the ISA-level semantics of Libra and security and correctness proofs of
our folding algorithm.

* A characterization of hardware optimizations regarding how they leak a program’s control
flow.

» Recommendations for hardware designers wishing to adopt Libra to their designs.
« An implementation of Libra on an out-of-order RISC-V core.
+ An experimental evaluation showing that balanced execution is secure and efficient at a low

hardware cost.

Additional material Our RISC-V implementation and evaluation are available on GitHub: https:
//github.com/proteus-core/libra.

2.3.2 Terminology and Background

We first define relevant terminology from the fields of graph theory and compiler construction and
then introduce some new vocabulary (marked with x).

Definition 3 (Basic block). A basic block is a straight-line instruction sequence always entered at
the beginning and exited at the end.

ORSHIN D3.3 PU — public Page 19 of 139

https://github.com/proteus-core/libra
https://github.com/proteus-core/libra

W ORSHIN

D3.3 - Models for formal verification

En: br aO,t,f

t: br al,tt,tf
tt: add sl1,s2,s3
j Ex
tf: add s2,s3,s4
j Ex
f: sub s1,s2,s3

j Ex
Ex: [...]

Figure 2.3: A program and its CFG.

In other words, the instructions of a basic block are always executed one after another, in a
sequence. Only the first instruction can be the target of a branch, and only the last instruction
can be a branch.

Definition 4 (Control-flow graph). A control-flow graph (CFQ) is a directed graph that represents
all the paths that might be traversed through a program during its execution. The nodes of a CFG
represent basic blocks, the edges represent control-flow transfers.

Without loss of generality, we assume that a CFG has a unique entry and a unique exit block.
We also assume that the last instruction in a basic block is a control-transfer instruction, which
designates the possible successor blocks. We refer to this instruction as the terminating instruc-
tion of the basic block. Figure 2.3 contains an illustration of a CFG with B, the entry basic block
and B, the exit basic block.

Definition 5 (Distance). The distance between two basic blocks in a CFG is the number of edges
in a shortest path connecting them.

In Fig. 2.3, the distance between the basic blocks Bg, and Bg, is 2 (Bg, — B — Bgy). The
distance between two instructions is defined similarly by considering individual instructions as
basic blocks.

Definition 6 (Postdominance). A basic block Y postdominates a basic block X (i.e. Y is a post-
dominator of X) if all paths from X to the exit block go through Y.

The closest postdominator of a basic block is called its immediate postdominator. In Fig. 2.3,
basic block B, postdominates basic block Bg,. It is also the immediate postdominator of Bg,.

Definition 7 (Level structure). The level structure of a CFG is a partition of the basic blocks into
subsets (levels) that have the same distance from the entry basic block.

The level structure of the CFG in Fig. 2.3 consists of three levels: Ly = { Bz}, L1 = {B., B:}, Ly =
{ B+, Bis, Bey}

Definition 8 (xLevel slice). The set of equidistant instructions for a distance § with respect to
basic block B forms the level slice (or simply slice) determined by the tuple (B, ¢)

In Fig. 2.3, the slice of distance 0 is {br 20,t,f} and the slice of distance 1 is:
{br al,tt,tf; sub s1,s2,s3} (both relative to Bx,).

Definition 9 (xSecret-dependent region). The set of basic blocks between a secret-dependent
control-transfer instruction tnst and its immediate postdominator form the secret-dependent re-
gion determined by inst.

We refer to the basic block containing the secret-dependent control-transfer instruction as the
entry block of the region, and to its immediate postdominator as the exit block of the region. In
Fig. 2.3, if a1 is secret (line t), then { B.., B.: } is the secret-dependent region determined by the
instruction on line t. The entry block of the region is B., the exit block Bg,. Similar to the level

ORSHIN D3.3 PU — public Page 20 of 139

W ORSHIN

D3.3 - Models for formal verification

structure of a CFG, we define the level structure of a secret-dependent region as the partition of
its basic blocks into subsets (levels) that have the same distance from the region’s entry block.

Control-Flow Leakage Attacks

CFL attacks are a type of microarchitectural attack whereby an attacker tries to learn the outcome
of a secret-dependent branch by exposing the control flow via microarchitectural side channels.
Consider the program in Listing 2.4a. When the branch on line 1 evaluates to true, the instruc-
tions on lines 2-3 are executed and the program exits. When the branch evaluates to false, the
instruction on line 4 is executed and the program exits. An attacker that is able to observe the
program’s execution time will be able to distinguish the two executions, and hence learn if secret
evaluates to true or false.

Listing 2.4: Code vulnerable to CFL attacks (Listing 2.4a) and its balanced version (Listing 2.4b).

br secret,t,f br secret,t,f

1 1
2 t: add s1,s2,s3 2 t: add s1,s2,s3
3 j Ex 3 j Ex
4 £ add s2,s3,s4 4 £ add s2,s3,s4
5 5 j Ex
e Ex: [...] 6 Ex: [...]

(@ (b)

Besides this start-to-end timing difference, interrupt latency [160], data cache contention [131],
structural dependencies [9] or data dependencies stalling the pipeline are other examples of
microarchitectural events that can be monitored by an attacker to leak the control flow. Consider
Listing 2.4a again and assume that the addresses of the add instructions (lines 2 and 4) map to
different instruction cache lines. Monitoring which cache line has been touched (for instance with
the Flush+Reload attack [176]) will reveal the control flow.

Two common software countermeasures against CFL attacks are control-flow balancing and
control-flow linearization. The former technique keeps the secret-dependent control flow intact
while the latter eliminates it completely.

Control-Flow Balancing

Control-flow balancing is based on the idea that if the two sides of a secret-dependent branch
induce exactly the same attacker-observable behavior, then executing the code does not reveal
via side channels which side of the branch has been executed. Listing 2.4b gives the balanced
form of Listing 2.4a. The add instruction on line 2 is balanced with the add instruction on line 4
and a jump instruction is added to the £ path on line 5 to balance it with the jump on line 3 in the
t path.

Recent work [34, 172] has demonstrated the security (and efficiency) of control-flow balancing for
small, embedded processors with deterministic timing behavior. The authors propose a method-
ology consisting of three steps. First, by profiling the microarchitecture, the instruction set is
classified into a number of leakage classes such that executing instructions from the same leak-
age class induces the same side-channel observations. Second, a dummy (no-op) instruction is
composed for every leakage class. Lastly, the secret-dependent branches are algorithmically bal-
anced [172] with respect to the leakage classification, and by inserting dummy instructions when

ORSHIN D3.3 PU — public Page 21 of 139

W ORSHIN

D3.3 - Models for formal verification

necessary. This approach ensures that the dynamic instruction trace of balanced code always
produces the same sequence of leakage classes.

Although control-flow balancing counters attacks exploiting microarchitectural optimizations on
low-end devices [117, 160], higher-end devices (the target of our work) typically feature opti-
mizations yielding observations that are unbalanceable in software alone. Yet, for performance
reasons, balanced control flow is sometimes found in security-critical libraries targeting these de-
vices [117, 178]. Thus, how to make balanced execution secure on these higher-end devices
remains an important research question.

Control-Flow Linearization

Control-flow linearization is a key principle of the widely-established constant-time programming
discipline [10]. By eliminating secret-dependent branches, control-flow linearization ensures that
the PC does not get tainted (i.e., that the PC trace is independent of secrets). Several linearization
techniques have been proposed in the literature [35, 118, 141, 153, 161, 173].

Listing 2.3 contains the linearized form of the running example from Listing 2.4a, based on a state-
of-the-art method that was first proposed by Molnar et al. [118]. Compared with the balanced
form from Listing 2.4b, the linearized form comes with a higher cost due to the use of additional
instructions and registers.

seqz tl,secret

;
2
3 addi til,tl1,-1 # t1 = true mask (in {Ozffff, 0xz0000F})
4 not t2,tl # t2 = false mask (in {Ozffff, 0z0000})
5 and t3,sl1,tl # start of else

6 add s1,s2,s3

7 and sl1,s1,t2

8 Or sl1,s1,t3 # start of then

9 and t3,s2,t2

10 add s2,s3,s4

11 and s2,s3,tl

12 Or s2,s82,t3

Listing 2.3: Linearized form of the vulnerable code in Listing 2.4a.

This work

The goal of this work is to make sure that executing balanced code (which contains secret-
dependent control flow) on high-end processors does not leak more information than execut-
ing the equivalent linearized code (which does not contain secret-dependent control flow). We

demonstrate that, with minimal hardware support, it is possible to securely balance secret-dependent

control flow on higher-end platforms, without disabling performance-critical hardware resources
that are shared between different stakeholders.

2.3.3 Threat Model

We consider an adversary with the goal to infer secrets (e.g., cryptographic keys) by learning the
secret-dependent control flow of a victim application. We consider an adversary with the same
capabilities as an adversary under the classic constant-time threat model, and thus assume
that applications are hardened against transient execution attacks [40]. More specifically, an
adversary with the capabilities of this threat model is able to run arbitrary code alongside an

ORSHIN D3.3 PU — public Page 22 of 139

D3.3 - Models for formal verification * ORSHIN

architecturally isolated victim (e.g., via process isolation) on the same machine and it shares
hardware resources, such as the branch predictor, cache hierarchy and execution units with the
victim. This setting enables the adversary to precisely observe the execution time of the victim,
and how it uses the shared resources. If these observations depend on the secret control flow,
the adversary is able to learn something about the secret.

We consider software-based timing channels, i.e., the adversary monitors the microarchitectural
resource usage via timers from software [69, 112]. Side channels that require physical access
and physical equipment to measure quantities such as power consumption [96] or EM emis-
sions [138] are out of scope for this paper. Similarly, other types of software-based side-channel
attacks, such as software-based fault attacks [124] and software-based power attacks [110] are
out of scope and subject of orthogonal mitigations.

We make no further assumptions on the type of (software-based) microarchitectural side-channels
attacks that can be mounted by the adversary, ranging from classic cache attacks [131] to more
recent contention-based attacks [9].

2.3.4 Overview of Libra

A program’s control flow can leak through observations induced by various microarchitectural op-
timizations. Some of these observations, such as instruction latency, are independent of the value
of the PC. We refer to optimizations yielding this type of observation as sources of balanceable
leakage as their observations can be balanced by software. However, some performance-critical
optimizations commonly found in modern hardware (e.g., the instruction cache and the instruction
prefetcher) yield observations that are dependent on the value of the PC. They inevitably leak the
control flow. We refer to these optimizations as sources of unbalanceable leakage as they cannot
be dealt with by software alone. In the published paper [170], we study this distinction further and
provide a comprehensive characterization of hardware optimizations regarding how they leak the
control flow.

Existing control-flow balancing solutions are ineffective against unbalanceable leakage. It is the
goal of Libra to address this gap via a novel hardware-software security contract for secure and
efficient balanced execution. On the one hand, the software is responsible for balancing secret-
dependent control flow under a weak observer mode (accounting for the balanceable leakage)
in which the PC does not leak. On the other hand, the hardware provides support to deal with
the sources of unbalanceable leakage to ensure that the program remains secure in a strong
observer mode, representative of our threat model (Section 2.3.3) for high-end processors.

Leakage Contract

Libra requires the hardware to augment the ISA with a leakage contract that provides sufficient
information on how to balance the control flow. Software, such as a compiler, can then rely on
this contract 1) to securely balance secret-dependent control flow (making control-flow balancing
a principled code transformation) or 2) to verify that secret-dependent control flow is securely
balanced. This stands in contrast to prior works [5, 100, 34, 57, 172, 135], where it is the respon-
sibility of the software to empirically figure out how to balance corresponding instructions.

The Libra leakage contract classifies an instruction set into two dimensions. First, it partitions
instructions into leakage classes [34, 172] such that instructions from the same leakage class
yield identical side-channel observations. Importantly, any instruction can be used to balance any
other instruction from the same leakage class. For every leakage class, the contract additionally
designates a canonical dummy instruction, which does not produce architectural effects (e.g.

ORSHIN D3.3 PU — public Page 23 of 139

W ORSHIN

D3.3 - Models for formal verification

mv x1, x1). Finally, the hardware provides a blocklist of instructions that are not supported
in balanced regions. Blocklisted instructions have to be rewritten in terms of non-blocklisted
instructions before performing control-flow balancing.

Second, the leakage contract partitions the instruction set into safe and unsafe instructions [177].
Safe instructions are instructions whose timing and shared microarchitectural resource usage
are independent of the values of their operands. For instance, an add instruction is typically
implemented in a safe way, while a 1oad typically exposes the value of the address operand
on systems with a data cache (making it an unsafe instruction). It is insecure to pass secrets
to unsafe instructions but it is secure to use unsafe instructions in balanced regions if it can be
proven that the operands of any two equidistant unsafe instructions are the same for all possible
executions. For instance, the code if (secret) load x0 a else load x1 a is secure as the
resulting observation is independent of secret (under the assumption that the 1oad is only unsafe
in its address operand).

ISA Extension

The goal of Libra is to securely execute balanced code regions on high-end CPUs without dis-
abling performance-critical optimizations. In particular, Libra aims at keeping all modern hard-
ware optimizations fully enabled when executing security-insensitive code (i.e.the common case),
and keeping as many optimizations as possible in secret-dependent regions.

To this end, Libra proposes an ISA extension introducing two main novel features:

» A novel memory layout for balanced code, termed folded layout, which interleaves the in-
structions from balanced regions by placing the level slices sequentially in memory.

* A new instruction, the level-offset branch (1o .br), which informs the CPU how to navigate
a folded region. Additionally, it signals to the CPU that it is about to execute a secret-
dependent region such that it can adapt the behavior of some optimizations.

Importantly, even though folding sequentially lays out instructions of balanced regions in memory
(reminiscent of linearization), the original control flow of the program is preserved, i.e.only one
side of a folded conditional branch is executed, as prescribed by the original CFG (just like with
standard code balancing).

The level-offset branch 1o.br ¢, 0ff, : off: : bbc specifies how to navigate a folded region:

1. The level offsets off. and off; indicate what instructions of the next level to execute, de-
pending on whether the condition c is true or false;

2. The basic block count bbc indicates the number of basic blocks of the next level (the slice
size of the next level) and is used to increment the PC by the correct value.

Listing 2.4b illustrates how to fold the balanced code from Listing 2.4a. First, the two add and the
two j instructions are sequentially placed in memory. Second, the conditional branch is rewritten
using a lo.br with off, = 0, off; = 1 and bbc = 2. After the 1o.br, the CPU will execute the
folded region slice by slice, incrementing the PC by 2. If the condition is true, the first (offset off)
instruction of each slice is executed, otherwise the second (offset off;) instruction is executed.
Finally, the terminating | instructions are replaced by 1o.br instructions to reset the level offset
and bbc and resume “normal” execution at the Ex label.

ORSHIN D3.3 PU — public Page 24 of 139

W ORSHIN

D3.3 - Models for formal verification

Listing 2.4: Balanced code (Listing 2.4a) and its folded version (Listing 2.4b).

br secret,t,f lo.br secret ,0:1:2 # offT:offF:bbc

1 1
2 t: add s1,s2,s3 2 L1: add s1,s2,s3
3 j Ex 3 add s2,s3,s4
4 £ add s2,s3,s4 4 lo.br zero,0:0:1 # offT:offF:bbc
5 j Ex 5 lo.br zero,0:0:1 # offT:o0ffF:bbc
e Ex: [...] e Ex: [...]

(a) (b)

How does Libra address unbalanceable leakage? The design of Libra is tailored to address
unbalanceable leakage in hardware efficiently, i.e.oy keeping essential hardware optimizations
enabled. Yet, to establish the security guarantees, Libra requires that the PC does not leak at a
finer granularity than a slice, possibly requiring adaptations to the behavior of some optimizations.
Importantly, the folded memory layout is crucial to keep enabled performance-critical optimiza-
tions of modern hardware (e.g., the instruction cache) without, or with only minimal, adaptations.
By virtue of folding (which creates a linear memory layout), the hardware can efficiently imple-
ment a data-oblivious instruction memory access pattern by always prefetching all the slices in
the same order, effectively making it independent of the outcomes of conditional branch(es).
While some sources of unbalanceable leakage do not require hardware modifications, some will,
possibly degrading performance. However, because the hardware is informed when it is executing
a folded region, these modifications can be limited to folded regions only. For instance, some
hardware structures, such as the branch predictor, must be disabled for the 1o.br instruction
to prevent control-flow exposure to an attacker sharing the branch predictor. However, the linear
layout of a folded region makes the branch predictor unnecessary for 1o. br instructions, because
there is no uncertainty (at slice granularity) what address the sequential prefetcher should fetch
from, so it can fill the cache with the instructions that are about to be fetched by the CPU.

In the published paper [170], we present, based on a rigorous study of the attack literature, a
characterization of the sources of unbalanceable leakage (with folding in mind), and we provide
guidelines about how to handle them.

2.3.5 Advanced Features
Nested branches

When folding a region with a nested branch (as in Listing 2.5a), the software must fold the level
structure of the entire outer region, as shown in Listing 2.5b. The slice size grows with the level
of nesting. In the example from Listing 2.5b, each slice of the second level consists of four
instructions. Recall that the hardware has to make sure to fetch instructions without exposing
their offset within the current level. For instance, if a slice occupies multiple cache lines, the
hardware must ensure to always touch all the cache lines in the same order, irrespective of the
current instruction’s offset.

Note that when a nested branch does not depend on secret information (e.g. a loop with a
constant trip count), it can be more efficient to keep the branch instead of folding it. In that
case, for correctness, the software must ensure that the level offsets of the target instructions are
consistent regarding the offsets of the branch instructions. Moreover, for security, the software
must ensure that the branch targets of the branches in the source slice all point to targets in the
same target slice.

ORSHIN D3.3 PU — public Page 25 of 139

W ORSHIN

D3.3 - Models for formal verification

Listing 2.5: Region with nested branches (Listing 2.5a) and its folded version (Listing 2.5b).

br secret,t,f lo.br secret,0:1:2

t: br c,tt,tf L1: lo.br c¢,0:1:4
tt: add r,r,4 lo.br c¢,2:3:4

j Ex L2: add r,r,4
tf: add r,r,8 add r,r,8

j Ex sub r,r,4
f: br c,ft,ff sub r,r,8
ft: sub r,r,4 lo.br zero,0:0:1

j Ex lo.br zero,0:0:1
ff: sub r,r,8 lo.br zero,0:0:1

j Ex lo.br zero,0:0:1
Ex: [...] Ex: [...]

(a) (b)

Function calls

To support function calls in balanced code, prior work on control-flow balancing [34, 172] pro-
posed to create a dummy function for each function called from a secret-dependent region. A
dummy function is mostly made up of dummy (no-op) instructions designed to mirror the behav-
ior of the real function. These dummy instructions ensure that both the dummy and real functions
cause identical changes in the microarchitectural state. As a result, an attacker cannot distinguish
between the execution of the dummy function and that of the real function. A call to a function
in a secret-dependent region can then be balanced with a call to its dummy version. Libra sup-
ports this scheme, yet in order not to expose the control flow on higher-end CPUs (e.g., via the
instruction cache), functions must be folded with their dummy counterpart. Libra provides hard-
ware support to efficiently invoke a folded function and extends the ISA with a new instruction, the
level-offset call: 10.call b {. The instruction jumps to the folded function and, according to the
boolean immediate b, either executes the real part or the dummy part of the folded function. Addi-
tionally, the CPU must save/restore the Libra state (i.e. current offset and bbc) of the caller upon
calls/returns. Libra proposes a two-level hardware stack, used for storing and restoring the Libra
state of the caller. For non-leaf functions (i.e., to support more than one level of nesting, including
recursion), the software is responsible to save and restore the Libra state on a software-based
stack.

Exceptions

Instructions that may throw exceptions are inherently unsafe because whether an exception is
thrown depends on the value of their operands and handling an exception impacts both the tim-
ing and resource usage of an application. Therefore, such instructions should be treated similarly
to other unsafe, balanceable instructions, by balancing the unsafe operands and their dependen-
cies.

2.3.6 Hardware-Software Security Contract

In summary, with Libra we propose a hardware-software security contract for balanced execution.
If both parties fulfill their part of the contract, then executing a balanced code region will not leak
more information than the equivalent linearized region.

ORSHIN D3.3 PU — public Page 26 of 139

D3.3 - Models for formal verification * ORSHIN

On the hardware side, Libra imposes the following requirements:
HR1 A leakage contract for control-flow balancing is provided.
HR2 The PC does not leak at a finer granularity than a slice.

HR2a The instruction memory access pattern does not depend on the outcome of the level-offset
branch (implied by HR2).

HR3 The level-offset branch and the level-offset call are safe instructions.

On the software-side, Libra relies on:

SR1 A correctidentification of secret-dependent regions and functions called from secret-dependent
regions.

SR2 A secure balancing according to a weak observer mode as prescribed by the leakage con-
tract. In practice, this entails making sure that secrets do not directly flow to unsafe instruc-
tions, applying a balancing algorithm (such as the one from [172]), and providing dummy
versions for functions called from secret-dependent regions.

SR3 A correct folding of the balanced regions and functions. In the full paper [170], we give a
folding algorithm.

2.3.7 Further information

For more information about Libra, including the formalization, a description of the prototype im-
plementation, and the experimental evaluation of the implementation, we refer the reader to the
paper [170].

ORSHIN D3.3 PU — public Page 27 of 139

W ORSHIN

D3.3 - Models for formal verification

Chapter 3

Models for formal verification of resistance
of open-source cryptographic hardware
against physical side-channel and fault
injection attacks

Task 3.2 of the ORSHIN project is concerned with models that capture information leakage
through physical side-channels, or the sensitivity to active fault injection attacks, and that allow
formal verification of security properties of open-source hardware. Current models will be inves-
tigated. Their weaknesses will be identified, and new models will be proposed. This task also
comprises the development of demonstrators and practical experiments in the state-of-the-art
electronics security evaluation lab of KUL.

This chapter of the deliverable reports our development of three new countermeasures against
side-channel attacks and their prototype implementations.

The first countermeasure challenges an assumption that is frequently made in state-of-the-art
models, satisfying which leads to an increased implementation cost. We demonstrate that our
prototype implementation of a cryptographic algorithm protected by our countermeasure achieves
both practical security and low implementation cost. We therefore show that it is not necessary to
satisfy the assumption in order to achieve a secure and low-cost implementation. These results
were published at the DATE 2023 conference [102]. An extended version of the DATE paper was
published in the journal IEEE Transactions on Information Forensics and Security [103].

The second countermeasure against side-channel attacks is tailored for low-latency applications.
Countermeasures against side-channel attacks come with implementation overheads, specifically
secure hardware masking requires to add register stages which ultimately increases the process-
ing time from input to output. This is hardly acceptable in some applications with a low-latency
requirement, for instance memory encryption, where such an increased latency would slow down
the entire system. Hardware masking for low-latency applications prioritizes low latency at the
cost of greater chip area or higher randomness cost. Our countermeasure achieves the same
low latency as the state of the art, or better, but with lower overheads in terms of chip area and
randomness. We prove our countermeasure secure and formally verify the security of our imple-
mentations with state of the art tools. Overall we demonstrate that provable secure and formally
verified implementations can have less overheads. These results were published in the journal
IACR Transactions on Cryptographic Hardware and Embedded Systems [158].

The third countermeasure is an extension of the second countermeasure to higher security or-
ders. We designed the countermeasure and implemented and evaluated prototype circuits in

ORSHIN D3.3 PU — public Page 28 of 139

W ORSHIN

D3.3 - Models for formal verification

practice. The countermeasure provides provable higher-order security, and reduced implementa-
tion cost compared to the state-of-the-art. Our prototype circuits are formally verified and secure
in practice. These results were published in the journal IACR Transactions on Cryptographic
Hardware and Embedded Systems [159].

The prototype implementations of the second and third countermeasure served as basis for the
demonstrator described in deliverable D3.2, which is publicly available as open-source hardware.
This chapter of the deliverbale also reports our efforts to gain deeper insight into discrepancies
and help bridge the gap between theory and practice, which is a primary objective of the OR-
SHIN project. We designed, implemented and manufactured a real silicon chip featuring three
case studies of state-of-the-art countermeasures, in order to examine gaps between security
guarantees provided by theoretical models and practical implementations. We also performed
comparative experiments with state-of-the-art countermeasures on FPGA.

This chapter of the deliverable also reports our work on pre-silicon open-source evaluation tools.
We have developed and implemented an open-source tool capable of analyzing hardware de-
signs for potential side-channel leakage. The entire workflow leading up to the use of the tool is
carried out using open-source electronic design automation tools, aligning with the objectives of
the ORSHIN project.

3.1 Low-cost first-order secure boolean masking in glitchy
hardware

We describe how to securely implement the masked logical AND of two bits in hardware in the
presence of glitches without the need for fresh randomness, and we provide guidelines for the
composition of circuits. As a case study, we design, implement, and evaluate masked DES cores.
We focus on first-order secure Boolean masking and do not aim for provable security. Our goal is
a practically relevant trade-off between area, latency, randomness cost, and security. We provide
two low-cost solutions. Our first solution focuses on strong security while simultaneously aiming
for low implementation costs. The resulting DES engine shows no evidence of first-order leakage
in a non-specific leakage assessment with 50M traces. Our second solution follows the opposite
approach: we focus on lowering implementation costs, latency to be specific, while not sacrificing
much on security. Our low-latency DES engine exhibits signs of first-order leakage only after
approximately 15M traces.

3.1.1 Introduction

Over the last few decades, much attention has been dedicated to researching and developing fast
and efficient cryptographic implementations that are secure against power analysis attacks [99].
Masking [46, 73] is a well-known technique that can be used to protect both hardware and soft-
ware implementations. lts core idea is to split the data being processed by an implementation
into random shares, effectively eliminating its correlation with the device’s power consumption.

In this work, we focus on first-order Boolean masking, where each sensitive (intermediate) value
x is randomly split into two shares xy and x; such that x = zy & z,. First-order masked im-
plementations can, in theory, be broken with higher-order attacks, which combine leakage of
multiple (or all) shares to derive sensitive values. We nevertheless focus on first-order masking
because performing a successful higher-order attack can be made very difficult by adding noise
(the number of traces needed increases exponentially in the attack order, with the noise factor in
the basis) [46].

ORSHIN D3.3 PU — public Page 29 of 139

D3.3 - Models for formal verification * ORSHIN

In hardware, masking is commonly applied at the gate level. As logic gates are used as a fun-
damental building block in gate-level masking, any cost reduction in building a masked logic gate
significantly benefits the overall cost of a masked circuit. A significant hurdle in hardware mask-
ing is to overcome the effect of glitches, i.e. undesired signal transitions in the circuit, as they are
known to temporarily reveal unmasked sensitive values [115].

A methodology for implementing a masked circuit in hardware requires at least a masked AND
gadget, a masked XOR gadget and rules for the composition of gadgets to build a masked circuit.
A masked XOR is easy because one can simply apply the XOR to each share separately. A
masked AND is more difficult as the computation needs to involve all shares of all variables at
some point. One needs to be very careful not to reveal any unmasked sensitive intermediate
values, as demonstrated in many previous works. Composition is also difficult because circuit
effects, uniformity of inputs and outputs, and their dependencies need to be tracked and corrected
as necessary.

Modern hardware masking techniques, such as Threshold Implementation (Tl) [127] and Domain-
oriented Masking (DOM) [75], have been designed to address the problem caused by glitches.
In contrast to classical Boolean masking, they control the propagation of glitches through register
layers and maintain the uniformity of the intermediate values by injecting fresh randomness. As
a result, they achieve provable security against first-order attacks. Threshold Implementation is
shown to be provable secure [58] under the glitch-robust probing model [63]. Although DOM
does not enjoy a security proof, it has shown many times to be secure in practice. Some of
them further generalize to higher-orders. However provable security comes with higher costs.
Protected implementations using modern masking schemes require a lot more resources in terms
of area, latency, and randomness than classical Boolean masking [156].

In this work, we develop a low-cost Boolean masked AND gate to build masked circuits that
provide practical security in the presence of glitches. Our contributions are as follows:

« Starting from the software-oriented masked AND construction by Biryukov et al. [32], we
derive a low-cost AND gadget suitable for hardware implementations which requires no
fresh randomness. We propose two solutions to prevent glitches by controlling the arrival
time of input operands.

» We provide guidelines for composition and exemplary circuits for securely computing the
logical AND of more than two terms and circuits with AND and XOR gadgets. We pay
particular attention to the need to remask and explain when and how to do it.

» We design and implement two masked DES encryption engines building on the proposed
low-cost AND gadget and guidelines for composition. We add security measures only
where needed for practical security.

» We evaluate the performance of our designs both in terms of cost (area, latency, random-
ness) and first-order side-channel leakage on an FPGA platform.

3.1.2 Low-Cost Masked AND2 Gadget

If a regular AND2 computes z = x -y, a straightforward masked AND2 could for instance compute
20 =20 Yo Do -y and z; = xq - yo ® 1 -y such that z = 25 @ z;. This would, however, not be
secure because zy = g - (Yo @ yl) = xo - y depends on unmasked y, and similar for z;. A simple
solution to this problem, as first proposed by Trichina [156] consists in the introduction of a fresh

ORSHIN D3.3 PU — public Page 30 of 139

D3.3 - Models for formal verification * ORSHIN

random bit r in the equations:

20 =1 @ (2o Yo) ® (20 11) B (1 -11) D (21 - Yo)
21 =T

(3.1)

This construction is secure only if the order of evaluation is from left to right. A well-known problem
arises when implementing such a gadget in hardware, because the order of evaluation is unknown
and glitches in the combinational circuit can happen. Previous work, such as Tl and DOM, provide
solutions for this problem. They require fresh random bits, too. The cost in terms of the number of
random bits is an important criterion when comparing masked implementations. Gross et al. [78]
propose an AND2 gadget and rules for composition which allow implementing, e.g. an entire
masked AES-128 using only two bits of randomness. The security of their approach was proven
in the t-probing model [88]. However, in hardware, this approach leads to a significant penalty
in latency. The software implementation provided by Gross et al. was found to be insecure [26].
Like Gross et al. [78] we start our work from the masked AND2 gadget proposed by Biryukov et
al. [32] for software implementations:

20 = (%o - Yo) ® (o + 1)

21 = (1Y) © (z1 +71) 52

-, @, + denote AND, XOR and OR, respectively. We refer to this gadget as secAND2 from now on.
A remarkable property of this gadget is that it does not require fresh randomness to be secure.
Yet, due to the lack of a fresh mask, the output is not independent of the input, which needs to
be considered during composition. Another advantage of the secAND2 gadget over the one by
Trichina is that it requires fewer elementary logic operations (AND, XOR, etc.) and will thus lead
to a faster implementation in software or a smaller implementation in hardware. While Gross et al.
aimed for provable security in the presence of glitches with minimal randomness requirements,
we strive for an overall practically relevant tradeoff between area, latency, randomness cost and
security.

Secure Hardware Implementation of secAND2

A straightforward ASIC implementation of secAND2 using a common standard cell library, i.e.
using AND2, XOR2, OR2 and INV gates, will be insecure due to glitches in the circuit. A similar
problem occurs when implementing the logic equations on FPGAs using Look Up Tables (LUT).
We have verified this by performing leakage assessment tests on a Spartan6 FPGA. Our results
clearly show that programming the equations for the outputs of secAND2 (zy and z;) directly into
LUTs leaks, which we attribute to glitches.

Glitches on the output of a logic gate are created by different arrival times of its input signals.
Predicting the order in which the inputs arrive in a large circuit is impossible. But if we have
control over the order of and the delay between the arrival of input signals, it might be possible
to send the inputs in a safe sequence such that there are no glitches and thus no leakage of
any information about the sensitive inputs or intermediate values. In the next subsection, we
investigate the existence of such safe sequences for secAND2.

Identifying Safe Input Sequences

We experiment with the issue of glitches on the same Spartané FPGA by forcibly sending the
inputs of secAND2 (xq, x1, Yo, y1) at different time instances. Sending one input after another can

ORSHIN D3.3 PU — public Page 31 of 139

D3.3 - Models for formal verification * ORSHIN

be executed in a controlled manner with the help of registers by connecting them directly to the
inputs of secAND2. First, we reset all four registers to 0. Then, we update one register at a time
over four consecutive clock cycles with the desired input sequence. Finally, we observe if there
is any leakage for each of the 4! = 24 possible sequences. Inputs = and y are independently
shared with uniformly distributed random bits.

X1 2
Y1 {

..............................

Yo {
g
X0

Figure 3.1: secAND2 gate schematic.

ClockCycle |1 |2 | 3 4
Input 1Y " | xporxy | — Sequence leaks
Input 1Y " | yporyy, | — Sequence does not leak

Table 3.1: Leakage behaviour of secAND2 for different input sequences. "*’ denotes any of the remaining input shares.

The results of this experiment are summarized in Table 3.1. In short, we observe leakage in
sequences where either zy or z; arrive in the last clock cycle, but not in sequences where either
Yo Or y; arrive last. These results can be explained from the secAND2 equations in (3.2). Our
secAND2 gadget is not non-complete with respect to y (refer to the non-completeness property
of Tl), as the equations involve both shares 3, and y;. The equation for z, depends on zg, ¥
and y; whereas z; depends on x1,y and y;. Therefore, if a glitch occurs, the late arrival of
xo can reveal information about the unshared input y(= yo ® y1) and similar for x;. By forcing
Yo Or y; to arrive last, we essentially make x, and x; arrive early. We observe no leakage in
sequences where vy, or y; arrive last because xy, and x; do not evaluate on the combined value
of yo and y;, which would leak the unshared input y(= yo @ y1). Looking at the secAND2 circuit in
Figure 3.1, in the first three clock cycles, no signal or gate has enough information to be able to
leak anything about either sensitive unshared inputs, x and y. And as a result, we can achieve a
temporary non-completeness property for both output bits during the evaluation in the first three
clock cycles. In the fourth clock cycle, only a single input bit arrives straight from a register. Any
signal in the secAND2 circuit, see Figure 3.1, will toggle at most once. In other words, glitches
cannot occur in the last clock cycle. Thus, no sensitive information can be leaked even though
secAND2 is no longer non-complete. The Hamming Distance of the outputs, z, and z;, before and
after the fourth clock cycle does not depend on either sensitive inputs, x or y. Therefore, the final
cycle does not leak either sensitive input, and any sequence that ends with y, or y; can securely
compute a product of two shared variables.

Although we have identified safe sequences, we have to address a few issues related to our
initial assumption and proposed solution. We began with the assumption that the four registers
connected to secAND2 to provide inputs are reset to 0. But this is hardly the case in practice. Our
secAND2 gadgets are typically expected to be reused for computation as part of a cryptographic
circuit. It might not always be feasible to reset the input registers between computations, for
example, if the circuit is pipelined. Additionally, this approach would significantly increase latency
as each secAND2 evaluation would take four clock cycles to compute instead of one. Lastly, a

ORSHIN D3.3 PU — public Page 32 of 139

W ORSHIN

D3.3 - Models for formal verification

X1

Y1

Yo

X0
Figure 3.2: secAND2 gate with internal FF or secAND2-FF.

masked cryptographic circuit typically contains several AND gates connected to one another;
sending the inputs in four clock cycles for every multiplication would require extra registers to
temporarily buffer the intermediate values, which also increases the area cost. In what follows,
we propose two solutions to tackle these problems.

Solution 1: secAND2 with a flip-flop (secAND2-FF)

To create a secure low-cost masked AND gate, any circuit in which one of the two shares of
y, i.e. yo or yy, arrives last will guarantee no leakage. This can be achieved by delaying the
processing of either of the two inputs, for example, ;. Our secAND2 could hence be constructed
as illustrated in Figure 3.2, using an internal delay flip flop (FF). The flip-flop delays the input
y1 and ensures secure computation. This optimization reduces the number of clock cycles to
calculate a multiplication from four to two. We shall refer to this faster two-cycle secAND2 as
secAND2-FF from now on. We also verified its security with leakage assessment experiments.

In subsection 3.1.2, we explained that the order in which inputs arrive could determine whether
the computation is secure or not and that late arrival of z((or z;) has the potential to reveal infor-
mation about the unshared input y(= vy, @ y1). Suppose we compute two multiplications consecu-
tively on the same secAND2-FF gadget: let the inputs for the first multiplication be (mg, m, ng, n1)
and the inputs for the second multiplication (aq, a1, bg, b1). If we did not reset the inputs between
the multiplications and a, arrives before b, and b,, the existing inputs of the secAND2-FF, n, and
n, would remain unchanged when q, arrives. Hence, a, would leak information about the previ-
ous computation, n(= ny @ ny). Our first solution, secAND2-FF, reduces latency, but it must be
reset between successive computations.

Solution 2: secAND2 with path delay (secAND2-PD)

We propose our second solution to address the issues of secAND2. We eliminate the need for
resetting between consecutive multiplications while also reducing the latency. Using a flip-flop as
a delay element in our previous solution guarantees that one of the inputs arrives late. Instead
of using a flip-flop, we now propose using path delay to achieve the same result, for instance, by
making one of the input signals travel through a longer path so it arrives late. This solution follows
a more practical approach and comes with certain constraints, such as placement and routing,
which might not be as straightforward to implement. We explain in the extended version of the
paper that this solution can indeed be achieved in practice. Using path delay as a delay element,
instead of a flip-flop, eliminates the critical need to reduce the number of cycles required to send
the inputs. Unlike our previous solution, we could send our inputs one after another, each input
with a different amount of delay, while not increasing the cycle count of our implementation. In

ORSHIN D3.3 PU — public Page 33 of 139

D3.3 - Models for formal verification * ORSHIN

fact, we could compute secAND2 in a single clock cycle. This may of course increase the critical
path delay and thus reduce the circuit's maximum clock frequency.

—> Delay Unit

Figure 3.3: secAND2 gate with path delay or secAND2-PD.

Consequently, this approach of sending each input with a different amount of delay would help
us compute consecutive multiplications without the need to reset the inputs between computa-
tions. We propose such a cost-efficient delayed sequence in Figure 3.3, which we shall call
secAND2-PD. Each input is either delayed by zero, one, or two DelayUnits. We refer to a repli-
cable amount of delay as a DelayUnit, and we explain in the extended version of the paper how
this can be realized in practice. Input y, is not delayed and arrives first in order to protect against
information leakage about the previous computation. It is followed by the delayed x, and x;. And
finally, y; arrives as the last input as explained above.

Referring to our previous example, in Section 3.1.2, b, arrives before a, (or a;) does. Therefore
ap (or a;) cannot leak information about n(= ny @ n;) from the previous computation, as ny
is replaced by by. And the final input b, arrives after ay and a,, thereby protecting information
leakage about the current computation, i.e. a, (or a;) cannot leak information about b(= b, & by).
In conclusion, secAND2-PD does not require an input reset and also decreases the latency of our
secAND2 gadget to a single cycle.

3.1.3 Composing Secure Masked Circuits

secAND2-FF and secAND2-PD gadgets can be used as a building block to securely implement
more complex masked circuits. In this section, we provide guidelines on two important steps
which are generally required to build circuits. We first show how to compute products of more
than two variables securely. And then, we explain how to add dependent variables securely.

Computing Product Terms using secAND2-FF

As we start building a circuit, it is common to have situations where we need to compute a product
of more than two variables. To illustrate, we compute a product of four variables, z = a - b - ¢ - d,
which we assume here to be independently shared. Implementing this expression securely can
be done with the circuit in Figure 3.4, which evaluates

z = secAND2-FF(secAND2-FF(a,b), secAND2-FF(c, d))

using three secAND2-FF gadgets and has a latency of three clock cycles.
By carefully controlling when we sample the internal FFs, we can achieve a secure construction
with no additional (i.e. external) FFs, which also helps us keep the area footprint low. All the inputs

ORSHIN D3.3 PU — public Page 34 of 139

W ORSHIN

D3.3 - Models for formal verification

a0 »| secAND2-FF

a| —>

4

Po — bepq
by —>

2
: 2
7

>»| secAND2-FF Zp

PFF3

4

€0 ——>|secanp2-FF "

q C1 —_— 2, enable

v :

0= BbFF2 :
dq —> r

enable | -

Figure 3.4: Product of four masked variables using secAND2-FF.

arrive in the first clock cycle, and in the second clock cycle, the enable signal corresponding to
flip-flops FF1 and FF2 is set to high. The enable signal controls when the FF samples the input.
FF1 and FF2 sample b, and d; respectively, therefore secAND2-FF(a, b) and secAND2-FF(c, d) are
computed securely. The enable signal of FF3 remains disabled during the second clock cycle,
so the secAND2-FF computing z = secAND2-FF(secAND2-FF(a,b), secAND2-FF(c, d)) is inactive.
And in the third and final clock cycle, the enable signal of FF3 is toggled to high, thereby securely
completing the computation of output (=g, 21) in three clock cycles.

In the general case, implementing a product of n independent variables requires n—1 secAND2-FF
gadgets arranged into logs(n) layers, such that all different sub-products are cascaded. The
latency of the circuit becomes logs(n) + 1 cycles.

2
secAND2 79‘
2
F>Z

secAND2
F>z4

enable

Figure 3.5: secAND2 with input registers.

In specific cases, it might be advantageous to take the internal FFs out of the secAND2-FF gadgets
and instead place them at the beginning. For instance, when we compute low-degree products.
The flip-flop inside secAND2-FF serves the purpose of delaying one of the input signals. Equiva-
lently, we can replace secAND2-FF with a secAND2 and place registers before the gate to buffer
the input shares, as shown in Figure 3.5. We can then use a Finite State Machine (FSM) to
control when the FFs sample, thus guaranteeing a safe arrival sequence of the input operands to
the secAND2 gadgets. Unlike internal FFs inside secAND2-FF gadgets, which solely belong to that
gadget, the input registers we now use can be commonly shared by multiple secAND2 gadgets.
For instance, consider the two multiplications a x b *x ¢ and a * b x d. The input registers used to
store ag, a1, by, by, can be shared for the two multiplications. This is usually the case when we
are computing polynomials. We would have to compute several different products with common
inputs. The resulting circuit can have a slightly larger area due to extra input FFs, but it can be
beneficial for evaluation purposes. It allows us, for instance, to test and compare different input
sequences or to reset the FFs at any given time.

ORSHIN D3.3 PU — public Page 35 of 139

W ORSHIN

D3.3 - Models for formal verification

Computing Product Terms using secAND2-PD

Our construction for computing a product of more than two variables using secAND2-PD resem-
bles a chain-like structure in contrast to the tree structure we illustrated in the previous subsection.
This decision was made for practical reasons, as it helped implement hardware delays easier. In
our experience, it is relatively easy to enforce delays on inputs of secAND2-PD that arrive di-
rectly from registers. But in a typical tree structure which is organized in layers, the outputs of
secAND2-PD gadgets of one layer are fed as inputs to the next layer of secAND2-PD gadgets.
Based on our experience, it was not as easy to enforce delays on outputs of secAND2-PD gad-
gets. A construction for a product of three variables, z = a - b - ¢, which we assume here to be
independently shared, is shown in Figure 3.6.

aq —>|secAND2-PD
bg —> cate1 [7

2

A> p4y)

secAND2-PD

Co —> Gate2
Cq —> Zq

Figure 3.6: Product of three masked variables using secAND2-PD.

An appropriately delayed input sequence, as shown in Table 3.2, can be used to compute the
product of three variables in a single clock cycle.

Product of 3 variables
z=a-b-c
Product of 4 variables
z=a-b-c-d

CO—>b0—>a0,(Z1—>bl—>Cl

d0—>C0—>b0—>a0,CL1—>bl—>Cl—)d1

Table 3.2: Delay sequence for a product 3 or 4 variables

To create the delayed sequence, we use a DelayUnit, like the one we used in Section 3.1.2. ¢
is not delayed, b, is delayed by one DelayUnit, ay and a; are delayed by two DelayUnits, b;
is delayed by three DelayUnits and c; is delayed by four DelayUnits. The reasoning behind
the input sequence remains the same as before, ag (and a;) not only has the potential to leak
information about values b(= by @ b;) in Gate 1, see Figure 3.6, but also ¢(= ¢y @ ¢;) in Gate
2. Hence, ¢, is sent first to protect against information leakage about the value of ¢(= ¢y & ¢1)
from any previous computation and c; arrives last to protect against leakage about the current
computation. The rest of the sequence, between ¢y and ¢y, is identical to what was discussed in
subsection 3.1.2. Similarly, we can construct an input sequence for a product of four variables,
see Table 3.2.

To generalize, implementing a product of n independent variables requires n — 1 secAND2-PD
gadgets arranged into n — 1 layers. In theory, with a proper input sequence, a product of any
number of variables can be computed in a single clock cycle. It is up to the designer to realise
such a sequence in practice. In this work, we successfully and securely computed a product of
three variables in a single clock cycle. We have not explored computing the product of more than
three variables in a single cycle, as it was not needed for our secure DES implementation.

ORSHIN D3.3 PU — public Page 36 of 139

D3.3 - Models for formal verification * ORSHIN

Addition of Product Terms

Masked AND and XOR gates are fundamental to building a masked circuit. So far, we concen-
trated on masking AND gates. But it is also essential to ensure no loss of security during XOR.
Both our secAND2-FF and secAND2-PD gadgets do not consume fresh randomness. Instead, the
uniformity of the output is achieved by reusing the randomness of the inputs. This characteristic
becomes critical when implementing circuits that combine several terms, for instance, through
addition. It can lead to decreased security if the added terms are not independent.

]
X0s X1 X0 —>
Yo > XOR —>
Yo Y1 0
* — X0 @ Yo ® 2
2 m
secAND-FF 2
or S—
2, ,|secAND-PD| 70 74 ™]
—]
X1
Vi > XOR[—>
= ;F —> X1 ®y1 D2z
m

Figure 3.7: f =x @y ® x - y (secure).

Consider the function f = = ® y ® x - y, where the product term z = x - y is computed with either
a secAND2-FF or secAND2-PD gadget. In this situation, the masked output z is not independent
of x and vy, leading to a data-dependent distribution of the masked inputs of the XOR plane. Se-
curing this function, as well as any other which combines dependent shares, requires selectively
refreshing the (intermediate) dependent variables. Figure 3.7 depicts a circuit to compute f se-
curely. It requires 1 bit of randomness m to refresh the shares of z and guarantee a uniform
output distribution.

3.1.4 Further information

For more information about our low-cost Boolean masking scheme, an architecture of a protected
implementation of the Data Encryption Standard, concrete performance results as well as results
of a practical leakage assessment on FPGA, we refer the reader to our publications at the DATE
2023 conference [102] and in the journal IEEE Transactions on Information Forensics and Secu-
rity [103].

3.2 Time sharing - A novel approach to low-latency masking

We present a novel approach to small area and low-latency first-order masking in hardware. The
core idea is to separate the processing of shares in time in order to achieve non-completeness.
Resulting circuits are proven first-order glitch-extended PINI secure. This means the method can
be straightforwardly applied to mask arbitrary functions without constraints which the designer
must take care of. Furthermore we show that an implementation can benefit from optimization
through EDA tools without sacrificing security. We provide concrete results of several case stud-
ies. Our low-latency implementation of a complete PRINCE core shows a 32% area improvement
(44% with optimization) over the state-of-the-art. Our PRINCE S-Box passes formal verification
with a tool and the complete core on FPGA shows no first-order leakage in TVLA with 100 million
traces. Our low-latency implementation of the AES S-Box costs roughly one third (one quarter
with optimization) of the area of state-of-the-art implementations. It shows no first-order leakage
in TVLA with 250 million traces.

ORSHIN D3.3 PU — public Page 37 of 139

W ORSHIN

D3.3 - Models for formal verification

3.2.1 Introduction

Implementing secure cryptographic algorithms in a computer system without compromising their
promised security has always been challenging. Early research demonstrating the vulnerabilities
of cryptographic implementations by Kocher et al. [98] showed that it is possible to find the secrets
that a computer processes by monitoring its execution time and thereby highlighted the need to
build secure implementations. This led to the consolidation of side-channel analysis as a field of
study that attempts to gain information from the implementation of a chip or computer system by
monitoring its physical effects rather than exploiting a weakness of the implemented algorithm.
Along with timing analysis [98], power analysis [99] and electromagnetic analysis [67, 139] repre-
sent some of the best-known side-channel attacks. Power analysis, in particular, is perhaps the
most popular due to its low setup cost, non-invasive nature, and devastating effectiveness.

In the past few decades, there has been a great deal of research on securing cryptographic im-
plementations against side-channel attacks. Chari et al. [46] as well as Goubin and Patarin [73]
independently proposed a generic countermeasure called masking that splits the data being pro-
cessed into random shares to thwart power analysis attacks. The idea behind the countermea-
sure is to eliminate the correlation between the secret data and the data being processed, since
the device’s power consumption depends on the latter, which is now random. But processing
multiple shares also comes with overheads in terms of implementation area, execution time,
online randomness, etc. Along with securing implementations, it has also been important to
minimize these overheads. Masking proved to be quite successful for securing software imple-
mentations, but it was later found that masked hardware implementations still leak information
about the secrets due to glitches [115]. Several modern masking techniques such as Threshold
Implementations (TI) [127], Consolidating Masking Schemes (CMS) [143], and Domain Oriented
Masking (DOM) [75] were proposed to securely mask hardware in the presence of glitches. They
were quite successful in creating secure and efficient hardware implementations with low area
and randomness usage. Overhead reductions are typically achieved by decomposing complex
non-linear functions, such as an S-Box, into smaller sub-circuits with low algebraic degrees that
can be masked efficiently. The composition of the sub-circuits requires careful use of register
stages to prevent glitch propagation and re-masking intermediate values to maintain uniformity.
Due to the recent advent of 10T devices, which are very accessible to an attacker, there is a need
for embedded real-time applications to have fast data processing, such as memory encryption,
to ensure security. As a consequence, there is a new motivation to design masking schemes
suitable for low-latency implementations. One of the first generic approaches called GLM was
proposed by Grof3 et al. and was used to design low-latency S-Boxes in [74]. GLM, built upon
DOM, reduces latency by eliminating register stages required for share compression after non-
linear operations. Skipping share compression exponentially increases the share count after ev-
ery non-linear operation, drastically increasing the overall area and randomness utilization. This
especially makes the approach impractical for masking large functions such as higher-degree
S-Boxes. Other research into low-latency masking includes LLTI [15] based on Tl and other
methods involving asynchronous circuits [122, 125].

Although masking techniques are typically proven secure in the ¢-probing model [88], most are
not generic and are not trivial to compose with other design elements. In other words, converting
any unprotected circuit to a protected one is not straightforward and is usually laborious. Recently
in [42], Cassiers et al. introduced a new security notion called Probe Isolating Non-Interference
(PINI), which allows for trivial composition. Any PINI gadget is directly composable with other
(linear and non-linear) PINI gadgets, without significant overheads. In [41], the authors propose
two small multiplication gadgets called HPC1 and HPC2 that can be composed in the glitch-
extended probing model, introduced by Faust et al. [63], to create more complex circuits. Later

ORSHIN D3.3 PU — public Page 38 of 139

D3.3 - Models for formal verification * ORSHIN

in [92], Knichel et al. proposed the HPC3 gadget specifically intended for low-latency applications.
Although one can build any circuit with these gadgets, the latency of the circuit grows with the
algebraic degree of the function. To the best of our knowledge, there exists only one algorithm-
level approach (which does not simply compose elementary gadgets) to generate first-order PINI
secure circuits, namely GHPC [94]. Despite being PINI secure, their low latency version GHPC,,
also suffers from the high area and randomness overheads for larger functions, like GLM. A
single-cycle AES S-Box using GHPC,, costs 64.1 kGEs and 2048 bits of randomness, similar to
the cost of GLM. But GHPC_ has the advantage that it is proven to be composable secure while
GLM is not.

Contributions. We present a new masking method for low-latency applications that is first-order
PINI composable secure, and - more importantly - brings substantially less overhead than other
composable low-latency masking schemes. Our contributions are the following:

« We present a masking method that secures any function against first-order attacks and
uses only a single register stage, thus executes in a single clock cycle.

» We provide a formal description and follow up with a proof that shows any circuit secured
by our approach is first-order glitch-extended PINI secure.

» Compared to previously published algorithm-level approaches such as GLM [74] and GHPC [94]
that implement single-cycle Boolean functions, our method shows a substantial improve-
ment both in terms of area as well as online randomness required, for realistically complex
circuits.

» We apply our proposed method to produce a masked first-order secure PRINCE implemen-
tation that executes in one cycle per round and show the improvements in the utilization
results. We demonstrate the security of our PRINCE S-Box with a formal verification tool
and show that the complete PRINCE core on FPGA exhibits no first-order leakage in TVLA
with 100 million traces.

» We apply our proposed method to mask a more complex function, i.e. the AES S-Box,
in order to demonstrate its potential for efficient implementations. We show significant
improvements in utilization costs and demonstrate that our method scales well especially
when masking larger functions. Our AES S-Box on FPGA shows no first-order leakage in
TVLA with 250 million traces.

3.2.2 Preliminaries

In this section we briefly introduce the notation and recall relevant background.

Notation

Boolean masking splits each bit x € 5 into n uniform random shares x; suchthatz =z & ... ®
z,_1. The storage of a variable in a register is denoted by curly brackets { - }.

ORSHIN D3.3 PU — public Page 39 of 139

W ORSHIN

D3.3 - Models for formal verification

Probing Model

In the probing model, introduced by Ishai, Sahai, and Wagner [88], an adversary A is allowed to
observe a set of at most ¢ (predefined) wires of a circuit at each execution of the masking. The
security of a given implementation is proven by showing that a simulator S can perfectly simulate
any set of at most ¢ probes without any knowledge of the input shares (xy, ..., z,_1). A circuit
ensuring this condition for any set of size ¢ is said to be ¢-probing secure.

The probing model provides a way to prove the security of a circuit. However, this algorithmic
circuit does not trivially map to practice where, due to leakage effects, an adversary can gain
more information than what a probe typically captures. The main leakage effect to be considered
is that of glitches. In this work, we model glitches by bundling groups of wires over which a
glitch could carry information from one wire to another. Whereas one of the adversary’s probes
normally results in the value of a single wire, a glitch-extended probe allows obtaining the values
of all wires in a bundle. This extension of the probing model has been discussed in the work
of Reparaz et al. [143] and formalized by Faust et al. [63]. The formulation of the latter work is
as follows: “For any e-input circuit gadget G, combinatorial recombinations (aka glitches) can be
modeled with specifically e-extended probes so that probing any output of the function allows the
adversary to observe all its € inputs.”

Related Work

Due to the growing interest in low-latency masking, several masking techniques have been de-
veloped in recent years which are specifically focused on reducing latency. Some techniques
relevant to our work are GLM [74], GHPC [94] and LMDPL [147]. Among these, the construc-
tions for GHPC and GLM are most comparable to our technique, while LMDPL employs a distinct
dual-rail precharge logic.

GLM is a low-latency masking approach proposed by Grof3 et al. that can be applied to pro-
tect any security-sensitive circuit [74]. GLM is based on the Domain Oriented-Masking (DOM)
scheme [75], which was introduced to create low-area and low randomness designs. DOM is a
gate-level masking technique that uses masked AND gates (DOM multipliers) to build and secure
more complex circuits. A masked circuit built with DOM is split into independent circuits called
“domains” based on the share index of variables. Non-linear operations compute on all shares of
a variable requiring communication between domains and are called “cross-domain terms”. For
a secure computation, the cross-domain terms are refreshed and stored in registers before they
are compressed and merged with inner-domain terms to limit the number of shares and to reduce
area.

While DOM optimizes for area and randomness, GLM trades area and randomness for reduced
latency. The register stages in DOM multipliers increase latency in a design. GLM reduces
latency by eliminating these stages. However, constructing a low-latency circuit by eliminating
these register stages introduces complications, leading to increased area and randomness re-
quirements for the circuit. First, the number of output shares increases after every non-linear
operation as there is no share compression due to the lack of register stages. The cross-domain
terms cannot be merged with the inner-domain terms, increasing the number of shares. Further-
more, as the non-linear logic depth increases, the number of shares of the intermediate values
in the circuit also increases exponentially, resulting in a significant increase in area. Second,
removing the registers causes the circuit to be susceptible to variable collisions. GLM requires
the inputs to non-linear gates to be independently shared. If the circuit violates this condition, the
colliding variables must be duplicated with multiple shared instances of the same variable with in-
dependent sharings. To resolve collisions, it might also be necessary to duplicate the entire fan-in

ORSHIN D3.3 PU — public Page 40 of 139

W ORSHIN

D3.3 - Models for formal verification

circuitry causing the collision. All of these fixes increase the area and randomness overhead of
the circuit. As a final step, secure share compression is performed by refreshing the shares with
randomness and storing them in registers before the compression, which also increases the cost
of area and randomness since many shares need to be refreshed and stored.

GHPC, introduced by Knichel et al. [94], is a low-latency masking technique that uses Shannon
Decomposition to transform arbitrary Boolean functions into secure PINI composable gadgets.
For simplicity, we will illustrate the technique by applying it to a 4 x 4 function, F(x,y,z,w) :
F3 — F5. The technique is applied independently to each coordinate function, decomposing it
into cofactors by fixing the input shares within a single share domain. Consider f(z¢ + z1,yo +
Y1, 20 + 21, wo + wy) : F3 — F, as the shared representation of one of the four coordinate
functions of F', where the subscript denotes the share domain of the inputs. The function f is
decomposed into 16 cofactors by considering all combinations of inputs from the second share
domain, i.e. {z1,y1, 21, w1} € {0,1}%. For example, if {z1,y1, 21, w1} = {0,1,1,0}, then the
corresponding cofactor would be f(zo, 9o, Zo, wo). The resulting Shannon cofactors only depend
on the inputs from the first share domain, i.e. {xq, vo, 20, wo }. A secure implementation of F' with
GHPC necessitates two register layers. A secure low-latency implementation of ' with GHPC
reduces this to one register layer at the cost of more randomness. For each coordinate function,
in the first phase, the 16 cofactors are calculated, refreshed, and registered using inputs from
the first share domain. In the second phase, the inputs from the second share domain serve as
selection bits to choose the correct cofactor out of the sixteen for output. In GHPC, the number
of cofactors, registers, and randomness required is determined by the number of inputs and not
the algebraic degree of the function.

3.2.3 Time Sharing Masking

We introduce our novel approach to securely first-order mask any (vectorial) Boolean function in
hardware with a single register layer. We will refer to it using the acronym TSM, short for Time
Sharing Masking, in the remainder of the paper. We begin the explanation with a toy example,
applying TSM to a single AND gate, in Section 3.2.3. In Section 3.2.3, we write out TSM formally
so it applies to any Boolean function, in particular also vectorial Boolean functions. Finally, in
Section 3.2.3, we prove that TSM is first-order glitch-extended PINI composable secure.

Preliminary Example

Let 2 and y be the two inputs of the AND gate that computes z = - y. And let (x¢, 1), (o, y1) be
their sharings such that x = xo + ;1 and y = yo + y1. A key aspect of TSM is to separate in time
the processing of shareq inputs from the processing of share; inputs with the help of a register
layer, see Figure 3.8. Before the computation begins, we refresh the inputs with two random bits
r3, 4 for the masked AND gate to be composable secure (see Section 3.2.3):

! /
Ty =T+ T3 Ty =21 +73

Yo =Yo + 14 Yy =11+ 14

Then, in the first phase, all cross product combinations of sharey, i.e., (z(, vy, xyy,), are com-
puted, refreshed, and stored in registers. In the second phase, all cross product combinations
of sharey, i.e., (z},y],z}y}), are computed. Finally, in order to produce the output of the AND
gate, products of masked combinations of shareq and combinations of share; are summed up,
see Eq. (3.3).

ORSHIN D3.3 PU — public Page 41 of 139

W ORSHIN

D3.3 - Models for formal verification

20 = {x{)yé + ro} + {55/6 + 7”1} : {Z/i},"" {y(’) +,T2} ‘ {/xll} (3.3)

!0

/

; \/ﬁ
To, 71,72

T3, T4 —

T]
_ z
g A a 1

Figure 3.8: Application of TSM to a single AND gate.

The computation requires five fresh random bits and eight registers to store the intermediate
shares. The area and randomness utilization for computing a single AND gate is high, but we
use this toy example only for illustration. TSM should be mainly applied to mask more complex
non-linear functions as a whole, and not individual AND gates.

Formal Description

We provide a description of TSM working on an arbitrary (vectorial) Boolean function. The outline
is presented in Figure 3.9.

Specifically in this section, we change the notation to denote bits in a word by square brackets
(x[0], ..., x[k — 1]) instead of using different letters (e.g., =,y in the previous section). We denote
x € F% a k-bit word where its two-share Boolean masking is denoted by 7 = (g, ;) € F3* such
that xo + 1 = x with 29 = (20[0], ..., zo[k — 1]) and =1 = (z1[0], ..., z1[k — 1]) the notation of the
share-words in separate bits. This change allows a simpler, more compact presentation of what

follows next.
- .

r -
- el e
e

Figure 3.9: Application of TSM to an arbitrary (vectorial) Boolean function described by the functions g; and h;.

| b

| b

>

We explain the TSM method in a constructive manner where we first rewrite in Eq. (3.4) the
algebraic normal form of a shared function as the sum of non-complete terms where each term

ORSHIN D3.3 PU — public Page 42 of 139

W ORSHIN

D3.3 - Models for formal verification

is the multiplication between share domain 0 and share domain 1. We then rewrite this equation
to Eq. (3.5) by adding fresh randomness allowing us to safely form the two output shares outlined
in Eqg. (3.6). Finally, the inputs of the gadget are first re-masked to ensure composable security.
We start informally, where we first rewrite the equations of a shared monomial. Namely, note that
for the product of the bits z[j] for some set of indices j € J C {0,...,k — 1}

Hx H 7] + 21]J] ZH:@ :Z H o [J] H z1[j] -

jeJ jeJ icFk jeJ icFk jeJ st i[j]=0 jeJ st i[j]=1

In words, each monomial can be split as the sum of non-complete terms and each of these terms
can be split as the multiplication of shares from domain 0 and shares from domain 1.
Consider an arbitrary Boolean function

fiFs 5 Fy:a = (2[0],...,2[k — 1]) = f(2[0],..,z[k — 1]).

We denote its two-share masking by F' : F2¢ — F2 : 7+ (Fy(z), F1(7)) such that Fy(z)+Fy (%) =
f(zo + x1). The above insight can be applied to each monomial in the algebraic normal form of
f. We thus say that there exist functions g; and h; such that

x() + 1'1 Z 9r(1 ZEI)hﬂ'(I)((xl[DzGQ/I) (34)

1€Py,

where we denote (zo[i]);c; as the set of all bits x[¢] for i in I. We also denote by P, the power set
of the indices Q2 = {0, ..., k — 1}, namely all possible sets of indices in 2. It is clear that | P;| = 2F.
The sets in P, are numbered and indicated by the function .

The functions g;, h; in Eq. (3.4) work only on share domain 0 and 1, respectively. To go back to
the masked AND gate example from Section 3.2.3, the functions g;, h; are the following

9o(0; Yo) = ToYo 91(wo) = w0 92(Y0) = Yo 93(0) =1
ho(@) =1 hi(y1) = 0 ho(z1) = 71 ha(z1, 1) = 191 -
Multiplying and adding the above terms, for P, = ((0,1), (0), (1), @), we get
vy =Y gen(@oli))ict) hn((@1[1))icyr)

I1ePy
= go(z0,Y0)ho(0) + g1(x0)h1(y1) + g2(yo) ha(w1) 4 g3(D)hs(w1, y1)
= ToYo + Toy1 + T1Yo + T1Y1 -

The above sharing is already correct, however, it misses randomness for its security.
We thus further adapt Eq. (3.4) by adding randomness. Namely, by adding 2 random bits r =
(10, .., Tox_1), We get

F@o+21) =D (geen (@oli))icr) + ra(n) Py (21 [i]icoys) (3.5)

+ > e (@) icasn)

By re-masking, we can split the computation in two parts (read two phases), the computation
and refreshing of g;(-) on the first shares, and the computation and recombination of /;(-) on
the second shares. This is also depicted in Figure 3.9. In this figure, we also observe that the

ORSHIN D3.3 PU — public Page 43 of 139

D3.3 - Models for formal verification * ORSHIN

shares ¢, z; are first refreshed with the randomness ' € FF5. This is done in order to make TSM
composable secure as proven in Section 3.2.3.
Finally, the two shares Fi,(z), F;(z) are composed as follows

Fo(2) = Y (ge(ny((@oli))ier) + ra(ry) by (21 [i] iceryr) (3.6)
1€Py

Fi(z) = Z Tn(l)hn(l)((ifl[i])iesz/l) .
I1€Py

Since the functions g; and h; (or their product) consist of all terms up to degree k, any Boolean
function can be made from these g; and h;. This is extended for vectorial functions (F5 — F5)
by re-using the g; and h; functions for each coordinate function. While this can make the output
shares non-uniform (in the extreme case, two coordinate functions are equal), the security comes
from the register layer being filled with uniquely re-masked values and from each function working
only on one share domain at a time. This is made formal in the next section where we show that
TSM is PINI composable secure.

Security

We prove that TSM is first-order probing secure and that it is, moreover, composable first-order
secure in the Probe-Isolating Non-Interference (PINI) framework by Cassiers et al. [42]. Namely,
we show that any circuit secured with TSM allows for trivial composition. Since TSM is designed
to work over hardware, we use the glitch-extended probing model by Faust et al. [63] to extend
the PINI framework into the glitch-extended PINI framework. This PINI security is particularly
important since it allows for the composition between gadgets without the need to place additional
registers between them. Since all maskings of linear layers (where the linear function is applied
share-wise) are PINI secure, we can trivially secure linear functions without adding additional
registers or additional randomness.

Before starting the proof that the approach delivers PINI secure solutions, we need to introduce
the necessary concepts to introduce PINI security. We start by providing the notion of simulation.

Definition 10 (Simulatability [42]). Let P = {p1, ..., p¢} be a set of ¢ probes of a gadget C' and
Cp the tuple of values of the probes for an execution of C. Let I = {(i1,j1),..., (i, Jr)} C
{0,...,d — 1} x {0,...,m — 1} be a set of input wires of C'. A simulator is a randomized function
S: IF’; — Fg The set of probes P can be simulated with the set of input wires I if there exists
a simulator S such that for any inputs =, ., the distributions Cp(z..) and S(z;, j,, ..., Ti, j,) are
equal, where the probability is over the random coins in C' and S.

The above definition defines the security game in terms of a simulation game. This framework is
extended to PINI security where we define which information is given to the simulator.

Definition 11 (PINI [42]). Let G be a gadget over d shares and P a set of ¢, (glitch-extended)
probes on wires of G (called internal probes). Let A be a set of ¢; share indices. G is t-PINI if for
all P and A such that ty+t; < t, there exists a set B of at most ¢, share indices such that probes
on the set of wires P U y4 . can be simulated with the wires x4, with z; , denoting all inputs of
share 7 and y; . denoting all outputs of share i.

Given the above definition of PINI, we show that any circuit secured by the TSM method from
Section 3.2.3 is composable secure. Intuitively, the reason TSM is composable secure is due
to each registered value (in the single register stage of the method) being re-masked by unique
randomness.

ORSHIN D3.3 PU — public Page 44 of 139

W ORSHIN

D3.3 - Models for formal verification

Theorem 1. Any circuit secured by TSM (Section 3.2.3) is first-order glitch-extended PINI.

Proof. Denoting the k-bit input shares z; and the output shares y;. Looking at Definition 14 for
t = 1 (considering glitch-extended probes), we find that we need to prove two cases. Namely,

» for to = 0 and t; = 1, in which case we need to show that the output shares y; can be
simulated using the input shares z; for i € {0, 1}.

» fort, = 1 and ¢; = 0, in which case we need to show that a single intermediate probe can
be simulated using either xy or x;.

We begin with the first case, we have to prove that y; can be simulated using x;. We split up the
proof depending on .

 For gy, the output is calculated from the values g; re-masked by r and by values h; which
operate on the second shares x; re-masked by r’. Since g; is re-masked by r and z; is
re-masked by 7/, a simulator can sample r and ' and perfectly simulate the values y, as
uniform randomness (in particular, the simulator does not need the values x).

« For 4, since it is created using only z; and randomness 1/, a simulator can perfectly sim-
ulate y; given z; and by uniformly random sampling 7’ (in fact, due to ' the simulation
would also work from scratch in which case the simulator can simulate the probed values
as uniform randomness).

For the proof of the second case where we simulate an intermediate probe, we consider only
probes in the first phase of the circuit, since probes on the second phase were already considered
in the previous case. However, for probes on the first phase, it is clear that these can be perfectly
simulated since the computation is done share-wise (a probe either only sees values from z or
from) in which case the simulator simply gets either the zero or the one shares and performs
the computation following the algorithm.

Since both cases are proven, the masking is first-order glitch-extended PINI. O

As a result, since the TSM circuit is first-order glitch-extended PINI secure, it can be composed
with any other PINI gadget (which includes all linear operations too) without adding extra register
stages or randomness following the proofs of composable security from the original work [42].

3.2.4 Advantages of TSM

In this section we mainly outline the general efficiency of TSM and contrast it with the first-order
case of GLM and GHPC,,. In general, we emphasize the advantages of TSM through a com-
parison of area, considering both the number of registers and logic, as well as the randomness
required for masking a F5 — % function with an algebraic degree of k — 1 (which represents the
highest algebraic degree for a k-bit permutation).

Registers and Randomness Cost

In Section 3.2.3, we described our approach by applying it to an arbitrary Boolean function
f : F5 — TF,. The Boolean function is computed as a combination of the functions g; and h;.
Importantly, the functions g; and h; solely depend on the k shared inputs. We emphasize that
TSM can be extended to vectorial Boolean functions with multiple outputs (F5 — F%) because

ORSHIN D3.3 PU — public Page 45 of 139

D3.3 - Models for formal verification * ORSHIN

all coordinate functions share the same k inputs. The intermediate registers which store the re-
freshed results of the g; functions, the random bits, and the second share inputs can be commonly
used to calculate the shared outputs of all coordinate functions without increasing the register and
randomness cost. In other words, the number of intermediate registers and randomness remains
constant irrespective of the number of outputs.

TSM requires at most 2% — 2 registers to store the results of the g; functions since |P;| = 2* and
there is no degree k term (removing one register) and we do not store a constant term (removing
the second register). TSM then requires at most another 2 — 2 registers to store the random bits
r. Finally, TSM requires k registers to store the second share inputs. This gives a total of at most
2k+1 1k — 4 registers. Similarly, for the randomness, TSM requires at most 2¢ — 2 bits to refresh
the g; functions and another & bits for r’ in Figure 3.9.

We compare these numbers with GLM and GHPC,, in Table 3.4. We note that both TSM and
GLM can be more efficient than what is reported in the table, depending on the function to which
the method is applied. Namely, we report the worst case metrics such that any function of degree
k — 1 can be implemented with the given register and randomness costs.

Name # Registers # Register Layers # Random Bits
TSM -l Lk —4 1 2k k-2
GLM [74] 2k k 1 2k k;
GHPCy, [94] 26k + k 1 2k k;

Table 3.3: Comparison for a F5 — F5 function of algebraic degree k — 1.

We observe roughly a factor & /2 improvement in the number of registers and a factor & in random
bits over both GLM and GHPC_,. As previously mentioned, this improvement is a direct result of
re-using the registered values for each coordinate function (of the k outputs).

If we compare TSM with GLM for masking an AES S-Box, we see significant, concrete savings
in registers and random bits when implementing a higher algebraic degree function with many
outputs. Grof3 et al. [74] report the cost of masking an AES S-Box with a single register layer to
be 16 - 27(= 2048) registers and 16 - 27(= 2048) random bits. To compare these numbers with
TSM, we fill in the value k& = 8 in Table 3.4. TSM requires only 516 registers and only 262 random
bits per AES S-Box.

In the published paper we discuss the implementation of the AES S-Box with TSM in more detalil
and provide concrete numbers for the area cost, including combinational logic.

Combinational logic

Without loss of generality, let us consider the PRINCE S-box, a 4 x 4 function S : F; — F3
for illustration. We show the equations for the function S in Algebraic Normal Form (ANF) in
Eq. (3.7). We denote (a, b, ¢, d) as the four input bits and f°, f!, f2, 3 as the coordinate functions
which produce the four output bits.

fP=1+dc+b+cb+dchb+a+da+ba
fl=1+db+cb+deb+ ca+ cha
f*=d+dc+a+da+ ca+ dca+ cba
f>=14c+cb+dchb+ a+ dca+ ba + dba

(3.7)

ORSHIN D3.3 PU — public Page 46 of 139

W ORSHIN

D3.3 - Models for formal verification

Before delving into the benefit of TSM, let us briefly discuss how the function S would be masked
using GLM. In the first stage, every coordinate f°, f*, f2, f3 is split into eight share domains. Cu-
bic terms, such as bcd, are split into eight shared multiplication terms, bycody, bocody, ..., bycid;.
One multiplication term is assigned to each of the eight shared domains of the coordinate func-
tions. Quadratic terms, such as bc, are split into four shared multiplication terms bycq, bocy, b1 co, b1cy
and are distributed among four of the eight shared domains of the coordinate functions. The
share domains are then refreshed with fresh randomness and are registered. In the second
stage, share compression is performed to reduce the number of shares from eight to two. In
summary, the first stage involves expanding the number of shares, followed by the second stage,
where the shares are compressed. On the other hand, to mask the function S, GHPC applies
“Shannon decomposition”, an identity that splits any Boolean function into parts called cofactors,
to each coordinate function f°, f!, f2, f3. The coordinate functions are independently expanded
into 16 cofactors by setting one share of the inputs a,b,c, and d to either 0 or 1. A common
characteristic between GLM and GHPC, which may be regarded as a potential drawback, is that
every coordinate function is treated as a separate entity even though they commonly share the
same inputs.

Applying TSM to the function S, in the first stage, all inputs are remasked, then all cross-products
of the shareq inputs are computed, i.e., (ayg, by, agbo, ---, bocody), and finally those are refreshed
and stored in the register layer. In the second stage, the cross-products of the share; inputs
are computed, and they are then multiplied and summed with the masked cross-products of the
shareq inputs to produce the outputs of the coordinate functions.

TSM allows to reduce the cost of combinatorial logic by efficient reuse in several ways. First,
we can deduplicate identical terms across coordinate functions, i.e. compute them only once
and then reuse them. For example, dc is needed to compute f, and f, but there is no need to
compute dc twice. Overall this allows to reduce the number of distinct terms to compute from 20 to
14. The decrease in logic becomes more prominent with an increase of the number of coordinate
functions. This also reduces the number of random bits needed for refreshing in phase 1, and the
number of registers.

Second, we can reuse already computed lower degree terms to compute higher degree terms.
For example, we can compute dc and reuse it for computing dcb. Eq. (3.8) shows the sharing
of the coordinate function f° and Eq. 3.9 shows in the first three lines the straightforward com-
putation for (b)y, (¢b)o and (dcb)o. In the fourth line it shows a more efficient computation of
(dcb)o by reusing the already computed (cb), which results in a reduction of the number of logic
gates, thereby lowering the area. The decrease in logic gates becomes more prominent with an
increase in the algebraic degree of the terms, particularly when masking higher algebraic degree
functions such as the AES S-Box.

f& =14 (de)o + (b)o + (¢b)o + (deb)o + (a)o + (da)o + (ba)o

0 (3.8)
ff = (de)1 + (b)1 + (cb)1 + (deb)1 + (a)1 + (da)1 + (ba)1
(b)o = {56 +T1}
(beo = {bhet +ro)+ {ch+ra}- i} + {oh+m} - {et}
(bed)o = {bhehdh + ria } + {boch + 77} - {di } + {vbd +rs} - {er} + {cbdo + 7o} - {01} 09

+ oo+ {ea} {a}+{do+ra}-{u}-{a}+{cb+r} {ar} {t1}

(bed)o = (be)o - {dg} 4 {bgcgdg 4 m} 4 {bgdg + TS} : {c’l} + {cgdg + 7«9} : {b’l}

o) () (4)

ORSHIN D3.3 PU — public Page 47 of 139

W ORSHIN

D3.3 - Models for formal verification

Optimization during Logic Synthesis

Importantly, since the combinational logic in phase 1 (before the register layer) and the combina-
tional logic in phase 2 (after the register layer) is non-complete, it is safe to allow (or even, one
should enforce) the logic optimization through Electronic Design Automation (EDA) tools, without
the need to carefully place logic in distinct modules. The only kind of optimization which must not
be allowed is register re-timing, as that may move combinational logic across the register stage
which may lead to a violation of non-completeness. Our case studies in the published paper
include the impact of logic optimization on area, maximum frequency and security.

3.2.5 Further information

For more information about our low-latency Boolean masking scheme, case studies with applica-
tion to PRINCE and the AES S-Box, concrete performance results, formal security evaluation, as
well as results of a practical leakage assessment on FPGA, we refer the reader to our publication
at TCHES 2024 [158].

3.3 Higher-Order Time Sharing Masking

Time Sharing Masking (TSM) was introduced as a novel low-latency masking technique for hard-
ware circuits. TSM offers area and randomness efficiency, as well as glitch-extended PINI se-
curity, but it is limited to first-order security. We address this limitation and generalize TSM to
higher-order security while maintaining all of TSM’s advantages. Additionally, we propose an
area-latency tradeoff. We prove HO-TSM glitch-extended PINI security and successfully evalu-
ate our circuits using formal verification tools. Furthermore, we demonstrate area- and latency-
efficient implementations of the AES S-box, which do not exhibit leakage in TVLA on FPGA. Our
proposed tradeoff enables a first-order secure implementation of a complete AES-128 encryption
core with 92 kGE, 920 random bits per round, and 20 cycles of latency, which does not exhibit
leakage in TVLA on FPGA.

3.3.1 Introduction

Cryptographic algorithms implemented on computer systems are susceptible to physical attacks
that can extract sensitive information being processed by the system. An adversary could mon-
itor side-channel information, such as power consumption [99], execution time [98], or electro-
magnetic emanations [67, 139], to uncover sensitive data like cryptographic secret keys. Mask-
ing [46, 73] is a popular countermeasure that splits data into multiple shares, thereby removing
the correlation between the data and side-channel information to protect implementations against
such attacks.

Over the past years, masking techniques for hardware have, most importantly, aimed to guarantee
security in the presence of glitches [115]. To securely mask hardware implementations, several
techniques have been developed, including popular methods such as Threshold Implementa-
tions (TI) [127], Consolidating Masking Schemes (CMS) [143], and Domain Oriented Masking
(DOM) [75]. These methods primarily focus on reducing the area overhead and minimizing the
fresh randomness required to ensure security. Another line of research in hardware masking
that has gained traction in recent years is focused solely on reducing latency. An initial effort,
LMDPL [106], introduced by Leiserson et al., achieved the construction of a first-order secure

ORSHIN D3.3 PU — public Page 48 of 139

D3.3 - Models for formal verification * ORSHIN

AES S-Box in just 2 cycles. Subsequent improvements by Sasdrich et al. [147] further refined
this approach to create a first-order secure round-based AES-128 implementation operating in
ten cycles. Later, Gross et al. introduced an alternative low-latency approach, GLM [74], derived
from DOM, capable of securely masking vectorial Boolean functions of any algebraic degree with
a latency of just one cycle, regardless of the security order. Recent works include GHPC [94]
and TSM [158], both of which are low-latency approaches capable of producing first-order single-
cycle masked gadgets. They offer the additional benefit of compositional security under the Probe
Isolating Non-Interference (PINI) security notion [42]. A prevailing theme across all low-latency
approaches is the trade-off between area and randomness to minimize latency. The single-cycle
first-order GLM AES S-Box is 60.7 kGE in size and requires 2048 bits of randomness, while the
GHPC__ AES S-Box has an area of 64.1 KGE and also requires 2048 bits of randomness. In com-
parison, the single-cycle TSM AES S-Box shows improvements in both area and randomness,
with a size of 14.3 KGE and a randomness requirement of 262 bits. However, the area and ran-
domness requirements remain substantial compared to other S-Boxes with higher latency that
employ techniques like DOM, TI. Notably, many low-latency approaches are limited to provide
only first-order security.

Contributions. We extend TSM to achieve higher-order security (HO-TSM) and introduce an
area-latency trade-off construction that leverages TSM and HO-TSM, leading to substantial re-
ductions in area and randomness costs. Our contributions are as follows:

« We introduce a higher-order extension, HO-TSM, that builds upon the foundation of first-
order TSM [158]. The fundamental principle of HO-TSM is to process one share of each
input in every clock cycle while maintaining isolation of these computations through the use
of registers. Notably, the latency of HO-TSM is dictated by the security order, rather than
the algebraic degree of the function. For a d*"-order secure implementation, the latency is
precisely d cycles.

» We formally outline our construction and demonstrate that any function secured using our
method achieves d"-order glitch-extended PINI and SNI (Strong Non-Interference) [21] se-
curity.

» We develop a two-cycle, second-order HO-TSM AES S-Box that occupies less area and
requires less randomness than the only other low-latency, second-order AES S-Box by
Gross et al. (GLM) [75]. Our FPGA implementation of this S-Box exhibits no signs of first-
or second-order leakage in TVLA with 100 million traces.

» We present an area-latency trade-off for HO-TSM that significantly reduces both area and
randomness costs, with only a single cycle increase in latency. We construct a new two-
cycle, first-order PINI and SNI secure AES S-Box that shows substantial improvements in
utilization costs and develop a complete round-based AES-128 implementation that exe-
cutes in twenty cycles. The FPGA implementation of our full AES-128 demonstrates no
first-order leakage in TVLA with 250 million traces.

» Using our trade-off construction, we develop another three-cycle, second-order PINI and
SNI secure AES S-Box. Our S-Box exhibits no first- or second-order leakage in TVLA with
100 million traces.

» We use SILVER [93] to validate small examples of both HO-TSM and our trade-off construc-
tion, providing evidence for PINI and SNI security. In addition, we also verify our S-Boxes
using the formal verification tools maskVerif [20] and PROLEAD [123].

ORSHIN D3.3 PU — public Page 49 of 139

W ORSHIN

D3.3 - Models for formal verification

3.3.2 Preliminaries

We introduce essential concepts and notations which form the basis for the methodologies and
security proofs we present in later sections.

Notation

In Boolean masking, each value x € F’g‘ is split into d 4+ 1 uniform random shares x; such that
T = x0+ ...+ x4 Forx € F5 a k-bit word, we denote the bits of the word by square brackets

(z[0], ..., z[k — 1]). We represent the sharing of z as 7 = (¢, 1, -+ ,74) € (IF’;)d+1 such that
o+ x1- - + xg = x with z; = (2;[0], ..., z;[k — 1]) the notation of the share-words in separate
bits. For a set of share indices A C {0,...,d}, we denote x4 = {z; : = € A}. We denote = X

to represent selecting a value uniformly and randomly from the set X.

Circuit Model

For the purpose of security proofs and to explain masking methods, we represent algorithms in
the shape of a directed-acyclic graph called a circuit. In this circuit, an edge represents a bit
(F,) or a word (F%) and a node represents an operation of its fan-in such as an XOR or an AND
gate. We also consider nodes without input which can output a uniformly distributed random bit
or word.

Probing Model

We use the probing model, as originally proposed by Ishai et al. [88], to model the side-channel
adversary. More specifically, the d"-order probing adversary is one who has access to the layout
of the circuit he is attacking and who is able to request (before the execution of the circuit) the
digital value of up to d wires (probes) in the circuit.

The above adversary is expanded following the glitch-extended robust probing model by Faust et
al. [63] where each probe is expanded such that it returns not only the wire value but all registered
values leading up to that wire. This adversarial expansion is a way to capture the effect of glitches
and propagation delays in the circuit’s physical implementation.

We call a circuit d"-order glitch-extended probing secure if there exists a simulator which can
simulate probed values in such a way that an adversary cannot distinguish the actual circuit from
the simulator. The adversary has the power to choose the circuit’s input secrets and the simulator
is not given this information. This simulation-based security is a clever way of saying that the
probed values’ distribution (made by the circuit’s internal randomness) is independent of its input
secrets.

Composable Probing Security

We consider a simulation security game for the probing adversary, because apart from easing
certain proofs, it allows for composable security. Namely, using the Strong Non-Interference
(SNI) framework by Barthe et al. [21] and its extension to Probe-Isolated Non-Interference (PINI)
by Cassiers and Standaert [42], one can show that if a small part of the circuit (gadget) is com-
posable secure then its composition with other composable secure gadgets remains secure.

We first provide the definition of simulatability as given by in [42].

ORSHIN D3.3 PU — public Page 50 of 139

W ORSHIN

D3.3 - Models for formal verification

Definition 12 (Simulatability [42]). Let P = {py, ..., p/} be a set of ¢ probes of a gadget C' and
Cp the tuple of values of the probes for an execution of C. Let I = {(i1,71), -, (im,Jm)} C
{0,...,d — 1} x {0, ...,k — 1} be a set of input wires of C. A simulator is a randomized function
S:F'— IFE The set of probes P can be simulated with the set of input wires I if there exists
a S|mulator S such that for any inputs z, the distributions Cp(z) and S(zy, [71], .-, i, [Jm]) are
equal, where the probability is over the random bits in C'and S.

In this work, we consider composability in the form of both the SNI [21] and the PINI [42] frame-
works. The reason for opting for a more restrictive simulation-based model will become clear in
the published paper, where we provide a low-cost area-latency trade-off. In the more restrictive
NI model, we consider simulation where the simulator is not given any input shares when probing
an output. We introduce both PINI and SNI.

Definition 13 (SNI). A gadget is called t—SNI if for any set of t; (glitch-extended) probes on
intermediate variables and every set of t; (glitch-extended) probes on output shares such that
to + t1 < t, the totality of the probes can be simulated by only ¢, shares of each input.

Definition 14 (PINI). Let G be a gadget over d shares and P a set of ¢, (glitch-extended) probes
on wires of GG (called internal probes). Let A be a set of t; share indices. G is t-PINI if for all P
and A such that ¢, + t; < t, there exists a set B of at most ¢, share indices such that probes on
the set of wires P U y4 can be simulated with the wires x 4,5, with x; denoting all inputs of share
1 and y; denoting all outputs of share «.

In the regular PINI notion, the simulator is given the input share (the share with the same index)
for every probed output share and in the regular SNI notion, the simulator is given arbitrary shares
of each input instead of the same index for each input. Instead, we demand that the simulation
of the gadget can be made using the same index for each input share for each placed internal
probe and that the simulator is not given any shares when probing the gadget’s output.

Time Sharing Masking

Time Sharing Masking (TSM) is a low-latency masking scheme introduced by Kumar S. V. et
al. [158] designed to perform first-order masking of any (vectorial) Boolean function in hardware
using a single register layer. Moreover, the technique has been proven to be secure under the
PINI composable security notion. In this subsection, we provide a comprehensive description of
TSM as applied to an arbitrary (vectorial) Boolean function.

Consider an arbitrary Boolean function

f:Fy — Fy o a=(2[0],...,2[k—1]) — f(z[0], —1]).
)

We denote its two-share masking by £ : F2¥ — F%, such that z (FO(), 1(Z)) and Fy(Z) +
Fy(z) = f(zo+x1). The sharing of the ¢ coordinate functions is given by I, = (Fy[0],. .., Fy[¢—1])
and F; = (F1[0], ..., Fi[¢ —1]).

We explain the TSM method constructively, beginning with a reformulation of the algebraic normal
form (ANF) for one coordinate function f[m] of f, where m € {0,...,¢ — 1}. The ANF decom-
poses f[m] in a way that facilitates its masking. Any single-output Boolean function f[m] can be
expressed in its ANF as a sum of products of input bits:

flm)(z[0],... 2k —1]) = > asg[[zlj] with ageTF,. (3.10)
SeP, jes
Here, P, denotes the power set of the indices {0, ...,k — 1}, so that |P;| = 2*. The sum is over

all elements S € Py. For any S, as determines whether the product of input bits z[j] for j € S'is
present in the ANF of f[m].

ORSHIN D3.3 PU — public Page 51 of 139

W ORSHIN

D3.3 - Models for formal verification

We define:
My = {SeP: | as=1} (3.11)

as the set of all indices of products present in f[m].

Decomposing Product Terms in the ANF

Each product indexed by S € M,, is masked using Boolean masking and decomposed into a
sum of products of shares from domains 0 and 1:

[Tl = TGl +@alil) = S (TTwolit) (IT =ili). (3.12)

jes jes ICS jeI JeS\I

Here, the sum is over all I € P(S), the power set of S. Recall that S represents one specific
combination of input bits z[j]. The sum is thus over all possible combinations of bits in S. The
first product involves shares from domain O for bits in I, while the second involves shares from
domain 1 for bits which are notin 7, butin S.

We define two sets of functions ¢° and ¢', each operating on a single share domain, 0 and 1,
respectively:

9oy (o) = H%[ﬂ? gainy (1) = Harl[j] (3.13)
jel jer
where I C {0,...,k — 1}. For brevity, we write g ;,(-) to denote g, evaluated on the share

xo. Similarly, g}rU)(-) for the function g}r(l) evaluated on z;. The indexing function = maps each
I € P, to a unique integer in {0, ..., 2% — 1}. For the empty set, gg(m)(-) = g}r(m(.) =1.
Using these definitions in Eq.(3.13), we rewrite Eq.(3.12) as:

Hx[]] = H(mo[j]+x1[j]) = Z(Q?r(f)(l'o)) <971r(5\1)($1>>- (3.14)

jes jes ICS

A concrete example of these notations is a 2-input masked AND gate with inputs =[0] and x[1].
For k = 2, the power set of {0,1} consists of four subsets: 0,{0},{1},{0,1}, indexed as:
(@) = 0, m7({0}) = 1, 7({1}) = 2, #({0,1}) = 3. The corresponding functions ¢° and ¢! are
summarized below:

Subset / 0 {0} {1} {0,1}
gan(@o) | 1 | wl0] | woll] | wo[0] - wo[1]
ge(@) | 1| [0 | @[l | 2[0] 2[1]

Applying Eq. (3.14) to the monomial Hje{o,l} x[j], we obtain:

H z[j] = Z 9o (o) - Gagroan (1)

7e{0,1} 1C{0,1}
= g0(20) 93(21) + 91(20) 92(21) + g2(0) g1 (21) + g5(0) go (1)
=0 1={0} 1={1} 1={0,1}

= 21[0] - 21[1] + 20[0] - 21[1] 4+ xo[1] - 21[0] + 20[0] - zo[1]

ORSHIN D3.3 PU — public Page 52 of 139

W ORSHIN

D3.3 - Models for formal verification

Applying TSM to a Single Coordinate

This decomposition is applied to each term in the ANF of f[m]. Summing over all terms S € M,,,,
we have:

fim](zo +11) = Z as Zggu)(%)giw\[)(%) = Z 292(1) (150)9;(5\1)@1) (3.15)

SEPy, ICS SeMpy, ICS

The expression in Eq.(3.15) can be reorganized by subsets I € P, associated with ¢° (n- This
reorganization will be essential later when we extend the approach to vectorial Boolean functlons
In this reorganization, for each I € P, we capture the set of ¢! functions that need to be summed
and multiplied with the corresponding ggm function.

Z Zgw gw(sv)() = Z(QW(I) Z gTr(S\]) > (3.16)

SeM,, ICS 1€Py SEMpm,
ICS

Specifically, for each I € P, the set of g functions is constructed by selecting all S € M,,, where
I C S, and including the functions g, 4 ;) in this set.
Formally, this set of ¢* functions can be defined using the indices:

n = {r(S\I) | SeM,, ICS} (3.17)

The set J,,, (1) represents those terms in the ANF of f[m] (denoted by M,,) that contribute to
the product decomposition involving g?r(l). The final expression of f[m] is given by:

flm](wo +x1) = Z(Qnu) Z 97r s\ > = 2(92(1)(‘) . Z 9;()) (3.18)

1€Py, 1€Py, jEJmm([)

If J.=(r) is empty, it implies that the subset I does not contribute to the ANF of f[m/| under the
specn‘led conditions. Consequently, the sum Zjejmm g](-) evaluates to zero.

First-Order Security

Next, to ensure first-order security, we refresh the outputs of ¢° with fresh random bits r, where
r={ro,...,mox_1 }. Specifically, the output of each ggm is refreshed by adding the correspond-
ing random bit (1), leading to

flm|(zo +21) = Z ((92(1)(') + Tw(z)) : Z 9]1'(')) + Z (Tw(I)) Z 9}('))‘
I€Py jeJm,'/r(I) IePy je‘]m,w(l)
We can split this expression into two phases, as depicted in Figure 3.10:

(i) computing and refreshing ¢° on the first share (with addition of r),
(i) computing ¢! on the second share and recombining.

These steps allow us to safely construct the two output shares:

Folm Z({gw JFrey}y Y 9}-(-)>, (3.19)

1€Py, J€Im = (1)
Film] = Z ({Tw(l)} : Z 9}('))-
I1€Py, J€Im = (1)

ORSHIN D3.3 PU — public Page 53 of 139

D3.3 - Models for formal verification * ORSHIN

k ok . ﬁ ¢
To + + +— X i Fy(Z)

2k LH
r i /
vt s fﬁ
B —
1+ + g1 Z X (
NI

Figure 3.10: Application of TSM to an arbitrary (vectorial) Boolean function described by the set of functions ¢° and

1
g .

\ P

8

@

where the curly brackets indicate storing a value in a register, which prohibits glitch propagation.
Lastly, before processing the gadget, the inputs x, x; themselves are refreshed with randomness
€ F% (i.e., 1o + x¢ + 1’ and x; < z; + r') to ensure composable security.

Extending TSM to Vectorial Functions

We now generalize this approach to vectorial functions by ensuring that the masking process is
applied efficiently across all coordinate functions f[m|, m € {0,...,¢ — 1}. From Eq.(3.12), it is
evident that all monomials up to degree k can be constructed using the functions ¢ and ¢'. For
each coordinate function f[m|, m € {0,...,¢—1}, there is a corresponding set J,, ~() determined
by the terms that actually appear in f[m|, denoted by M,,, see Eq.(3.17). Consequently, the
same ¢° and ¢' building blocks can be efficiently re-used to extend TSM to a vectorial Boolean
function (f : F5 — %) by applying the above construction to each output coordinate f[m].

To establish correctness, we demonstrate that the sum of the output shares reconstructs the
original Boolean function f. The randomness 7, (), introduced during the refreshing of g?r(l),
cancels out between the two shares, leaving only the correctly reconstructed terms from the ANF

of f[m]:
Fofm] + Fifm] = 3~ ({o20 () + e} + {ran}) - X2 9)0)

I€Py je‘]m,ﬂ'(])
(3.20)
=S (B0 X gh0) = fmle + o).
I€Py, G€ T (1)

For vectorial functions f : F5 — %, this reasoning extends independently to each coordinate
flm], m € {0,...,¢ — 1}. Consequently, the sum of the shares satisfies Fy(z) + Fi(z) =
f(xo + 1).

3.3.3 Higher-Order Time Sharing Masking (HO-TSM)

We now extend TSM to achieve higher-order security while retaining the benefits of the first-
order construction. We begin with a second-order secure AND gate as an illustrative example
in Section 3.3.3. Next, we provide the construction of our higher-order secure method in Sec-
tion 3.3.3. In Section 3.3.3, we prove that our proposed solution is glitch-extended PINI and SNI
secure. Finally, we apply our method to develop a two-cycle second-order masked AES S-Box in
Section 3.3.3.

ORSHIN D3.3 PU — public Page 54 of 139

W ORSHIN

D3.3 - Models for formal verification

Preliminary Example

Before formally introducing HO-TSM, we illustrate its core concept with a simple example of a
second-order secure AND gate. Consider two inputs, = and y, for the AND gate, producing an
output z = z - y. Assume x and y are shared as = = (zg, 1, x2) and § = (yo, y1, y2), respectively.
The HO-TSM approach processes one share of each input per clock cycle while ensuring the
isolation of computations using registers, as shown in Figure 3.11.

!,/
x

070 0 .0

Zo, Yo — + 33;) — + —xy%’o%’ + eyt 2t vt 2yQ12
0
& ot o H S a2
""""" y(lj acygl,xgl,ygl LYz
TOy T1y T2 ol
/ / /
TOa T]]a ’I“%,_
/
T3, Ty, Ty
1,1 — +
r3, T4, :
T8 5 6 5
r7, T8
!,/
((;/292
T2, Y2 — + x?
Ya

Figure 3.11: Application of HO-TSM,: a second-order secure AND gate.

To ensure composable security, the input shares (xg, 21, x2) and (yo, y1, y2) are initially refreshed
with six random bits {r(, 7, 75, 74,77, 75}, as follows:

wf = N =R ‘ y' =y + i + Y5

/ / / / / /
Ty = x4+ 1) +1h Yy =y1+ry s
/ / / / / /
Ty =g+ 1]+ 7Ty Yo = Y2+ 14 + 75

In the first phase, all cross-product combinations of (z, yg, z4yg) are calculated, refreshed using
random bits {rg, 1,72}, and stored in registers:

0 __ ’ / 0 __ / 0 __ /
Ty =T[5 Y[‘m_wo ‘y_yo
/a0 / 0o _ ./
Yl = xpyh +ro |) =ah+r1 | y) =yh+r2
0 _ 0 _ 0 _
Ty =7To I =n Yy =1

In the second phase, all cross-product combinations of (z/, v}, x|y}) are computed and combined
with the register contents from Phase 1. This phase also increases the number of intermediate
shares from two to three:

ORSHIN D3.3 PU — public Page 55 of 139

W ORSHIN

D3.3 - Models for formal verification

zy™t = (2o + 1) - (Yo + ¥1) 2% = (p+) | v = (wh+)
zyp' =yl + a0 vh o -l + s g =0+ 75 Yo' = o +r7
eyt = ayd +al -y ol a2y b | 2t =ad b el e |yl =)yl s
xygl =r3+ry :vgl =75+7T6 ygl =7r7+7rs

In the third phase, cross-product combinations of (x5, y5, 245y5) are computed and combined with
the intermediate shares from Phase 2 to produce the final outputs:

zyO'2 = (af) + @) + o) - () + ¥, + vh)

012 _ .0l , 0l .7 o 0l .
TYo " =Yy t Xy Y+ Yy - Ty

012 _ ... 01 o1,/ 01 1
Tyt =wYp +x) Y+ Y - Ty

012 _ .01 .01 .7 . .0l ./ ’
TYy T =TYy T Ty Yt Yy Ty + Ty

This computation requires 15 fresh random bits and 21 registers to store the intermediate shares,
with a latency of two clock cycles. While the area and randomness costs of HO-TSM may be
significant for a single AND gate, which serves merely as an illustrative example, the method is
intended for use with complex non-linear functions, where its efficiency and advantages are most
pronounced.

Construction

In this section, we provide a formal description of HO-TSM. The d-th order HO-TSM, denoted by
HO-TSM,, extends the principles of TSM to higher-order security. To provide a comprehensive
understanding, we first present a general overview of HO-TSM. We then explain how to construct
HO-TSM, step by step using a recursive approach.

HO-TSM, operates on (d + 1) shares and requires d register stages (or equivalently, (d + 1)
phases). In each phase, the algorithm processes one share, computes all its monomial com-
binations denoted by ¢'(functions operating on individual shares), and combines the result with
the output from the previous phase stored in the register. This combination is then refreshed
to generate an additional output share, except in the final phase, where the combination output
serves as the final output of the gadget . The d-th register stage maintains a (d + 1)-sharing of
cross-products using shares {0, ..., d}.

For example, Figure 3.12 illustrates HO-TSM,. In the first phase, share z, is processed to com-
pute its monomials, which are refreshed to produce two output shares. In the subsequent phase,
x1 is processed and combined with the refreshed outputs from the first phase, resulting in three
shares. Finally, in the third phase, share x, is processed and combined with the outputs of the
previous phase to produce the final output shares of HO-TSM,.

An intuitive way to understand the HO-TSM method is to recognize that it is constructed recur-
sively from lower-order HO-TSM instances. As illustrated in Figure 3.13, HO-TSM; is built from
HO-TSM,_,, which securely operates on the first d shares (xo, ..., z4_1). A new set of functions,
g%, is then defined to operate exclusively on the additional share z,. Finally, the outputs of HO-
TSM,_, are combined with the outputs of ¢¢, merging the partial results to produce a secure
(d + 1)-share masking of the target function.

Consider an arbitrary Boolean function

fiFy — Fy, o= (z[0],...,2[k —1]) = f(z[0],...,z[k—1]). (3.21)

ORSHIN D3.3 PU — public Page 56 of 139

D3.3 - Models for formal verification * ORSHIN

To + + q" + — + — T
> X ~+ . > XF——
________ . 2k / B
ok ok 2k ok =T

0 o

TSk /

v ——

k

1+ +
2k+&

7,1 .. T ——

)

[\]

+ =
_F
NN
=
1

Figure 3.12: Application of HO-TSMj to an arbitrary (vectorial) Boolean function described by the functions ¢°, g*,
and ¢2.

We denote its (d + 1)-share masking by F : F5 ™) — TN 7 s (Fy(z),..., Fu(z)), such
that Fo(Z) + Fi(T) + - + Fa(Z) = f(zo+ 21+ + 24).

The description of HO-TSM builds on the concepts introduced in TSM, including the decomposi-
tion of terms, refreshing of shares, and the reformulation of the algebraic normal form (ANF) for
masked computation. It is recommended to review Section 3.3.2 beforehand, as many of these
concepts are directly reused and extended in this section.

Following the same strategy as in Section 3.3.2, we first focus on a single coordinate function
flm], m € {0,...,¢— 1}, and subsequently generalize to the full vectorial case. Extending to all
¢ outputs involves applying the same procedure efficiently to each coordinate function.

Decomposing Product Terms
In analogy to how TSM uses ¢° and ¢!, we define two sets of functions:

(i) A set h operating on the first d share domains (0 to d — 1),

(ii) A set g% operating on the last (i.e., d-th) share domain.

The functions h. ;) compute cross-products across the first d shares, while gﬁm focuses on the
monomials involving the d-th share exclusively. Concretely:

ha(ny(To, - -y Ta1) = H(wo[z] +xi[i] + -+ xd_l[z’]>, gfr(l)(xd) = H zqi]. (3.22)

i€l i€l

Here, I C {0,...,k — 1}, and 7 is an indexing function over the power set of {0,...,k — 1}.
To simplify notation, we use h)(-) to represent the function %, applied to the first d shares.
Similarly, g, (-) refers to g7, evaluated using the final share . More details on the notations
used can be found in Section 3.3.2.

ORSHIN D3.3 PU — public Page 57 of 139

W ORSHIN

D3.3 - Models for formal verification

As in the two-share case for first-order TSM, each shared term in f[m] (of the form [],_; z[j])
can be decomposed into a sum of products that splits between the d-th share and the sum of the
previous d shares. Formally, for J C {0,..., k — 1},

[T 200 =TT ((ols] + -+ + wacalg]) + 2ald]) = D bty (20, -, 2a1) - g0y (a). (3.23)

Jj€J Jj€J 1CJ

To illustrate, consider the second-order masked AND gate introduced in Section 3.3.3, represent-
ing z[0] - z[1] with & = 2. The corresponding h-functions and g*-functions for all subsets I € P,
are summarized below:

Subset / O (r(I)=0) | {0} (z(I)=1) | {1} (=(I) =2) {0,1} (n(1) =
ha(r) (20, 1) 1 (20[0] + 21[0]) | (zo[1] + 21[1]) | (20[0] + 21[0])(wo[1] + z1[1])
92y (@2) 1 (0] (1] 2[0] - z5[1]

By applying Eq. (3.23), we decompose the term [[, ,, z[j], where each z[j] is (zols] + 1 [j] +

902[]])1
H (95[]]) = Z hr(350,$1 97%({0,1}\1)@2)
jefo,1} 1C{0,1}
=ho()g5() + hi()g() + ha() gi () + hs() g5(:)
0 ={0} ={1} 1={0,1}

= (20[0] + 21[0] 4 22[0]) (wo[1] 4 z1[1] + 22[1]).

Decomposing a Single Coordinate

Analogous to Eq. (3.18) in the first-order TSM case, the decomposition in Eq. (3.23) is applied to
each term in the algebraic normal form of f[m]. By utilizing the same sets J,, »(;) as defined in
Eq. (3.17), we express:

flm] ((370 +txg)+ 9Ud> = Z <h7r(1) (o, ..., Ta-1) - Z Qﬁl(iﬁd))- (3.24)

1€Py J€Im = (D)

The sets J,, () from TSM can be directly reused in HO-TSM because they are constructed solely
based on the structure of the ANF of f[m], which remains unchanged regardless of the number
of shares.

Recursive Construction of HO-TSM,

Having decomposed f[m] into the functions h and g¢, we now outline the recursive steps required
to construct HO-TSM,. These steps detail how the outputs of 4 and ¢? are securely computed
and combined to achieve the (d + 1)-share masking of f[m]. As illustrated in Figure 3.13, a HO-
TSM,_, block securely implements each of the /() functions, shared across d shares, while the
g cloud computes all the functions giu)- The recursive process proceeds as follows:

1. The input shares (z, ...,z,) are first refreshed with randomness ' = (r,...,r}) to en-
sure composable security. Each r, € F% for i € {0,...,d — 1} is an independent random

ORSHIN D3.3 PU — public Page 58 of 139

W ORSHIN

D3.3 - Models for formal verification

k 2k 2k 2k —
Lo — + —— 1 + — 1 —
: Lk HO-TSM,_, ok ok : S _/_g ; Fy(z)
Tg_1 — / / k : _
e . 2 ()
7,,/ / .
d-2F
Td_l .. .
ok k
'rd — + _/_ ______________________ /I gd
A
Figure 3.13: Recursive method of HO-TSM,.
value, while 7, = Y71/, The refreshed shares are (4, ..., 20), with 2} = x; + 7} for
i€{0,...,d}.!
2. Thefirst d refreshed input shares, (xy, ..., 2)_,), are securely processed by the HO-TSM,_,

block. This block computes the outputs of all ... functions (as defined in Eq. (3.22)), pro-
ducing intermediate d-shared outputs:

Ry (@, - 1) = (hary(los ey (s -5 he(y ()]a=1)

where h.((-)|, represents the i-th share of the function h,(;), evaluated over the first d
shares (xy, ..., 2} ;).

3. Each of the d shares h(p (+) \Z is refreshed using a dedicated random word rf‘l, where each

rf‘l consists of 2% bits (one random bit per subset 7(7)). Altogether, d - 2¢ fresh random

bits are required in this step. Specifically, i-(1)(-)|, is refreshed as (k) (-)|, + r{ ' [x(1)]).
A corresponding new share r4 ! = Zd_l r?~! is also generated in this step.

=0 "1

4. The refreshed outputs

{ hey)], + 8 m (1))} fori=0,....d =1
along with the newly generated share rj‘l, are stored in a register. Consequently, the
register now contains (d + 1) shares for each h(ry function. This process ensures that
hxr)(-), which was previously shared across d shares, is now securely represented in a
(d + 1)-share domain.

5. In the last phase, the remaining refreshed input share z/, is processed to compute the
outputs of the gfﬁm functions. These results are then combined with the refreshed outputs
of h.(r) functions, which were previously computed by the HO-TSM,_; block, to produce

"Due to the recursive structure, the input shares may be re-shared multiple times. Although one could attempt to
reduce this overhead, it is not the main source of randomness usage and the current approach allows for a clean
recursion and straightforward security arguments.

ORSHIN D3.3 PU — public Page 59 of 139

D3.3 - Models for formal verification * ORSHIN

the final (d + 1)-shared outputs (Fy[m], ..., F4[m]). The output equations are as follows:
Bl =Y ({ha O+ D]} - Y glal) fori<d,
1Py, jGJmJ(])
(3.25)
Fabm] = > ({rd =]} - > giad) fori=d.
I1€Py, JE€Im, = (1)

The recursion proceeds iteratively, reducing the order at each step until it reaches the base case
of first-order masking, HO-TSM; (i.e., TSM), which is securely implemented using the original
first-order method of [158].

Extending HO-TSM to Vectorial Functions

Extending HO-TSM to vectorial Boolean functions (f : F5 — %) involves applying the decom-
position described for a single coordinate function f[m|, m € {0,...,¢ — 1}, to each coordinate.
The key observation is that the sets .J,, »(;) (as defined in Eq. (3.17)), which determine which
g?-functions are summed together for each coordinate, need to be updated to reflect the ANF
of each fm]. Importantly, the sets J,, -y constructed for TSM can be directly reused in HO-
TSM, as they depend solely on the structure of the ANF of f[m|. Furthermore, the refreshed and
registered shares of /1(;), along with the functions g;‘f(”, which decompose the terms across the
(d + 1)-share domain, are universal and can be reused across all coordinates of f. This ensures
an efficient extension of HO-TSM to vectorial functions by leveraging the same decomposition
principles, Eq. (3.24), and building blocks, Eq. (3.22), for all coordinates.

Method # Registers # Register Layers # Random Bits
HO-TSM; 2* d(d2+3) + k;d(d;l) d ok d(d2+1) N kd(d;—l)

Table 3.4: Comparison of algorithmic costs of HO-TSM and GLM for order d when masking a function F5 — F5
function of algebraic degree k£ — 1.

We provide the algorithmic costs of number of registers, register stages, and random bits in
Table 3.4. Comparing HO-TSM with other methods is difficult as it easily becomes dependent on
the actual function that is implemented. Nevertheless, we compare to the single cycle case of
the GLM method where we clearly see that we trade-off the number of registers and randomness
for more register layers. A better view of the cost of HO-TSM is given in Section 3.3.3 where it is
applied to create a second-order masked AES S-box.

Correctness and Security

We begin with the correctness and security proof for HO-TSM, and then provide SILVER results
for some small examples.

Theorem 2. Any circuit secured by HO-TSM, is correct.

Proof. We establish the correctness of HO-TSM, by induction on d, the order of the masking.

ORSHIN D3.3 PU — public Page 60 of 139

D3.3 - Models for formal verification * ORSHIN

» Base Case (d = 1): When d = 1, HO-TSM; is simply the first-order two-share masking (TSM).
As shown in Section 3.3.2 and established in [158], we have, for each output coordinate m:
Fo[m]+ Fi[m] = f[m](xo+x1), and therefore Fy(z)+ F1(Z) = f(xo+x1). Hence, correctness
holds for d = 1.

¢ Inductive Hypothesis: Assume that HO-TSM,_;, which produces d-shared outputs, sat-
isfies correctness. That is, for some (d — 1) > 1, the outputs Fy[m], ..., Fy_1[m] satisfy
S0 Eyfm] = flm](xo + 21 4 - - - + x4_1), Mmeaning each coordinate function f[m] is correctly
reconstructed from the sum of all d-output shares in the HO-TSM,_; design.

« Inductive Step (d): To complete the proof, we verify that HO-TSM, correctly produces (d+1)-
shared outputs satisfying the required property. By construction:

1. The input shares (zo, ..., z4), refreshed with randomness ' = (r,...,r,) for compos-
able security, do not affect correctness as the refreshing process preserves > ¢ z;. This
is because Y0 7 = S0 0, = 0.

2. HO-TSM,_, is applied to the first d refreshed shares (zj, ..., 2/,), yielding intermediate

outputs:
hay(4) = (hery ()| go Bry ()13 By ()] 1)

whose sum of shares equals Zd ! B)\Z. = hn (20, - - -, 7);_,). By the inductive hy-
pothesis, HO- TSMd 1 is correct.

3. Each share hx(r)(+)|, is refreshed with randomness r{~"[x(I)], producing { A ()|, +
ré=n ()]} Addlng the refreshed d-shares and the extra random share 7§ = Zf;ol =
the randomness cancels out, recovering: >0~ (i YO, + i w (D)) + ey ()] =
hﬂ-(]) (:136, e ’xiifl)'

4. The functions gfﬁu), which operate exclusively on the last refreshed share z/;, are then
computed. These results are combined with the refreshed shares of A1 (-), producing
the final (d + 1)-shared outputs (Fy[m],. .., Fy[m]). Summing the outputs gives:

Zii:F@[m] = Z(hﬂ(])(:vg,.. xd 1) Z g])

I1€Py, JE€EIm,x(I)
= flm](zg 4 - - - 4+ 2y) = flm](xo + - -+ + za).

This correctness argument applies independently to all coordinates f[m|, m € {0,...,¢ — 1},
as the sets J,, »(r) ensure proper reconstruction for each f[m| based on its ANF. The final (d +
1)-shared outputs for the vectorial function f are obtained by concatenating the outputs for all
coordinates, ensuring that F,(z) + F1(Z) + - - + Fy(z) = f(wo + 21 + - - - + x4), where F;(z) =
(E[0),...,E[¢—1]) fori € {0,...,d}.

Theorem 3. Any circuit secured by HO-TSM,; is d"-order glitch-extended PINI and SNI.

Proof. We prove the theorem by induction on d.

« Base Case (d = 1): From [158], it is established that the method is secure for d = 1. We
observe in the proof that the simulation can be performed from scratch without giving any
input shares when probing an output.

ORSHIN D3.3 PU — public Page 61 of 139

W ORSHIN

D3.3 - Models for formal verification

« Induction Hypothesis: Assume that any circuit secured by HO-TSM,_, is (d — 1)"-order
glitch-extended PINI and SNI.

* Induction Step (d): We aim to show that if the theorem holds for HO-TSM,_, then it also
holds for HO-TSM,. Please refer to Figure 3.13 for reference. To demonstrate d"-order PINI
and SNI security, we use a simulation-based argument. First, we categorize all possible probe
locations as follows:

Probing the HO-TSM,_ block.
Probing the i share in the upper register.
Probing the lower register.

> 0o~

Probing the i output share.

Next, we construct the simulator S. By the induction hypothesis, the HO-TSM,_; block is
(d — 1)"-order PINI and SNI secure, and we can utilize its simulator S’. Depending on the
probe positions, we provide the following shares to S:

Probes in Group 1: We provide S the same input which would be given to S'.

Probes in Group 2: We provide the simulator with nothing.

Probes in Group 3: We provide the simulator with x,.

Probes in Group 4: We provide the simulator with nothing.
With the above input shares, the simulator S can perfectly simulate the probes as follows:

— For any probe in Group 1: By the induction hypothesis, S’ perfectly simulates this probe.
When d probes are placed in Group 1 (or 2), since the share x, is excluded, the simulator
can be given (xo, ..., x4_1) to perfectly simulate the entire HO-TSM,_; block.

— For any probe in Group 2: A probe in this group views a single output of the HO-TSM,_;
block. The simulator S’ can perfectly simulate this output due to its (d — 1)"-order PINI
and SNI security. The simulator S also creates the randomness 7% *. If i = d, S creates
all random shares rf‘l without needing to simulate any output of the HO-TSM,_; block.

— For any probe in Group 3: The simulator has access to x, and creates the randomness
.

— For any probe in Group 4: A probe in this group views one share of the upper register.
Due to the randomness rf’l, each value in the upper register can be simulated as uniform
randomness unless a probe has already been placed in that position in Group 2 or when
a probe was placed on rj‘l. In such cases, the simulation follows the logic of Group
2. Additionally, a probe in this group also views the lower register value. If a probe
was placed in Group 3, the simulator has =, and can simulate ¢g?. Furthermore, if d
outputs of the HO-TSM,_; block need to be simulated, 7/, is also observed. However,
since the adversary has only d probes, no probe could have been placed in Group 4
simultaneously. Otherwise, , = 3¢ v/ remains unobserved, and the lower register
can be simulated as uniform random, with ¢¢ simulated appropriately.

The above demonstrates that the construction achieves d"-order PINI and SNI security. Since
both the base case and the induction step have been established, the theorem holds for all d > 1.
O

ORSHIN D3.3 PU — public Page 62 of 139

W ORSHIN

D3.3 - Models for formal verification

Formal Verification. SILVER [93] is a formal verification tool that evaluates the security and
composability of masked gadgets against several security notions such as probing security, Non-
Interference (NI), Strong Non-Interference (SNI), and Probe-Isolating Non-Interference (PINI).
We applied our HO-TSM method to create two small examples for different orders of security: a
HO-TSM, AND gate, introduced in Section 3.3.3, and a HO-TSM3 AND gate. Our two examples
successfully pass all second-order and third-order tests, respectively, under all security notions
(probing, NI, SNI, PINI) in both the standard and robust probing models. This confirms that our
two gadgets are indeed (2-PINI,2-SNI) and (3-PINI,3-SNI) secure.

Application: Second-Order Masked AES S-Box

An unprotected AES S-Box takes eight input bits and produces eight output bits, described as
S : F§ — F5. The coordinate functions, when presented in their algebraic normal form, include all
terms up to the seventh degree, in total 254 terms. To mask the AES S-Box using HO-TSM,, we
begin by computing the sharings for all 254 terms by processing each share individually in three
phases, see Figure 3.12. These sharings are then commonly reused across all eight coordinate
functions.

In total, for the first stage, we require 254 random bits (") and 508 (254 x2) registers. In the
second stage, we require 508 (254 x2) random bits (r!) and 762 (254 x 3) registers. Additionally,
24 random bits (') are required for the initial input refresh. The total utilization cost for the second-
order secure AES S-Box, including the cost for combinatorial logic, is summarized in Table 3.5.

Table 3.5: Utilization results of low-latency second-order masked AES S-Boxes.

Design Method Area (kGE) Random bits Cycles Library

33.72
This work HO-TSM ——MM — 786 2 NanGate45
48.6°
[74] GLM 571 4446 2 UMC90

@compile_ultra -no_autoungroup -no-boundary_optimization
b compile -exact_map

The synthesis results are gathered using the NanGate 45nm Open Cell Library [126]. We use
Synopsys DC Compiler v2021.06 for Synthesis and provide results for two different sets of op-
tions. The first set of options (compile_ultra -no_autoungroup -no_boundary_optimization)
aims for maximum logic optimization while making sure that no logic is moved across the regis-
ter layer by separating the registers from logic by placing them in distinct modules. The second
set of options (compile -exact map) aims for a direct mapping of our design to logic. The area
numbers were gathered by synthesizing our designs with a target frequency of 100 MHz and do
not include the area cost of generating the required randomness. Our two-cycle second-order
AES S-Box has both lower area as well as randomness cost when compared to the GLM design
proposed by Gross et al. [74].

3.3.4 Further information

For more information about our higher-order low-latency Boolean masking scheme, an area-
latency tradeoff, a case study with a complete AES-128 encryption core, concrete performance
results, formal security evaluation, as well as results of a practical leakage assessment on FPGA,
we refer the reader to our publication at TCHES 2025 [159].

ORSHIN D3.3 PU — public Page 63 of 139

W ORSHIN

D3.3 - Models for formal verification

3.4 Side-channel analysis of three designs in Tiny Tapeout
board

3.4.1 Introduction

The primary objective of the work conducted on the Tiny Tapeout board was to perform an in-
depth analysis of the discrepancies between theoretical methodologies and physical implementa-
tions in hardware security. Our goal was to better understand and reduce the gap between these
two worlds. To this end, we focused on the implementation of three cryptographic gadgets that
have been extensively studied in the literature from a side-channel analysis perspective, mostly
in theoretical terms, with far less emphasis on practical implementation. The final aim is to gain
deeper insights into how secure hardware behaves in practice and how design decisions at each
level influence vulnerability to side-channel attacks.

Tiny Tapeout 02 project

Tiny Tapeout is a community-driven initiative that enables individuals (including students and hob-
byists) to design and fabricate their own custom ASICs (Application-Specific Integrated Circuits)
using open-source tools and affordable processes. The project was managed by Matt Venn and
supported by Efabless, utilizing the Skywater 130nm open source PDK (Process Design Kit)
[163].

Participants in the Tiny Tapeout project could create their designs using Wokwi, a graphical editor
[113], or hardware description languages (HDL) such as Verilog, Amaranth, and Chisel. This
flexibility allowed for a wide range of design approaches, from visual schematics to code-based
designs.

The design has compact constrains; indeed each submission is required to fit within a 150 x
170 um area, accommodating approximately 1,000 standard cells. This constraint encourages
efficient and innovative designs. Moreover, to manage multiple designs on a single chip, Tiny
Tapeout employs a scan chain method. This approach allowed each design to be accessed
sequentially, facilitating testing and integration. The project fosters a collaborative environment,
with participants sharing their designs and experiences.

Tiny Tapeout 02 (TT02) [164] was launched on November 9, 2022, and represented the second
round of the Tiny Tapeout project, following the success of the initial run (Figure 3.14).

The easier way to communicate with the Tiny Tapeout board is to manually insert the number
of the project to which you are referring and the values of the bits in input. In Figure 3.14, on
the left is possible to read the field "Input” and "Select Project”, and in correspondence to these
labels there are the switches to set these values. The value of the output can be read from the
LED on the right of the board: indeed, each segment of the LED is turned on if the value of the
correspondent bit is one, turned off if it is zero. See Section 3.4.2 for more information about how
we set the board up for our acquisitions.

For TTO2 a total of 165 projects were submitted, ranging from simple logic circuits to complex sys-
tems like RISC-V processors and programmable sound generators. The designs included both
digital and analog components, reflecting the versatility of the platform. The whole project has
been developed with the idea to be completely open source, and all the projects implemented
in it can be found in the chip design repository [51]. On the project’s website [164] is possible to
find the Tiny Tapeout 02 Datasheet, with the description of all the implemented design and the
full Graphic Data Stream (GDS) of the board (Figure 3.15).

ORSHIN D3.3 PU — public Page 64 of 139

'é‘ ORSHIN

D3.3 - Models for formal verification

Figure 3.14: Photo of our Tiny Tapeout 02 board.

Figure 3.15: Full GDS for TT02, from the TT02 datasheet.

ORSHIN D3.3 PU — public Page 65 of 139

W ORSHIN

D3.3 - Models for formal verification

For the project TT02, SEC submitted three designs, called chiDOM, chi2shares and chi3shares.
They are simplified versions of the application of three different countermeasures to the nonlinear
function x of Keccak [29, 77, 31]. Function y (not protected) is applied each time on a subset of
three bits of the Keccak row (composed of five bits). The function is described through the follow
equation:

y1 = x(x1, 2, x3) = 1 + (not(xs) - 3) (3.26)

where + is the xor operation and - is the and logic operation.

chi2shares and GDS

The function in Equation 3.26 is not protected against side channel attacks. As a countermeasure,
it is possible to apply the two secret’s sharing threshold implementation scheme. This means that
each bit x in the Keccak row is split into two shares z° and z!, such that x = 2° + z'. Then
Equation 3.26 becomes:

yi =) + (not(x) - w5 + 3 - a3)

yi = o1 + (not(x3) - 25 + x5 - 73)

(3.27)

However, this sharing does not respect all the conditions listed in the definition of the Threshold
Implementation scheme [128]; in particular, it does not respect the non completeness property.
For that, to achieve independence from native variables, the order in which the operations are
executed is important. If the expressions are evaluated from left to right, it can be shown that all
intermediate variables are independent of the native variables. Then, although in software it is
possible to provide provable resistance against side channel attacks, not always this goal can be
reached in hardware. Indeed, signal propagation in circuit can not always be predictable and the
order in which the operations are executed cannot always be monitored.

For the TT02 project, SEC submitted the design shown in Figure 3.16 a; it is the design of the
first expression in Equation 3.27. In particular, our design was submitted through the Wokwi tool
[3], and the design is shown in Figure 3.16 b. Note that we added some latches to the design
with the scope to slow down some signals with respect to others, to simulate a case in which a
leakage of the sensitive value x3 could occur.

X30
X20 ——{>W*
X31 —
0
X0 M
(a) Scheme of the function x with two shares. (b) Scheme of the function x with two shares.

Figure 3.16: Schemes of x function with Tl 2 shares countermeasure.

GDS file We analysed the GDS file of the chi2shares design, and in Figure 3.19 is shown the
circuit describing what has been synthetized on the TT02 chip. We noted that many operations
have been replaced by a unique multiplexer, and all the latches have been removed. This level
of optimization was unexpected, as the toolchain did not indicate during the submission phase
that such optimizations would be applied. Our expectation was to see the design implemented
exactly as it was modeled in Wokwi.

ORSHIN D3.3 PU — public Page 66 of 139

D3.3 - Models for formal verification * ORSHIN

Figure 3.17: Scheme of the function x with two shares from GDS file.

chi3shares and GDS

To respect all the conditions of the Threshold Implementation scheme, for x we need to split all
the sensitive variables into three shares. The equations of function x with three shares are the
followed:

y) =] +not(xy) - w3+ wy - 23 + 5 - T3
y; = x7 +not(x3) - 23 + 13 - 1§ + 29 - 23 (3.28)
yi =@ + not(xy) - 3 + 25 - w3 + 25 - 75
For the TTO02 project, SEC submitted the design shown in Figure 3.18 a; it is the design of two

expressions in Equation 3.28. In particular, our design was submitted through the Wokwi tool [2],
and the design is shown in Figure 3.18 b.

(a) Scheme of the function x with three shares. (b) Scheme of the function x with three shares.

Figure 3.18: Schemes of x function with Tl 3 shares countermeasure.

GDS file We analysed the GDS file of chi3shares design, and in Figure is shown the circuit
describing what has been synthetized on the TT02 chi. We noted that two multiplexers have been
added, which replace some operations. As for the previous gadget, this level of optimization was
unexpected, as the toolchain did not indicate during the submission phase that such optimizations
would be applied. Our expectation was to see the design implemented exactly as it was modeled
in Wokwi.

ORSHIN D3.3 PU — public Page 67 of 139

W ORSHIN

D3.3 - Models for formal verification

o
x3°
2 8

Figure 3.19: Scheme of the function y with three shares from GDS file.

chiDOM and GDS

Another gadget that can be used as a countermeasure against side-channel attack is the Domain
Oriented Masking scheme (DOM) [76]. In this case, the sensitive variables are split into two
shares, and a register is added to store shares coming from different domains. The equation of
x function with DOM is the following:

0) 0 .1
Y =) Ty + (1] - Ty + 2]
1
= I

3.29
yt x-x§+[xi~ajg+2] ()

where z is a random bit and [] means that the values in the brackets are stored in the register.
To TTO2 project, SEC submitted the design shown in Figure 3.20 a; it is the design of the expres-
sions in Equation 3.29. In particular, our design was submitted through the Wokwi tool [1], and
the design is shown in Figure 3.20 b.

(a) Scheme of the function x with DOM [77]. (b) Scheme of the function x with DOM.

Figure 3.20: Schemes of x function with DOM countermeasure.

GDS file We analysed the GDS file of chiDOM design, and in Figure 3.21 is shown the circuit
describing what has been synthetized on the TT02 chip. In addition, in this case, the sinthetized
version of the circuit does not correspond perfectly to the Wokwi version, because of the opti-
mizations during the synthetization phase. As for the previous gadgets, this level of optimization

ORSHIN D3.3 PU — public Page 68 of 139

W ORSHIN

D3.3 - Models for formal verification

was unexpected, as the toolchain did not indicate during the submission phase that such opti-
mizations would be applied. Our expectation was to see the design implemented exactly as it
was modeled in Wokwi.

Figure 3.21: Scheme of the function x with DOM from GDS file.

3.4.2 Acquisition setup

We received the board of Tiny Tapeout 02 in March 2024. Our aim was to verify the gadgets
designed in the board via power analysis acquisition. The setup for the acquisition of the traces
from the Tiny Tapeout board is shown in Figure 3.22.

Control board Serial
based on ESP32

Tiny Tapeout

GND

2.
%
¢ Power

consumption

/0

LU
LI

Power traces

PC

Oscilloscope

(a) Scheme of the setup. [77]. (b) Photo of the setup in our lab.

Figure 3.22: Setup of the tools for the power traces acquisition.

The Tiny Tapeout board, as previously discussed in Sec.3.4.1, can be manually triggered using
the onboard switches, which allow the user to select inputs and the project number. In addition
to this manual mode, the board also supports serial communication, enabling a more flexible and
automated method of interaction. For this purpose, we connected an ESP32 microcontroller to
the Tiny Tapeout board via a USB interface. The ESP32 acts as an intermediary, sending input
signals to the Tiny Tapeout and reading its outputs over the serial connection. This configuration
enables the control of the board, facilitating repeated and precise experiments.

To analyze the power consumption of the board under various input conditions, we used a Tele-
dyne LeCroy WaveSurfer 3000 series oscilloscope [87]. The oscilloscope probe was connected
across two parallel resistors of 47¢) each, which are inserted into the power supply line to the

ORSHIN D3.3 PU — public Page 69 of 139

D3.3 - Models for formal verification * ORSHIN

Tiny Tapeout board. This setup allows for accurate measurement of the voltage drop across the
resistors, from which the current (and hence the power consumption) can be inferred. A host
PC orchestrates the entire process: it sends input stimuli to the ESP32, which forwards them
to the Tiny Tapeout board, and simultaneously captures output responses. Additionally, the PC
interfaces with the oscilloscope to record the power traces corresponding to each test scenario.
The trigger is generated by the ESP32, so it is unclear when the operations are executed in Tiny
Tapeout w.r.t. the trigger. This is why we performed an analysis of the timing of changes observed
in the traces.

How to read the figures

In the following sections, we present a series of figures that illustrate the behavior of the power
traces acquired using the oscilloscope during our experiments. These visualizations help provide
insight into the power consumption patterns observed under various conditions.

All the traces that are compared have been acquired using the same oscilloscope settings and
scale, ensuring that comparisons between them are consistent and meaningful. In each figure:

» The x-axis represents the sample index, corresponding to specific points in time during the
acquisition process.

» The y-axis displays a value proportional to the voltage levels captured by the oscilloscope,
which reflects the instantaneous power consumption of the device under test.

3.4.3 Acquisitions with the LED connected
Preliminary experiments

A primary consideration to keep in mind is that each power trace depends not only on the cur-
rent input state but also on the previous input state. With this consideration in mind, our initial
experiments were conducted under the following conditions.

1. A set of traces acquired with all the current and previous input bits set to zeros (in the next
sections called set 1).

2. A set of traces acquired with all the current input bits set to ones, while the previous input
bits were zeros (in the next sections called set 2).

3. A set of traces acquired with the current input bits set an half to zeros and an half to ones,
while the previous input bits were zeros (in the next sections called set 3).

4. A set of traces acquired with all the current and previous input bits set to random values (in
the next sections called set 4).

We decided to work on these sets of traces to understand how much the power traces depend
on the Hamming distance between the previous and current states.

We performed this analysis on all the three gadgets we designed on the Tiny Tapeout. For each
gadget, the first analysis is a Simple power analysis (SPA). This means that we tried to visually
inspect some traces or use simple pattern-matching techniques to infer what the device is doing
at different times.

The second step we performed for each gadget was to analyse the means of the traces in the
four sets listed above.

ORSHIN D3.3 PU — public Page 70 of 139

W ORSHIN

D3.3 - Models for formal verification

For each set, we analyzed 1000 traces. All the traces were acquired at bandwidth of 200 Mhz
and with a sample rate of 250 kilo samples per second, with a total of 50k samples per trace.
We report the results for all the gadget in the following sections.

chi2shares

The first gadget that we analysed was y protected with two shares (Sec. 3.4.1).
The first analysis done is an inspection of the traces, as they are. Then in Figure 3.23 two traces
are shown:

* In pink there is a trace acquired when the current input bits are set to ones, while the
previous input bits were set to zeros;

* In brown there is a trace acquired when the current input bits are set to zeros, while the
previous input bits were set to ones.

In Figure 3.23, the two graphs (pink and brown) alternate their voltage transitions. Directly from
this very simple analysis we can distinguish almost clearly the two traces, and then from the
traces we can understand which inputs generated them.

But not only: in fact, in Figure 3.24 we report the study of the means of the traces acquired in the
four different situations previously described.

1. In blue the mean of the traces in the set all the current and previous input bits set to zeros.
« Input bits are [z1, 29, 23, 29] = [0, 0, 0, 0] and the output is y; = 0.

2. In orange the mean of the traces in the set all the current input bits set to ones, while the
previous input bits were zeros.

« Input bits are [z3, 29, 23, 29] = [1,1, 1, 1] and the output is y; = 0.

3. In green the mean of the traces in the set the current input bits set an half to zeros and an
half to ones, while the previous input bits were zeros.

« Input bits are [z1, 29, 29, 29] = [1,1, 0, 0] and the output is y; = 1.

4. In red the mean of the traces in the set all the current and previous input bits set to random
values.

From these figures we note that:

* Means of traces in set 1 and in set 4 have similar behaviors, the only visible difference is
the mean voltage measured, due to the different input and output values (for set 1 they are
fixed to all bits zeros, in set 4 they vary).

+ Close to the start of the operations both means of the traces in sets 2 and 3 have a gap from
the voltage value before and after the start of the operations. The gap in set 2 is greater,
almost two times w.r.t. the mean of traces in set 3 (more analysis in subsection Reasonings
on the results with LED connected).

ORSHIN D3.3 PU — public Page 71 of 139

D3.3 - Models for formal verification * ORSHIN

SPA with two traces

I t t t t |
0 10000 20000 30000 40000 50000
Number of samples

Figure 3.23: Simple Power Analysis for x with two shares.

Chi 2 shares Chi 2 shares
20
15 I 15
10 4 10
5 5
N >
04 0+ /M””
-5 -5
-10 4 -10
-15 ——t —t
0 10000 20000 30000 40000 50000 4900 4950 5000 5050 5100
Number of samples Number of samples
(a) (b)

Figure 3.24: Means of the traces in four different sets, with different bits in inputs to the x gadget with two shares.
Whole graph in (a) and a zoom around the start of the operations in (b).

chi3shares

Then we analysed the x protected with three shares (Sec. 3.4.1).

In this case as well, the SPA is the initial analysis performed. In Figure 3.25 two traces (pink and
brown) are shown that represent two opposite input bits transitions, as previously described for
chi2shares. As for x with two shares, also in this case we can clearly distinguish the two traces,
and then from the traces we can understand which inputs generated them.

In Figure 3.26 we report the study of the means of the traces acquired in the usual four different
situations.

ORSHIN D3.3 PU — public Page 72 of 139

D3.3 - Models for formal verification * ORSHIN

SPA with two traces
100

t t t t |
0 10000 20000 30000 40000 50000
Number of samples

Figure 3.25: Simple Power Analysis for x with three shares.

1. In blue the mean of the traces in the set all the current and previous input bits set to zeros.

« Inputbits are [29, z, 22 2 22 22 29, 29 = [0,0,0,0,0,0,0,0] and the output is [y;, 3| =
[0,0].

2. In orange the mean of the traces in the set all the current input bits set to ones, while the
previous input bits were zeros.

* Inputbits are [29, z}, 23 2 22 2% 29,29 = [1,1,1,1,1,1, 1, 1] and the output is [y;, y3] =
[1,1].

3. In green the mean of the traces in the set the current input bits set an half to zeros and an
half to ones, while the previous input bits were zeros.

* Inputbits are [z, z}, 23,), 22 2% 29,29 = [1,1,1,0,0,0,0, 0] and the output is [y;, %] =
[0, 1].

4. In red the mean of the traces in the set all the current and previous input bits set to random
values.

From these figures we note that the behavior of the means is similar to that described for chi2shares.
Also for this gadget, close to the start of the operations, both the means of the traces in sets 2
and 3 have a gap, but in this case the gap in set 3 is greater, almost two times w.r.t. the mean of
traces in set 2 (more analysis in subsection Reasonings on the results with LED connected).

chiDOM

Then we analysed the x protected with The DOM gadget (Sec. 3.4.1).

In this case as well, the SPA is the initial analysis performed. In Figure 3.27 two traces (pink and
brown) are shown that represent two opposite input bits transitions, as previously described for
the other two gadgets. Also in this case we can clearly distinguish the two traces, and then from
the traces we can understand which inputs generated them.

ORSHIN D3.3 PU — public Page 73 of 139

W ORSHIN

D3.3 - Models for formal verification

Chi 3 sahres Chi 3 sahres

80 80
60 60 4
40 4 40 4

20 20 |

=20 -20 — \/

—tt——tr——T——t—T—r—— -4 4+t
0 10000 20000 30000 40000 50000 4900 4950 5000 5050 5100
Number of samples Number of samples

(a) (b)

-40

Figure 3.26: Means of the traces in four different sets, with different bits in inputs to the y gadget with three shares.
Whole graph in (a) and a zoom around the start of the operations in (b).

In Figure 3.28 we report the study of the means of the traces acquired in the usual four different
situations.

1. In blue the mean of the traces in the set all the current and previous input bits set to zeros.

« Input bits are [z, 29, 23, z, 21, 2}, x1] = [0,0,0,0,0,0,0] and the output is [y°,y'] =
[0,0].

2. In orange the mean of the traces in the set all the current input bits set to ones, while the
previous input bits were zeros.

« Input bits are (29,29, 23, z, 23, 23, #1] = [1,1,1,1,1,1,1] and the output is [y°,y'] =
[0, 1].

3. In green the mean of the traces in the set the current input bits set an half to zeros and an
half to ones, while the previous input bits were zeros.

« Input bits are [29, 23, 29, 2, zi, x} z1] = [1,1,1,0,0,0,0] and the output is [¢°,y'] =
[0, 1].

4. In red the mean of the traces in the set all the current and previous input bits set to random
values.

From these figures, we note that the behavior of the means is similar to that described chi3shares
(more analysis in subsection Reasonings on the results with LED connected).
Reasonings on the results with LED connected

The first noticeable aspect is the differing gaps in the mean graphs shown in Figures 3.24 a, 3.26
a, and 3.28 a. As previously discussed:

ORSHIN D3.3 PU — public Page 74 of 139

' ORSHIN

D3.3 - Models for formal verification

SPA with 2 traces

t t t t |
0 10000 20000 30000 40000 50000
Number of samples

Figure 3.27: Simple Power Analysis for xy with DOM countermeasure.

Chi DOM Chi DOM
40
30 30 4
20 20
10 4 10
N >
0 04
-10 -10
_20 -20
—t —t—
0 10000 20000 30000 40000 50000 4900 4950 5000 5050 5100
Number of samples Number of samples
(a) (b)

Figure 3.28: Means of the traces in four different sets, with different bits in inputs to the x gadget with DOM. Whole
graph in (a) and a zoom around the start of the operations in (b).

» For all gadgets, the mean traces for sets 1 and 4 exhibit a similar linear behavior across the
sample range.

* Instead, for sets 2 and 3, all gadgets show a clear gap in the mean power consumption
before and after the start of the operations.

But it is interesting to analyse the second case, taking into account the inputs/outputs for each
gadget and set of traces:

» For x with two shares, with half of the input bits value at one and half at zero (graph 3,

ORSHIN D3.3 PU — public Page 75 of 139

W ORSHIN

D3.3 - Models for formal verification

green graph), the power consumption gap is higher than in the case of all the input bits at
one (graph 2, orange graph).

— As discussed before, when the set is 2 the input bits are [23, 29, 23, 2] = [1,1,0,0]
1,1,1,1

and the output is y; = 1. When the set is 3 the input bits are [z}, 29, 23, 2% = [1,1,1,1]
and the output is yi = 0.

« For x with three shares, with half of the input bits value at one and half at zero (graph 3,
green graph), the power consumption gap is lower than in the case of all the input bits at
one (graph 2, orange graph).

— As discussed before, when the set is 2 the input bits are [x9, z3, 22 2}, 23 23, 29, 2] =

[1,1,1,0,0,0,0,0] and the output is [y, y?] = [0,1]. When the set is 3 the input bits
are [29,), 22 2k 23, 2% 29, 29 =[1,1,1,1,1,1,1, 1] and the output is [y, %] = [1, 1].

» For x with the DOM gadget, with a half of the input bits value at one and a half at zero (set
3, green graph), the power consumption gap is lower than in the case of all the input bits at
ones (set 2, orange graph).

— As discussed before, when the set is 2 the input bits are [z9, 29, 23, 2, 21, 3, z]] =
[1,1,1,0,0,0,0] and the output is [yi, ¥?] = [0, 1]. When the set is 3 the input bits are
(29,29, 29, 2,2} 2} 21] = [1,1,1,1,1,1,1] and the output is [y°, y*] = [0, 1].

Based on the analysis of the previous results, we can infer that the gaps observed in the mean
traces for sets 2 and 3 are strongly influenced by the Hamming weight of the outputs and, to a
lesser extent, by the Hamming weight of the inputs. This can be the motivation for which for x
with two shares the difference between the gap in set 2 and the gap in set 3 is greater than the
difference for x with DOM.

Since we observed that the power consumption gaps appear to be strongly influenced by the
Hamming weight of the outputs, and considering that in the Tiny Tapeout setup the output values
control the LED segments on the board, we decided to cut the tracks connecting the LED. This
prevents the LED from switching on in response to changes in the output.

3.4.4 Acquisitions with the LED disconnected
Preliminary experiments

After cutting the traces on the board that powered the LED, we repeated all the preliminary tests
previously conducted with the LED actives.

As in the initial experiments, we ran tests on the four sets of power traces, each corresponding to
a different combination of previous and current input states. This analysis was carried out for all
three gadgets we implemented on the Tiny Tapeout chip. For each gadget, we performed both
Simple Power Analysis (SPA) and an examination of the mean values of the acquired traces.

For each set, we analyzed 1.000 traces. All the traces were acquired at bandwidth of 200 mega
Hertz and with a sample rate of 250 kilo samples per second, with a total of 50k samples per
trace.

chi2shares

As in Section 3.4.3, we started with the analysis of the gadget x protected with 2 shares TI.

ORSHIN D3.3 PU — public Page 76 of 139

D3.3 - Models for formal verification * ORSHIN

SPA with two traces, without LED
60

40

t t t t |
0 10000 20000 30000 40000 50000
Number of samples

Figure 3.29: Simple Power Analysis for x with two shares. Situation with LED disconnected.

The first analysis done is an inspection of the traces, as they are. Then in Figure 3.29 two
traces (pink and brown) are shown that represent two opposite input bits transitions, as previously
described in section 3.4.3. Also in this case, similarly as for the case with LED connected, it is
possible to distinguish almost clearly the two traces, and then from the traces we can understand
which inputs generated them.

As in Section 3.4.3, we also analyzed the means of the traces acquired in the four different sets,
as shown in Figure 3.30. The description of the sets and the inputs/outputs for each set is the
same as in section 3.4.3. From these figures, we note that the behavior of the means is similar to
that described in section 3.4.3, with the difference that the gap of the mean of the traces in set 3
is greater w.r.t. the mean of traces in set 2 (see subsection Reasonings on the results with LED
disconnected for a deeper analysis).

chi3shares

Then we analysed the x protected with three shares.

In this case as well, the SPA is the initial analysis performed. Then in Figure 3.31 two traces (pink
and brown) are shown that represent two opposite input bits transitions, as previously described
in section 3.4.3. Also in this case, similarly as for the case with LED connected, it is possible
to distinguish almost clearly the two traces, and then from the traces we can understand which
inputs generated them.

As in Section 3.4.3, we also analyzed the means of the traces acquired in the four different sets,
as shown in Figure 3.32. The description of the sets and the inputs/outputs for each set is the
same as in section 3.4.3. From these figures, we note that the behavior of the means is similar to
that described in section 3.4.3 (see subsection Reasonings on the results with LED disconnected
for a deeper analysis).

chiDOM

Then we analysed the x protected with The DOM gadget.

ORSHIN D3.3 PU — public Page 77 of 139

W ORSHIN

D3.3 - Models for formal verification

Chi 2 shares, without LED Chi 2 shares, without LED
0=

-35 35

—40

B e T e R] —_—
0 10000 20000 30000 40000 50000 4900 4950 5000 5050 5100

Number of samples Number of samples

(a) (b)

Figure 3.30: Means of the traces in four different sets, with different bits in inputs to the x gadget with two shares.
Whole graph in (a) and a zoom around the start of the operations in (b). Situation with LED disconnected.

In this case as well, the SPA is the initial analysis performed. Then in Figure 3.33 two traces (pink
and brown) are shown that represent two opposite input bits transitions, as previously described
in section 3.4.3. Also in this case, similarly as for the case with LED connected, it is possible
to distinguish almost clearly the two traces, and then from the traces we can understand which
inputs generated them.

As in Section 3.4.3, we also analyzed the means of the traces acquired in the four different sets,
as shown in Figure 3.34. The description of the sets and the inputs/outputs for each set is the
same as in section 3.4.3. From these figures, we note that the behavior of the means is similar to
that described in section 3.4.3 (see subsection Reasonings on the results with LED disconnected
for a deeper analysis).

Reasonings on the results with LED disconnected

The first observation is that, although the gaps in the mean traces for sets 2 and 3 are smaller
after disconnecting the LED, they are still noticeable. This confirms that while power consumption
is primarily influenced by the Hamming weight of the output, it is also affected by the Hamming
weight of the inputs, albeit to a lesser extent.

The most significant result from this analysis emerges when examining the gadget x with two
shares. With the LED active, the gap in the mean trace for set 3 is nearly twice as large as that
for set 2. However, after disabling the LED, this relationship is reversed. This change can be
explained by considering the Hamming weights in each set:

* In set 2, the output has a Hamming weight of 0, while the input state has a Hamming weight
of 4.

* In set 3, the output has a Hamming weight of 1, and the input state has a Hamming weight
of 2.

ORSHIN D3.3 PU — public Page 78 of 139

B ORSHIN

D3.3 - Models for formal verification

SPA with two traces, without LED

50

-100

t t t T t t
0 10000 20000 30000 40000 50000
Samples

Figure 3.31: Simple Power Analysis for x with three shares. Situation with LED disconnected.

Chi 3 shares, without LED Chi 3 shares, without LED
60 60 4
40 4 40 4
20 20

N >
0 0
-20 4 -20
-40 -40 1
-0 +—f+————"——F+—"————"— “©0 t+—+—"""""""+——"—"——"—"—F+——"—"——
0 10000 20000 30000 40000 50000 4900 4950 5000 5050 5100
Number of samples Number of samples
(a) (b)

Figure 3.32: Means of the traces in four different sets, with different bits in inputs to the x gadget with three shares.
Whole graph in (a) and a zoom around the start of the operations in (b). Situation with LED disconnected.

This analysis reinforces the conclusion that the power traces are predominantly influenced by
the Hamming weight of the output, but there is also a secondary dependence on the Hamming
weight of the input.

Dependencies from the input

Based on the results discussed in Section 3.4.4, we decided to investigate more thoroughly how
the power traces depend on both the Hamming weight and the Hamming distance of the input
states of the gadgets. Our focus in this deeper analysis is specifically on the x gadget with two

ORSHIN D3.3 PU — public Page 79 of 139

B ORSHIN

D3.3 - Models for formal verification

SPA with two traces, without LED

50

-50

3

A 0l

-100

t t t T t t
0 10000 20000 30000 40000 50000
Samples

Figure 3.33: Simple Power Analysis for y with DOM countermeasure. Situation with LED disconnected.

Chi with DOM, without LED Chi with DOM, without LED
40 40
20 20
0 0
> >
//_"WW
e
-20 201
-40 -40
B
t t t t 1 t t t 1
0 10000 20000 30000 40000 50000 4900 4950 5000 5050 5100
Number of samples Number of samples
(a) (b)

Figure 3.34: Means of the traces in four different sets, with different bits in inputs to the y gadget with DOM. Whole
graph in (a) and a zoom around the start of the operations in (b). Situation with LED disconnected.

shares.

The first step in this investigation was to analyze the influence of the Hamming weight of the input
state. To do this, we took a set of traces acquired using random inputs and grouped them into
five categories, based on the Hamming weight of the current input state (which consists of four
bits):

+ Hamming weight 0: 0000
* Hamming weight 1: 1000, 0100, 0010, 0001
* Hamming weight 2: 1100,0110,0011,1010,0101, 1001

ORSHIN D3.3 PU — public Page 80 of 139

W ORSHIN

D3.3 - Models for formal verification

t t t t t t
0 10000 20000 30000 40000 50000
Samples

Figure 3.35: Mean of the traces with random inputs divided into five sets, depending on the Hamming weight of the
input state. Blue: Hamming weight equal to 0. Orange: Hamming weight equal to 1. Green: Hamming weight equal
to 2. Red: Hamming weight equal to 3. Purple: Hamming weight equal to 4. Situation with LED disconnected.

« Hamming weight 3: 1110,0111, 1011, 1101

« Hamming weight 4: 1111

Figure 3.35 shows the mean power trace for each of these five sets. It is clearly visible that the
mean traces diverge and become distinguishable after the start of the operation, due to the fact
that all traces within a set share the same Hamming weight for the current input. In contrast,
before the operations begin, the mean traces are nearly identical across all sets. This is because
the previous input state is random,even within each set, resulting in an averaged-out effect prior
to the start of the operations.

Finally, we extended the analysis to include the Hamming distance. For the input states, this
involved dividing the traces into five sets based on the Hamming distance between the current
and previous input states:

« Hamming distance 0: previous input was the same as the current one
— For example, previous input is 0000 and current input is 0000

« Hamming distance 1: current input differs from the previous one of one bit
— For example, previous input is 0000 and current input is 1000

« Hamming distance 2: current input differs from the previous one of two bits
— For example, previous input is 0000 and current input is 1100

« Hamming distance 3: current input differs from the previous one of three bits
— For example, previous input is 0000 and current input is 1110

« Hamming distance 1: current input differs from the previous one of all the bits

ORSHIN D3.3 PU — public Page 81 of 139

W ORSHIN

D3.3 - Models for formal verification

f t t t t t
0 10000 20000 30000 40000 50000
Samples

Figure 3.36: Mean of the traces with random inputs divided into five sets, depending on the Hamming distance
between the current and previous inputs. Blue: Hamming distance equal to 0. Orange: Hamming distance equal to
1. Green: Hamming distance equal to 2. Red: Hamming distance equal to 3. Purple: Hamming distance equal to 4.
Situation with LED disconnected.

— For example, previous input is 0000 and current input is 1111

In this case, as shown in Figure 3.36, the mean power traces are not clearly distinguishable. This
suggests that the power consumption does not significantly depend on the Hamming distance
between the current and previous input states.

Deeper analysis of the gadgets with more acquired traces

As a final step in our analysis, we collected 15.000 power traces for each gadget using random
input values. All the traces were acquired at bandwidth of 200 mega Hertz and with a sample
rate of 20 mega samples per second, with a total of 100k samples per trace.

For each gadget, we conducted two types of analysis:

1. Investigated whether the power consumption traces show a dependency on the Hamming
weight of the input states.

2. Defined a selection function and assessed whether side-channel analysis techniques could
be used to extract information about a secret value (see the corresponding sections for
detailed explanations).

chi2sahres

As in the previous analyses, the first gadget examined is the y with two shares in a Threshold
Implementation (Tl) scheme.

Dependencies from the input We began by investigating the correlation between the Ham-
ming weight of the input states and the corresponding power traces, as shown in Figure 3.37.
Also with 15.000 acquisitions, the results remain consistent with those observed in Figure 3.35,
confirming a clear relationship between input Hamming weight and power consumption.

ORSHIN D3.3 PU — public Page 82 of 139

W ORSHIN

D3.3 - Models for formal verification

Means of the traces split into sets, in accordance with the HW of the input

—45

-50 -

>
—60 -
—65 <
N4+t
0.000e+0 2.000e+4 4.000e+4 6.000e+4 8.000e+4 1.000e+5
Number of samples
(a) Graph on all the samples [0,100.000].
Means of the traces split into sets, in accordance with the HW of the input Means of the traces split into sets, in accordance with the HW of the input
_45 45
-50 -50
-55 -55
N >
~60

~60

-65 —65

-70 — — — — | -70 T — T+ ——
19940 19960 19980 20000 20020 20040 20060 19980 19985 19990 19995 20000 20005 20010
Number of samples Number of samples
(b) Zoom in the interval of samples [19.940,20.060] (c) Zoom in the interval of samples [19.980,20.010]

Figure 3.37: Mean of the traces with random inputs divided into five sets, depending on the Hamming weight between
the current and previous inputs. Blue: Hamming weight equal to 0. Orange: Hamming weight equal to 1. Green:
Hamming weight equal to 2. Red: Hamming weight equal to 3. Purple: Hamming v equal to 4. Situation with LED
disconnected. 15.000 traces acquired.

Difference of mean Next, we attempted to extract information about a secret value from the
acquired power traces. The first step was to define a suitable selection function. Recalling the
expression for our y gadget with two shares:

y(l) = x(l) + (not(xg) . xé + xg . mg) (3.30)

ORSHIN D3.3 PU — public Page 83 of 139

W ORSHIN

D3.3 - Models for formal verification

From this equation, we observe that:

« One share of x; appears: z{
« One share of z, is used: z9

- Both shares of z3 are present: x3 and x}

Given this, we chose as a selection function the XOR of the two shares of x3, aiming to recover
some information about the secret value x5:

g(5, 23) = 25 + 23
We then divided the acquired traces into two sets based on the value of this selection function:
« My: traces for which g(z%, 1) = 0
* M;: traces for which g(z9,z3) = 1

To assess potential leakage, we computed the Difference of Means (DoM) by subtracting the
sample-wise mean of the traces in M; from those in M,.

In Figure 3.38, the mean trace for M, is shown in blue, the mean for M, in orange, and the DoM
in green. While the overall DoM remains close to zero for most samples, a closer look reveals
that the mean traces for M, and M; are consistently separated (figure 3.38 b). Additionally, we
observe an high peak in these curves, preceded by four smaller, regular patterns. The higher
peak likely reflects the cryptographic computation, since they are close to the trigger; we didn’t
analyse the smaller peaks before, since we focused on what happens after the trigger.

chi3sahres

The second gadget examined is the x with three shares in a Threshold Implementation (TI)
scheme.

Dependencies from the input We began by investigating the correlation between the Ham-
ming weight of the input states and the corresponding power traces, as shown in Figure 3.39.
Similarly to the gadget with two shares, also for this gadget there is a clear relationship between
input Hamming weight and power consumption.

Difference of mean Next, we attempted to extract information about a secret value from the
acquired power traces. The first step was to define a suitable selection function. Recalling the
expression for our y gadget with three shares:

1 2 2 2 2 0 0 .2
=x7+not(z;) x5+ x5 Ta+TH T
N 1 (2) 3 2" L3 2 (3) (3.31)

y? =2+ not(2Y) - 23+ 2y - 23 + 25 - 3
From this equation, we observe that:

« Two shares of z; appears: 2? and z?

« Three shares of x, is used: 9, z3 and x3

ORSHIN D3.3 PU — public Page 84 of 139

W ORSHIN

D3.3 - Models for formal verification

Chi 2 shares, Difference of means
Selection function x3_0 xor x3_1

0 S
~10
—20 4
> 30 4
~40
~50
60
—t— Tt
0.000e+0 2.000e+4 4.000e+4 6.000e+4 8.000e+4 1.000e+5
Number of samples
(a)
Chi 2 shares, Difference of means Chi 2 shares, Difference of means
Selection function x3_0 xor x3_1 Selection function x3_0 xor x3_1
_48 2
] } 151
-50 ‘
14
_52
1 \ 0.5
> 54 > 0+
] -0.5
_56
] \]
_58 JA IR RARLE AR mﬁf\jl R
I \ |
1 \‘; U ‘ | -1.5
] |
-0 +—+——F—————f———— 7 -2 +— — t ——
19900 19950 20000 20050 20100 19900 19950 20000 20050 20100
Number of samples Number of samples
(b) (©)

Figure 3.38: Selection function g(z9,z3) = z§ + zi. In blue, the mean of the traces in My. In orange, the mean
of the traces in M;. In green, the Difference of mean M; — M. Situation with LED disconnected. 15.000 traces
acquired.

- Three shares of x3 is used: z3, z3 and z3

Given this, we chose two selection functions, aiming to recover some information about the secret
values =5 and z3:

fz(xg,q;;,xz) = xg + x% + x%

3.32
f3(2l, 23, 23) = 23 + 23 + 22 (3.32)

We then divided the acquired traces into two sets based on the value of this selection function:

ORSHIN D3.3 PU — public Page 85 of 139

W ORSHIN

D3.3 - Models for formal verification

Means of the traces split into sets, in accordance with the HW of the input

0 -
-20 <
-40
>
60 'rlw .
-80
-100 +4—4——v+—-"-""r—t+—1T—"—"r—" Tt
0.000e+0 2.000e+4 4.000e+4 6.000e+4 8.000e+4 1.000e+5
Number of samples
(a) Graph on all the samples [0,100.000].
Means of the traces split into sets, in accordance with the HW of the input Means of the traces split into sets, in accordance with the HW of the input
0+ 0
-20 -20

-40 -40
> >
60 —60
—80 -80
BT e e e e A e e B B B e B e e e e R 004ttt T
19900 19920 19940 19960 19980 20000 20020 20040 19920 19925 19930 19935 19940 19945 19950 19955 19960
Number of samples Number of samples
(b) Zoom in the interval of samples [19.900,20.040] (c) Zoom in the interval of samples [19.920,19.960]

Figure 3.39: Mean of the traces with random inputs divided into nine sets, depending on the Hamming weight
between the current and previous inputs. Blue: Hamming weight equal to 0. Orange: Hamming weight equal to 1.
Green: Hamming weight equal to 2. Red: Hamming weight equal to 3. Purple: Hamming weight equal to 4. Brown:
Hamming weight equal to 5. Pink: Hamming weight equal to 6. Grey: Hamming weight equal to 7. Gold: Hamming
weight equal to 8. Situation with LED disconnected. 15.000 traces acquired.

+ Mj: traces for which is f; (20, 2}, 2?) =0

79

« M,: traces for which is f;(2, z},22) =1

fori =2, 3.

ORSHIN D3.3 PU — public Page 86 of 139

W ORSHIN

D3.3 - Models for formal verification

To assess potential leakage, we computed the Difference of Means (DoM) by subtracting the
sample-wise mean of the traces in M, from those in M,.

In Figures 3.40 and 3.41, the mean trace for M, is shown in blue, the mean for M, in orange, and
the DoM in green. While the overall DoM remains close to zero for most samples, a closer look
reveals that the mean traces for M, and M, are consistently separated. Additionally, we observe
an high peak in these curves, preceded by some smaller, regular patterns, as for the previous
gadget, and we reach the same conclusions. TAfter the grater peak, we can note that the means
of the traces do not go directly to zero, and this is a different behavior w.r.t. the case for x with
two shares, maybe due to the longer execution of the operations in y with three shares.

Chi 3 shares, Difference of means Chi 3 shares, Difference of means
Selection function x2_0 xor x2_1 xor x2_2 Selection function x2_0 xor x2_1 xor x2_2
’ ﬁ
| 54
-10 ‘
\
_20] -56 My
1 | /.ﬂ“// Oy
/ d
| |
4 ‘ r‘
_30 yi
>] > 58 o ‘ / \
] / Y
| \
60 - 1 [/ \'\
W / X
i '\Wﬂ\ ' \
-50 ‘ ‘ | ‘\‘y‘“ \
] 1/ \
] ™ _MMWW %
] | |
-60 |
J E— N S h
] \ | Wy
—t— Tttt %+ttt
0.000e+0 2.000e+4 4.000e+4 6.000e+4 8.000e+4 1.000e+5 19800 19900 20000 20100 20200 20300 20400
Number of samples Number of samples
(a) (b)
Chi 3 shares, Difference of means Chi 3 shares, Difference of means
Selection function x2_0 xor x2_1 xor x2_2 Selection function x2_0 xor x2_1 xor x2_2
52 — 3
] 2
-54 (I .
h =
] \ \‘
56 \
i ‘ | 04
[\ |
m |
> -58 ‘ [> -1
4 |
4 | | 1
J ‘ -2+
\]
-60 \ \/\“ i
] \ > J o]
] ‘ \ V\/.\,\J’\W b/\“ "\\j]
] ||]
od ||]
62 | il
] \ {]
| “ 4]
-4 4+—++F"+—"——F——"——"—F+——7—— s$4+—++——F"+—"—""+—"—"—"—71
19920 19940 19960 19980 20000 20020 19920 19940 19960 19980 20000 20020
Number of samples Number of samples
() (d)

Figure 3.40: Selection function fa (29, 3, 22) = 2§ + =1 + 22. In blue, the mean of the traces in M. In orange, the
mean of the traces in M;. In green, the Difference of mean M; — Mj. Situation with LED disconnected. 15.000
traces acquired.

ORSHIN D3.3 PU — public Page 87 of 139

D3.3 - Models for formal verification

W ORSHIN

Chi 3 shares, Difference of means
Selection function x3_0 xor x3_1 xor x3_2

Chi 3 shares, Difference of means
Selection function x3_0 xor x3_1 xor x3_2

0
T
] -54 4
~10
_20 4 -56
_30
> 1 > 58 4
_40
—60
_50
| 62 !
0] 1
|- — R ———
e e L s e e e e I m e e e e — -84 +———"—"—F+—"—"—T—T—f+— T+ T
0.000e+0 2.000e+4 4.000e+4 6.000e+4 8.000e+4 1.000e+5 19800 19900 20000 20100 20200 20300 20400
Number of samples Number of samples
(a) (b)
Chi 3 shares, Difference of means Chi 3 shares, Difference of means
Selection function x3_0 xor x3_1 xor x3_2 Selection function x3_0 xor x3_1 xor x3_2
] 2
_54 -
14
1 |
-56 |
] 0l
> -58 4 > -1+
] -2
_60 -
34
-62 4
]]
64 -5

t T T
19960 19980 20000

Number of samples

(©

t
19920 19940

1
20020

19920

t T T 1
19960 19980 20000 20020

Number of samples

(d)

t
19940

Figure 3.41: Selection function f3(x9, z3,23) = 2§ + 23 + 23. In blue, the mean of the traces in M. In orange, the
mean of the traces in M;. In green, the Difference of mean M; — M. Situation with LED disconnected. 15.000

traces acquired.

chiDOM

Last gadget examined is the x with DOM countermeasure.

Dependencies from the input We began by investigating the correlation between the Ham-
ming weight of the input states and the corresponding power traces, as shown in Figure 3.42.
Similarly to the other two gadgets, also for this gadget there is a clear relationship between input

Hamming weight and power consumption.

ORSHIN D3.3

PU — public

Page 88 of 139

W ORSHIN

D3.3 - Models for formal verification

Means of the traces split into sets, in accordance with the HW of the input Means of the traces split into sets, in accordance with the HW of the input

-20 —20

—40 f —40

-60 -60

-80 ‘ -80

—t——t———— T —t————t—————t Tt
0.000e+0 2.000e+4 4.000e+4 6.000e+4 8.000e+4 1.000e+5 19920 19940 19960 19980 20000 20020 20040
Number of samples Number of samples

(a) Graph on all the samples, i.e. in the interval [0,100.000] (b) Zoom in the interval of samples [19.920,20.040]

Figure 3.42: Mean of the traces with random inputs divided into nine sets, depending on the Hamming weight
between the current and previous inputs. Blue: Hamming weight equal to 0. Orange: Hamming weight equal to 1.
Green: Hamming weight equal to 2. Red: Hamming weight equal to 3. Purple: Hamming weight equal to 4. Brown:
Hamming weight equal to 5. Pink: Hamming weight equal to 6. Grey: Hamming weight equal to 7. Situation with
LED disconnected. 15.000 traces acquired.

Difference of mean Next, we attempted to extract information about a secret value from the
acquired power traces. The first step was to define a suitable selection function. Recalling the
expression for our x gadget with DOM countermeasure:

Yy’ =l -ay + [2] - x5+ 2]
1.1 .1 1 .0 (3.33)
Yy = m2+[x1 x2—|—z]

From this equation, we observe that:

- Two shares of z; appears: z¥ and z}

« Two shares of z, is used: =9 and x!

Given this, we chose two selection functions, aiming to recover some information about the secret
values x; and x5:

0 ,.1y _ ,.0 1
ek o
We then divided the acquired traces into two sets based on the value of this selection function:

« My: traces for which is h;(z?, z}) = 0

* M: traces for which is h;(z?, z}) = 1

fori =1,2.
To assess potential leakage, we computed the Difference of Means (DoM) by subtracting the
sample-wise mean of the traces in M; from those in M,.

ORSHIN D3.3 PU — public Page 89 of 139

W ORSHIN

D3.3 - Models for formal verification

In Figures 3.43 and 3.44, the mean trace for M, is shown in blue, the mean for M, in orange, and
the DoM in green. While the overall DoM remains close to zero for most samples, a closer look
reveals that the mean traces for M, and M, are consistently separated. Additionally, we observe
an high peak in these curves, preceded by some smaller, regular patterns as for the previous
gadgets, and we reach the same conclusions. Also in this case, as for the x with 3 shares, it
seems that the activities after the start of the operations are longer than for the y with two shares
TI.

However, in this case, the most interesting behavior can be read in figure 3.43. In fact, here the
mean of the traces in M, has a high negative peak around sample 19.950, which is completely
vice versa of the behavior of the mean of the traces in M;. This results in a very high peak in
the difference of means, which can be assumed to be a leakage of value x;. This is left to future
investigations.

3.4.5 Conclusions and Future works

Thanks to the open-source project Tiny Tapeout, we had the opportunity to study the behavior
of three cryptographic gadgets implemented in silicon: the x function with a 2-share threshold
implementation countermeasure, the x function with a 3-share threshold implementation coun-
termeasure, and the y function protected using a domain-oriented masking (DOM) scheme.

Our investigation highlighted some points:

» During the synthesis phase, certain design optimizations were automatically applied by the
toolchain. As a result, the implemented gadgets are functionally equivalent to the original
designs, but they differ in structure and internal behavior. Due to these changes, some of
the tests we had previously planned could not be applied directly.

* In both operating modes (i.e., with the on-board LED enabled or disabled), we observed
leakage of information related to secret values across all three gadget implementations.
Based on our observations, we can state the following:

— Due to the optimizations applied by the toolchain during synthesis, the designs of the
x function with two shares and with three shares were significantly altered. As a result,
theoretical inferences based on the original designs no longer hold.

— In contrast, the x function with DOM underwent far fewer modifications. The imple-
mented design closely resembles the one presented in [77] and illustrated in [1]. This
suggests that the leakage observed in the difference of means analysis in section 3.4.4
may indeed correspond to a sensitive value, making the results potentially meaningful
from a side-channel perspective.

However, as of the time of writing, we do not yet have a definitive interpretation of these
results.

* For this reason, further investigation is required. We plan to conduct additional testing and
analysis to better understand the implications of the observed leakage and to refine our
methodology for evaluating side-channel resistance in real-world silicon implementations.

ORSHIN D3.3 PU — public Page 90 of 139

D3.3 - Models for formal verification * ORSHIN

Chi with DOM, Difference of means
Seclection function x1_0 xor x1_1

20

>
_40
——— e e e e e e e e J
-60
—t— Tt
0.000e+0 2.000e+4 4.000e+4 6.000e+4 8.000e+4 1.000e+5
Number of samples
(a)
Chi with DOM, Difference of means Chi with DOM, Difference of means
Seclection function x1_0 xor x1_1 Seclection function x1_0 xor x1_1
A 14
-50 12
10
-55 - 8
1 ol Mwm\‘“\«_]
| \
] | . o]
o \mﬁ/ . N
WNW\W | “]
4 ' \. 4
-60 \\ 4]
| “‘V‘V\,W 4
2
1 Tt smmamnd g
0
65]
2
T t t t t t 1 T T t t t t T 1
19800 19900 20000 20100 20200 20300 20400 19800 19900 20000 20100 20200 20300 20400
Number of samples Number of samples
(b) (©)

Figure 3.43: Selection function h; (29, z}) = 2§ + 21. In blue, the mean of the traces in M. In orange, the mean
of the traces in M;. In green, the Difference of mean M; — M. Situation with LED disconnected. 15.000 traces
acquired.

3.5 Leakage assessment of some implementations of Ascon
with countermeasures

3.5.1 Introduction

In the context of side-channel attacks (SCAs), one of the most effective defense strategies in-
volves the implementation of countermeasures such as Domain-Oriented Masking (DOM) and
Threshold Implementations (Tl). These techniques aim to protect the intermediate values pro-

ORSHIN D3.3 PU — public Page 91 of 139

D3.3 - Models for formal verification * ORSHIN

Chi with DOM, Difference of means
Seclection function x2_0 xor x2_1

20

>
_40
-60
—t— Tt
0.000e+0 2.000e+4 4.000e+4 6.000e+4 8.000e+4 1.000e+5
Number of samples
(a)
Chi with DOM, Difference of means Chi with DOM, Difference of means
Seclection function x2_0 xor x2_1 Seclection function x2_0 xor x2_1
- 14
-50
12 -
10
-55 \ 8 .
\ R, 4
‘ S
\
I 67
by psnt Smdvmayos| | “\
> Shagdon i ‘\\\ . >
| S
[AN]
N 4
60
ot
2
04
65]
] 24
T t — T t T t T 1 T T t t T t t T 1
19800 19900 20000 20100 20200 20300 20400 19800 19900 20000 20100 20200 20300 20400
Number of samples Number of samples
(b) (©)

Figure 3.44: Selection function ho (29, 23) = 29 + 2. In blue, the mean of the traces in M. In orange, the mean
of the traces in M;. In green, the Difference of mean M; — M. Situation with LED disconnected. 15.000 traces
acquired.

cessed by cryptographic algorithms, thereby reducing the correlation between physical leakage
(e.g., power consumption) and sensitive data.

In this work, we focused on the analysis of three implementations of the lightweight cipher
Ascon:

+ a baseline version without any countermeasures,
« a version protected using the DOM scheme,

* one secured through threshold implementation.

ORSHIN D3.3 PU — public Page 92 of 139

D3.3 - Models for formal verification * ORSHIN

Figure 3.45: ChipWhisperer-Husky connected with a ribbon cable to the ChipWisperer CW313, on which is placed
the target board.

To carry out this analysis, we collected power traces using the ChipWhisperer Husky, an open-
source hardware platform developed by NewAE Technology specifically for side-channel analysis
and embedded hardware security research.

Our evaluation leveraged both classical and modern leakage assessment techniques. On one
hand, we used Test Vector Leakage Assessment (TVLA), a well-established statistical method
for detecting leakages. On the other hand, we employed Deep Learning-based Leakage Assess-
ment (DL-LA), a more recent and (maybe) powerful technique that leverages neural networks to
uncover subtle patterns in side-channel traces. By applying both methods, we aimed to compare
their detection capabilities and gain a better understanding of the strengths and limitations of
each approach in evaluating the security of masked implementations of Ascon.

Chipwhisperer-Husky

The ChipWhisperer-Husky is a compact, open-source hardware tool developed by NewAE Tech-
nology for side-channel power analysis and fault injection. It is designed to assist researchers
and security professionals in evaluating the robustness of embedded systems against attacks
such as Differential Power Analysis (DPA) and fault injection [85, 86].

The ChipWhisperer-Husky is a open-source tool. In fact, while not fully OSHW certified, the
FPGA logic, microcontroller firmware, and software are open source, promoting transparency
and customization.

More than that, the ChipWhisperer-Husky has high-speed sampling, it captures fine-grained
power traces essential for detailed analysis, thanks to a 12-bit ADC sampling at 200 MS/s. It also
offers voltage glitching with two crowbar sizes and clock glitching with sub-nanosecond resolu-
tion, enabling precise fault injection. It can stream data at over 20 MS/s, facilitating long-duration
captures and real-time analysis. It features a 20-pin header, additional data and clock lines, and
supports JTAG/SWD programming, enhancing flexibility in interfacing with various targets.

ORSHIN D3.3 PU — public Page 93 of 139

W ORSHIN

D3.3 - Models for formal verification

3.5.2 State of the art
Side-channel attacks and countermeasures

In the field of cybersecurity, cryptographic algorithms are often designed to be mathematically
secure. However, real-world systems rarely operate in ideal conditions. When cryptographic
computations are implemented in hardware or software, they produce physical effects, such as
power consumption, timing variations, or electromagnetic emissions. These physical phenomena
can unintentionally leak sensitive information. Exploiting such leaks is the basis of side-channel
attacks. Indeed, unlike traditional cryptanalysis, which tries to break the algorithm itself, side-
channel attacks focus on observing how the system behaves during execution.

To defend against this class of threats, designers employ what are known as side-channel coun-
termeasures. These are techniques or strategies specifically aimed at minimizing or neutralizing
the leakage of information through physical channels. The goal is to make the observable be-
havior of a system independent (or at least statistically unrelated) to the sensitive data being
processed.

Side-channel countermeasures can take many forms. It's important to note that side-channel
countermeasures are not universally effective; they must be carefully tailored to the specific threat
model, implementation platform, and attack vector. Furthermore, improperly implemented coun-
termeasures can give a false sense of security, as even subtle design flaws or leakage paths can
be exploited by attackers.

Domain Oriented Masking scheme (DOM)

DOM is a masking scheme specifically designed to be robust against side-channel leakages
while remaining practical for hardware implementations. The fundamental idea of this scheme is
to split the sensitive data in shares, and maintain a domain separation during non linear oper-
ations [76]: the computations are organized in such a way that the interaction between shares
is strictly controlled. This is crucial because side-channel leakage often arises not just from the
values themselves, but from the unintended combinations of signals. By carefully separating
the domains of operands and applying fresh randomness where needed, DOM minimizes the
opportunities for such leakages.

One of the key advantages of DOM is that it is hardware-friendly. In fact, DOM tends to require
fewer resources in terms of area and randomness. This efficiency makes it especially attractive
for lightweight or embedded cryptographic devices where resource constraints are critical.

Threshold implementation (TI)

The core idea behind side-channel countermeasures like Tl is to mask sensitive values, splitting
them into multiple randomized shares such that no single piece reveals useful information on its
own. However, what makes TI distinct from simpler masking schemes is its rigorous approach
to maintaining security even in the presence of hardware-specific challenges, such as glitches
[128]. The Threshold Implementation approach ensures security through three main properties:

» Correctness: The combination (e.g., XOR) of all shares must reconstruct the correct value
of the sensitive variable.

* Non-completeness: No intermediate function during computation should depend on all
shares of a given variable. This prevents information from being fully exposed through
any internal node.

ORSHIN D3.3 PU — public Page 94 of 139

W ORSHIN

D3.3 - Models for formal verification

« Uniformity: The output shares must remain uniformly distributed when the inputs are masked
and uniformly distributed. This is crucial to prevent statistical biases that an attacker could
exploit.

Side-channel leakage assessment

In Side-Channel Analysis, leakage assessment refers to the process of determining whether the
measurements collected from a device under test (DUT) contain any input-dependent informa-
tion. It serves as a preliminary phase that can provide information on the feasibility of the attack.
In fact, in case no information correlated with secret data is found, one can conclude that the DUT
is sufficiently secure, without even performing an actual key-recovery attack. However, detection
of leakage does not imply that an attack can be carried out immediately, but is a warning sign that
exploitable information may exist.

One of the most used leakage assessment methods is TVLA [72], which stands for Test Vector
Leakage Assessment. TVLA is a statistical approach that, rather than attempting to extract a
key or perform an actual attack, simply answers the question: Does this implementation leak
information in a measurable way?

The strength of TVLA lies in its formal, quantifiable, and implementation-independent methodol-
ogy. It uses hypothesis testing, typically a t-test, to assess whether two sets of measurements
come from the same distribution. The most common scenario compares traces collected under
two conditions: one set where the input (or key) is held constant, another where the input (or key)
varies randomly.

If the implementation is secure and free of leakage, the physical traces under both conditions
should look statistically indistinguishable. If there is leakage, the test will detect significant differ-
ences between the two sets of measurements.

A commonly accepted threshold in TVLA is a |¢| score of 4.5, which corresponds to a confidence
level above 99.999%. If the absolute t-value exceeds this threshold at any point in time, it is con-
sidered evidence of leakage. However, it's important to understand that TVLA does not quantify
how much leakage there is, nor whether the implementation can be practically attacked. It simply
flags that leakage is present, prompting further investigation or countermeasures.

However, while TVLA is widely used, it is not without limitations. It assumes proper experimen-
tal setup, including sufficient sample size, proper alignment of traces, and stable environmental
conditions. A poorly configured test may either miss real leakage or produce false positives.
Additionally, TVLA is typically performed at the implementation or post-silicon validation stage,
meaning it is a detection tool rather than a preventative one.

Deep Learning Leakage Assessment (DL-LA)

In recent years, growing interest in deep learning techniques applied to side-channel analysis has
yielded promising approaches, due to their ability to attack countermeasure-protected targets and
to learn directly from raw data, bypassing lengthy preprocessing steps even in case of misaligned
traces or multivariate leakage. Here is where Deep Learning Leakage Assessment comes into
play. Introduced by Moos et al. in 2021 [121], DL-LA aims to improve the leakage detection
capabilities of traditional methods such as TVLA [72], especially in the most complex scenarios
(noisy or misaligned traces, multivariate or horizontal leakage).

In DL-LA, a neural network is trained to classify two groups of side-channel traces. Similarly to
TVLA, DL-LA claims that a leakage is present if we are able to distinguish between those two

ORSHIN D3.3 PU — public Page 95 of 139

D3.3 - Models for formal verification * ORSHIN

groups of traces, that is, if the neural network is able to learn from the training data. Concerning
the acquisition of the traces, Moos et al. suggest the use of a fixed-versus-fixed input test (specific
test), as it should guarantee a larger difference between the two groups of traces, thus helping
the neural network in the classification task.

The DL-LA methodology can be summarized in the following steps. First, the set of traces is
standardized by computing

(3.35)
o

Then, the traces are split into a training set N and a validation set M, the latter of which will be
used only to evaluate the trained model on an unseen set of traces. Hence, the validation traces
are still extracted from our initial trace set, but they do not contribute to the learning process.

In this scenario, the null hypothesis H refers to the case in which the neural network did not
learn anything, that is, it functions as a random classifier. Consequently, the number of correct
classifications can be modeled as a random variable following a binomial distribution:

Hy : X ~ Binom(M,0.5) (3.36)

Adhering to the terminology presented by Moos et al. [121], we will instead call s;; = v- M
the number of correct classifications resulting from our trained model, where v is its validation
accuracy. In order to reject the null hypothesis and hence claim that a leakage is present, DL-LA
aims to prove the following:

P(X > su) < pw (3.37)

Where py, is a user-defined threshold (e.g., pys, = 1079).
This probability (that we will refer to as confidence value, or p value) can then be computed as
the probability density function of the binomial distribution:

M M
P(X >sy)= Y (f)o.#o.w—’f =0.5") (Alf) (3.38)

k=sn k=snr

Furthermore, DL-LA allows to determine which are the samples that contributed to the leakage by
means of a sensitivity analysis. This could come in handy, when preparing a key-recovery attack,
to understand which phases of the algorithm expose a leakage in the examined implementation.
One of the most important features of DL-LA is that, unlike TVLA, it considers all samples of a
trace when assigning it to a group. Therefore, it is capable of detecting multivariate or horizontal
leakage without requiring any kind of preprocessing or samples combination, as well as dealing
with misaligned and noisy traces. This also results in a lower number of false positives and is
particularly important when dealing with algorithms such as Ascon.

Ascon

ASCON is a family of lightweight cryptographic algorithms designed for authenticated encryp-
tion and hashing, optimized for efficiency on resource-constrained devices like IoT nodes and
embedded systems. It was selected as the primary recommendation in the NIST Lightweight
Cryptography standardization process in 2023 [59].

ASCON is known for its:

« Simplicity: Uses a sponge construction with a permutation-based core.

« Efficiency: Performs well on both hardware and software platforms.

ORSHIN D3.3 PU — public Page 96 of 139

W ORSHIN

D3.3 - Models for formal verification

'
L=
i
NAE-CW312T-A35 . %
Artix A35 gﬁ LXI1HY

8Y¥2£950
mL9EVLX

®XNIIX
o

FPGA.Target .
c14 1/0 - F/J U
reSm—

(=] \ FPGA Jaytag
NewAE Technology Im:@g] ri: "Eﬁﬁsil_@ R ' b ' L X
- (X]

Serious Tools. 3 @ 1

ofm CW JTAG Select 7“5 EE

Figure 3.46: The target Artix A35.

» Security: Offers strong protection against known cryptographic and side-channel attacks.

* Flexibility: Includes multiple variants (e.g., ASCON-128, ASCON-128a) for different use
cases.

Its balance of performance and security makes ASCON a modern choice for authenticated en-
cryption in constrained environments.
In our experiments, we synthesized three versions of Ascon:

» The first one was without countermeasures, which was from the github repository [129].

» The second one with DOM countermeasure, which was from the github repository, version
V1 [130].

» The last one with Tl countermeasure, which was from the github repository [62].

3.5.3 Experiments

This section presents preliminary results obtained by applying TVLA and DL-LA to both protected
and unprotected hardware implementations of the Ascon cipher, providing an initial assessment
of its effectiveness under varying acquisition strategies and levels of countermeasures.

Before getting to the experimental verification, we will briefly detail the applied methodology and
the choices we made in each step of the procedure.

Measurement setup

We used a CW Husky board (see sec. 3.5.1), with target a NAE CW312T A35 (figure 3.46). The
target board support is a ChipWhisperer CW313.

We acquired traces at a frequency of 7.37 MHz. For Ascon without countermeasures, we ac-
quired 4 sample per cycle, for a total of 500 samples; for Ascon with DOM countermeasure, we
acquired 8 sample per cycle, for a total of 1300 samples; for Ascon with DOM countermeasure,
we acquired 4 sample per cycle, for a total of 1300 samples.

ORSHIN D3.3 PU — public Page 97 of 139

W ORSHIN

D3.3 - Models for formal verification

Acquisition of the trace sets

For the traces acquisition phase, we opted for fixed-versus-random input test (non-specific test),
also varying the input data in multiple ways to assess whether this could result in higher the dif-
ferences among the two groups of traces. Throughout the process, we followed to the guidelines
of the leakage assessment methodology, as reported in [149].

Neural Network and confidence value

Concerning the choice of the neural network for the DL-LA, we use a Multi-Layer Perceptron
similar to the one proposed by Moos et al. It consists of four dense layers of 120, 90, 50 and 1
output neurons. All layers use a Rectified Linear Unit (ReLU) as an activation function, except for
the final one, which uses the Sigmoid activation function. The four layers are interleaved with a
BatchNormalization layer. Moreover, the model uses Binary Cross Entropy (BCE) as loss function
- since we deal with a binary classification task - and Adam as optimizer.

Once we compute the Welch’s t-test values, in order to compare them to DL-LA’s confidence
value, we also estimate the confidence p to accept the null hypothesis via the Student’s t proba-
bility density function [149][121]:

p=2 h F(t,v)dt (3.39)
It
e (e

Where t is the t-test value of a given point in time, v are the degrees of freedom and I'(-) is the
Gamma function.

It is important to point out that, unlike DL-LA, the two-tailed p-values represent each sample
individually, that is, we have as many p-values as number of samples in the traces. Therefore,
we decided to take the minimum among all p-values as representative of all the points in time. In
other words, in the case of TVLA, we consider only the sample that corresponds to the highest
leakage.

Finally, to determine the number of traces required by each of the two techniques to expose a
leakage, we performed multiple executions of both methods, each time varying the number of
considered traces. Note that, in the case of DL-LA, what varied is the number of training traces,
while the number of validation has been fixed accordingly.

Application of TVLA
Ascon without countermeasure

Concerning the unprotected hardware implementation of Ascon, three main acquisitions have
been performed: the first varying only the key of the random input data and setting the rest to
0. The second with the same approach but varying the plaintext instead of the key. The last one
varying all fields of the random input, namely key, plaintext, nonce and associated data. In all
cases, we acquired 2000 traces (half with fixed input and half with random input) of 500 samples
each, covering all the authenticated encryption phases of the Ascon cipher. In the following, we
will address the outcome of the experiments based on the traces.

We begin our analysis by inspecting the mean and variance of each sample across all traces,
as shown in figures 3.47 and 3.48. In particular, the differences present in the variance values
anticipate a possible leakage exposed by the implementation.

ORSHIN D3.3 PU — public Page 98 of 139

B ORSHIN

D3.3 - Models for formal verification

— FIXED — FIXED
—— RANDOM 0.4 4 ~—— RANDOM
0.4 =
0.2
0.2 <
0 0
0.2 = 0.2
e B S B S S B S B e e o o o S Bt E
0 100 200 300 400 500 o 100 200 300 400 500
(a) Varying only the key (b) Varying only the plaintext
— FIXED
— RANDOM
0.4 -
02 -
0
0.2 -
T T T 1 1 T
0 100 200 300 400 500

(c) Varying all input fields

Figure 3.47: Mean of the traces acquired by varying the key (a), the plaintext (b) and all input fields (c)

ORSHIN D3.3 PU — public Page 99 of 139

D3.3 - Models for formal verification * ORSHIN

3.000e-3 — 3.000e-3 4
— FIXED — FIXED
~—— RANDOM ~—— RANDOM
2.500e-3 2.500e-3 -
2.000e-3 — 2.000e-3
1.500e-3 1.500e-3
1.000e-3 = 1.0006-3
5.000e—4 - l u ' l ” an h
5.000e—4 -
————— ————————————————————— ———
o 100 200 300 400 500 o 100 200 300 400 500
(a) Varying only the key (b) Varying only the plaintext
2.000e-3
— FIXED
— RANDOM
1.500e-3 -
1.000e-3 -

5000e-4 7 WWM

t t T T
o 100 200 300 400 500

(c) Varying all input fields

Figure 3.48: Variance of the traces acquired by varying the key (a), the plaintext (b) and all input fields (c)

ORSHIN D3.3 PU — public Page 100 of 139

D3.3 - Models for formal verification * ORSHIN

As expected, the Welch’s t-test performed on the given sets of traces, reveal that the predefined
threshold is exceeded in all three cases, and by multiple samples (Fig. 3.49).

200 200
150 150 —

100 100 -

ﬂn Mlh ﬂn'm,\ﬂn

(=] %
; .
=
==

3

-
Eb—
—_—
;F—

e

=

= |

o

=

-

1

1

—50

-100 < -100 =

-150 = -150 -

t 1 t t 1 t t t t t
200 300 400 500 o 100 200 300 400 500

o
§4

(a) Varying only the key (b) Varying only the plaintext

200

150 -

100 —

_—
=

=100 =

=150

T — T T — Tt
o 100 200 300 400 500

(c) Varying all input fields

Figure 3.49: T-test of the traces acquired by varying the key (a), the plaintext (b) and all input fields (c)

Ascon with DOM

We integrated a hardware implementation of Ascon protected with Domain Oriented Masking
(DOM). Due to a memory restriction, the implementation takes in input randoms different from
zero only for the first permutation, the one operating in the inizializaiton phase. Here we focus
our attention on the case in which the shares of all Ascon’s input fields (PT, AD, key and nonce)

ORSHIN D3.3 PU — public Page 101 of 139

W ORSHIN

D3.3 - Models for formal verification

are randomly varied at each execution for both the random and fixed sets, such that for the fixed
set the xor of the shares gives as result an array of 16 zeros bytes. We acquired in this way a
total of 100k traces (half with fixed input and half with random input), containing 1300 samples
each.

In Fig. 3.50 are reported the usual mean and variance across all traces.

— FIXED — FIXED

— RANDOM — RANDOM
1.400e-3

0.2

1.200e-3

1.000e-3

8.000e—4 =

6.000e—4
0.2 4

4.000e—4

04 2.000e-4

0.000e+0 -

t t t t t t t 1 t t 1 t t t
] 200 400 600 800 1000 1200 o 200 400 600 800 1000 1200

(a) Mean (b) Variance

Figure 3.50: Mean (a) and variance (b) of the traces acquired by varying all shares of the input fields, Ascon with
DOM

We also computed the t-test on this set of traces, and the result is in figure 3.51. We noted some
peaks that go out from the threshold. However, as explained before, the random are effectively
random only for the first permutation of Ascon, during the inizialization phase. The peaks that we
see in figure b are in the following phases, leaving the doubt that they appear because of it.

When the random are badly implemented We performed the same analysis in the case in
which all the random used to implement the threshold implementation protection are zeros. We
acquired in this way a total of 100k traces (half with fixed input and half with random input).

In Fig. 3.52 are reported the usual mean and variance across all traces.

We also performed a t-test on this set of traces, and the results are presented in Figure 3.53. In
this case, we observe a greater number of peaks compared to the previously analyzed scenario,
and these peaks appear throughout all phases of the Ascon algorithm.

Interestingly, some peaks now exceed the threshold even before the start of the actual Ascon
operations (something that did not occur when the random values were correctly implemented).
However, during these early cycles, the input is being transmitted, and thus we would not expect
the behavior to depend on the random values, which affect the non-linear parts of the permuta-
tions. To investigate this unexpected behavior and rule out any possibility of key leakage during
these initial cycles, the Pearson’s correlation between the values of the traces at each sample
and a leakage prevision based on the Hamming Weight or the Hamming Distance, applied to
some intermediate values computed by a software simulation of the algorithm. In particular, our
previsions were (see figure 3.54):

« The Hamming Weight of the 32-bit words of the key (four words in total);

ORSHIN D3.3 PU — public Page 102 of 139

D3.3 - Models for formal verification

B ORSHIN

200
150 =
100

50 =

50

-100 4

-150 =

t t t t 1
D) 200 400 600 800 1000 1200

—20 -

1 t t 1
200 400 600 800 1000 1200

(b)

Figure 3.51: T-test of the traces acquired by varying all shares of the input fields (a), and zoom on the y axes (b),

Ascon with DOM

— FIXED
— RANDOM
0.2 <
0
-0.2
-0.4

L e N n m e N —t—
0 200 400 600 800 1000 1200

(a) Mean

1.000e-3 =

B.000e—4

6.000e—4 -

4.000e—4

2.000e—4

0.000e+0 =

— FIXED
— RANDOM

T — —tTTT—
o 200 400 600 800 1000 1200

(b) Variance

Figure 3.52: Mean (a) and variance (b) of the traces acquired by varying all shares of the input fields, Ascon with

DOM and all the randoms zero

ORSHIN D3.3

PU — public

Page 103 of 139

D3.3 - Models for formal verification * ORSHIN

200 +

150 =

100

0+ TR Ay et TP A A st oo v

-50

-100

-150

t T T t t t t 1 1 1 1 t 1 1
[} 200 400 600 80O 1000 1200 o 200 400 600 800 1000 1200
(a) (b)

Figure 3.53: T-test of the traces acquired by varying all shares of the input fields (a), and zoom on the y axes (b),
Ascon with DOM and all the randoms zero

« The Hamming Distance between these 32-bit key words;

« The Hamming Weight of the 32-bit words of the first share of the key K; concatenated with
the corresponding 32-bit words of the second share of the key K.

In the first two cases (figures a and b), the results were negligible, showing no significant peaks
in the correlation. However, in the third case (figure c), we observe that the Hamming Weight of
the 32 bits from the first share of the key K3, concatenated with the corresponding 32 bits from
the second share K, shows some correlation with the traces, highlighting the moments when
this information are transmitted.

When we acquired the traces, we also saved the inputs that produced them, and the outputs.
Here, we have a Python code that is able to compute all the intermediate values starting from the
saved inputs, and we performed some correlations between the traces and this kind of data. Let
51 be the state at some point in the computations of the first share, and 5, for the second share.
In particular, we computed the correlation between the traces and:

» the Hamming Distance between the concatenation of the states S; and S, before (input)
and after (output) of round r;

» the Hamming Weight of the concatenation of the states S; and .S, in input to round r;
+ the Hamming Weight of the concatenation of the states S; and .55 in output to round r.

In particular, we analyzed round 0, round 1, and the final round of the permutation during the
initialization phase, with the corresponding results shown in Figure 3.55. The figure reveals a
strong correlation in the case of the Hamming distance, clearly indicating both when the internal
states reach the computed values and the exact clock cycles in which the permutation rounds are
executed. We don’t see the same kind of peaks in the two cases with Hamming Weight.

ORSHIN D3.3 PU — public Page 104 of 139

W ORSHIN

D3.3 - Models for formal verification

Correlation of the traces with HW of 32 bits of the key, logical state, Correlation of the traces with HD of 32 bits of the key, logical state,
before the start of the initialization before the start of the initialization
—— Word of the key [0:32] —— Word of the key [0:32]
0.2 4 —— Word of the key [32:64] 0.2 + —— Word of the key [32:64]
—— Word of the key [64:96] —— Word of the key [64:96]
—— Word of the key [96:128] —— Word of the key [96:128]

1 o A AN S A O

S &
§ 0.2+ § -0.2 4

-0.4 -0.4

0.6 -0.6

ll) 2(;0 4ll)0 6[‘)0 8(‘)0 1 0‘00 1 2‘00 8 2(‘)0 460 660 880 1 0‘00 1 2‘00
Samples Samples

(a) Correlation with the Hamming Weight of the logical state of 32-bits (b) Correlation with the Hamming Distance of the logical state of 32-
words of the key. bits words of the key.

Correlation of the traces with HW of 32 bits of the key, share 1 concatenate to share 2,
before the start of the initialization

—— Word of the key [0:32]

—— Word of the key [32:64]

0.2 —— Word of the key [64:96]

—— Word of the key [96:128]

04
d
fiie I
flie I
- i I
S it I
k] il f
° i I
£ N AR
Q -02- itid i
il I
il |
fiie I
fiie |
it |
i |
oo
[l
~0.4 [t
oot {ofe oo
[
[{ofe e
oot
oo
[
it
~0.6 A
t t t t t U t
0 200 400 600 800 1000 1200
Samples

(c) Correlation with the Hamming Weight of 32-bits words of the first
shares of the key, concatenated with the corresponding 32-bits word
of the second share of the key.

Figure 3.54: Correlations between the traces and some leakages previsions (Hamming Weight and Hamming Dis-
tance of the initial state of the inizialization state).

ORSHIN D3.3 PU — public Page 105 of 139

W ORSHIN

D3.3 - Models for formal verification

Correlation of the traces with HD or HW of all the bits of §111S2, first round Correlation of the traces with HD or HW of all the bits of $111S2, second round
i — HD input/output first round it i1 —— HD input/output second round
il — HW input first round gt — HW input second round
024 et — HW ouptut first round 02 HE (A AEAY — HW ouptut second round
e
Wil i |
faaue \ ' ‘
i |
guug "
i1} I | A
0 04
Wil i |]
5 faaue 5
% guug ‘ ﬁ 1 | goug
3 faue 3 1 i
g guug ‘ % I goug
faane | i1
© 024 nnogoat © 02+ I naaoaot
e] | i1
e 1 i
e R 1 i
i 1 i1
faaue 1 i
e | i
faue 1 i
0.4 1] 0.4 - 1l 1|1
faaao | i
faut | i
e | i1
e 1 i
e 1 i
i 1 i1
faaue 1 i
guug 1 I goug
054 il 064 il bl
— Tttt —t — Tttt
400 600 800 1000 1200 0 200 400 600 800 1000 1200
Samples Samples
(a) Round 0 of the initialization phase. (b) Round 1 of the initialization phase.
Correlation of the traces with HD or HW of all the bits of S11IS2, second round
i nnaa —— HD input/output second round
:: :H: — HW input second round
021 it ~— HW ouptut second round
1) guug
(il
(il ool
(il
(il
(il
1 (il
0
-]
2 J
o i nnaa
g bl
(il ol
© 02+ 1) goug
] (il
(il
- 1) guug
(il
(il ool
(il
(il
044 s {sh]
(il
(il
(il
(il
1) guug
(il
(il ool
b 1) |
06 4 il
— T T T T T
[200 400 600 800 1000 1200
Samples

(c) Last round of the initialization phase.

Figure 3.55: In blue the correlation between the traces and the Hamming Distance input/output of the round; in
orange the correlation between the traces and the Hamming Weight of the input of the round; in green the correlation
between the traces and the Hamming Weight of the output of the round. The red vertical solid lines represent the
rounds of the permutation during the inizialization phase. The red dashed lines represent the cycles (each round is
performed in two cycles).

ORSHIN D3.3 PU — public Page 106 of 139

W ORSHIN

D3.3 - Models for formal verification

Ascon with Tl

We also implemented and synthetized the Ascon algorithm with the Threshold Implementation
countermeasure. As for the case of Ascon with DOM, also in this case the shares of all Ascon’s
input fields (PT, AD, key and nonce) are randomly varied at each execution for both the random
and fixed sets, such that for the fixed set the xor of the shares gives as result an array of 16 zeros
bytes. For this analysis we used only 200 traces (half fixed input and half with random input),
because we noted some relevant deviations in the acquired voltage among traces with far time of
acquisition.

In figure 3.56 we reported the mean and the variance across all traces.

4.500e—4 -
— FIXED — FIXED

03 — RANDOM

4.000e—4

0.2 =

3.500e—4 -

0.1 =

3.000e—4 =

2.500e-4

0.1 —

2.000e-4 -

0.2

1.500e—4

0.3

1.000e—4 -

0.4

t 1 t t t
400 800 800 1000 1200

o
]
P!
8

t t t t t t t
[+] 200 400 600 800 1000 1200

(a) Mean (b) Variance

Figure 3.56: Mean (a) and variance (b) of the traces acquired by varying all shares of the input fields, Ascon with Tl

The Welch’s t-test (figure 3.57) performed on the sets of traces reveals some possible leakages
for this specific implementation. However, we note that the peaks that go out of the threshold are
all concentrated before the beginning of the permutations of Ascon.

When the random are badly implemented We performed the same analysis in the case in
which all the random used to implement the threshold implementation protection are zeros. Also
in this case we used 200 traces (half fixed input and half with random input).

In figure 3.58 we reported the mean and the variance across all traces.

In an initial analysis of the means and variances, two key differences can be observed between
the cases of Ascon with threshold implementation, the one using correct random values and the
other with all randoms set to zero:

* In both mean plots (Figures 3.56 a and 3.58 a), a clear distinction can be seen between two
phases: an initial input preparation phase and a subsequent phase where the Ascon oper-
ations take place. In the preparation phase, Figure 3.56 a shows a noticeable increasing
trend in the traces leading up to the start of the operations. This trend is absent in Figure
3.58 a. A possible explanation is that, in the first case, the absorbed random values differ
from each other, resulting in increased power consumption. In contrast, when all randoms
are zero, this variation is not present.

ORSHIN D3.3 PU — public Page 107 of 139

W ORSHIN

D3.3 - Models for formal verification

40

20

—20 -

—40 -

LU B B S S B B B S SN S S R B B S S R S S S S R S S B S R S s
0 200 400 600 800 1000 1200

Figure 3.57: T-test of the traces acquired by varying all shares of the input fields, Ascon with Tl

— FIXED — FIXED
— RANDOM

0.2 = 4.000e—4

3.000e-4 -

0.2

2.000e—4 =

e

T L e I e e e e LI o e e e e L e e e R e e e S R e S e e e B R —tTTT—
0 200 400 600 800 1000 1200 o 200 400 600 800 1000 1200

0.4

1.000e—4

(a) Mean (b) Variance

Figure 3.58: Mean (a) and variance (b) of the traces acquired by varying all shares of the input fields, Ascon with Tl
with randoms for the countermeasure set to zero

ORSHIN D3.3 PU — public Page 108 of 139

W ORSHIN

D3.3 - Models for formal verification

+ Also noteworthy is the variance shown in Figure 3.58 b, where the behavior of the trace
variance in the set with fixed inputs significantly differs from that in the set with random
inputs, especially in the phase of the crypthographic operations.

The Welch’s t-test (figure 3.59) performed on the sets of traces reveals some possible leakages
for this specific implementation. Unlike in the previous case, we note that the peaks that go out
of the threshold are not only before the beginning of the cryptographic operations but also after it.
Moreover, it is really visible that the t-test peaks are much higher than those in the previous case.

40 =

20

| l\MWMww

I

—40 4

L o e B e e e e e L e E e o e e B e A B S m m S e s e S
0 200 400 600 800 1000 1200

Figure 3.59: T-test of the traces acquired by varying all shares of the input fields, Ascon with Tl with randoms for the
countermeasure set to zero

Application of DL-LA and comparison with TVLA

Not surprisingly, very few traces were enough for both TVLA and DL-LA to find a leakage in
this Ascon implementation without countermeasures, as shown in figure 3.60. For both the key-
varying trace set and the one varying all input fields, the validation set was fixed to only 100
traces, while for the pt-varying traces set it was fixed to 300 traces, because a few more training
traces were needed to better generalize the results of the MLP, so the validation set was increased
as well.

In this scenario, DL-LA seems to perform better than TVLA, requiring less traces to find a leakage;
however, it is important to point out that in this comparison for DL-LA method only training traces
are considered in the count. Obviously, if one performs the comparison considering the total count
of traces (hence executing TVLA with both the training and validation traces), then TVLA would

ORSHIN D3.3 PU — public Page 109 of 139

D3.3 - Models for formal verification * ORSHIN

P value vs. No. of Training Traces P value vs. No. of Training Traces

—e— DL-LA 307 o pLia
" TVLA TVLA
-—- —log:e(le=5) =5 —-—- —logio(le-5) =5
254
12
204
— 104 —
e]
) &
E=3 2154
T 84 T
64 10 4
4 § e e T
4 5 6 7 8 9 10 5 10 15 20 25 30

No. of Training Traces No. of Training Traces

(a) Varying only the key (M=100) (b) Varying only the plaintext (M=300)

P value vs. No. of Training Traces

——- —logwe(le-5)=5
17.5 7

15.0 1

12.5 4

—logso(p)

10.0 4

No. of Training Traces

(c) Varying all input fields (M=100)

Figure 3.60: P-values varying the number of (training) traces for both TVLA and DL-LA, in all the three different kinds
of acquisitions

ORSHIN D3.3 PU — public Page 110 of 139

W ORSHIN

D3.3 - Models for formal verification

produce confidence values consistently higher than those obtained by DL-LA. However, here we
want to highlight the fact that only the training traces are actually used by DL-LA to observe the
leakage, as the validation traces only serve the purpose of evaluating the model.

We also tried to apply our DL-LA method to the implementation of Ascon with DOM countermea-
sure. For it, at the current stage, the available traces have proven insufficient for the MLP to
detect significant leakage or to achieve better results than those obtained through TVLA.

3.5.4 Conclusions and Future works

There are several promising directions for extending this work.

To begin with, we have initiated a preliminary comparison of different countermeasure implemen-
tations for the Ascon algorithm, with the aim of assessing their robustness. This represents an
initial step toward a broader and more systematic evaluation. While our t-test analyses have re-
vealed some leakages in both Domain-Oriented Masking (DOM) and Threshold Implementation
(TI) schemes, we were not yet able to exploit these leakages to successfully mount an attack.
This indicates that, although leakages seem to be present, their practical exploitability remains
uncertain and requires deeper investigation.

Additionally, considerable work remains in the area of Deep Learning-based Leakage Assess-
ment (DL-LA). In this direction:

+ So far, we have employed a neural network architecture closely aligned with models com-
monly used in the literature. However, we believe that a network specifically tailored to the
characteristics of the Ascon cipher could significantly enhance the effectiveness of DL-LA
in detecting subtle leakages. Designing and evaluating such models will be a key focus of
our future work.

» Moreover, there is substantial room for improvement in the study of protected implementa-
tions of Ascon within the DL-LA framework. Further exploration of these aspects (including
deeper architectural tuning, extended training methodologies, and broader dataset usage)
is also planned as part of our future research efforts.

3.6 Side-channel leakages analysis with VoLPE

3.6.1 Introduction

Although in the case in which the security of the algorithms used in a cryptosystem is well estab-
lished, the physical security of their implementation remains a significant concern. An attacker
with physical access to a device can extract information about the secret key and internal com-
putational state by measuring the device’s power consumption and electromagnetic emissions.
These measurements can be made using metal probes placed on internal circuit wires.

Such attacks, which exploit physical side effects of computation, are known as Side Channel At-
tacks (SCA). When the attack specifically targets information leaked through power consumption,
it is referred to as a Power Analysis Attack. These leakages often arise from glitches, unintended
signal transitions during computation, caused by differences in signal propagation times within
the circuit.

A highly effective strategy for defending against SCAs involves the use of masking schemes,
which aim to decorrelate the computation from the sensitive data being processed. This is typi-
cally achieved by XORing the circuit inputs with random values. An additional layer of protection

ORSHIN D3.3 PU — public Page 111 of 139

W ORSHIN

D3.3 - Models for formal verification

can be implemented using threshold implementations. This technique splits each sensitive vari-
able v into n + 1 random, independent shares, whose XOR equals v.

Non-linear gates are particularly susceptible to side-channel leakage. To mitigate this, these
gates are replaced by gadgets, which are composite gate structures designed to perform the
same logic operation, but in a way that incorporates masking and threshold implementation tech-
niques.

To evaluate the effectiveness of these countermeasures, security models are created to emulate
the capabilities of a potential attacker. These models define what information an attacker could
extract from each measurement. However, they inherently approximate the real-world behavior
of the physical circuit, and thus introduce some degree of inaccuracy in the verification process.

State of the art

In the literature, various tools and techniques have been proposed to assess the level of protection
a circuit (or parts of it) offers against side-channel attacks. Many of these methods are based on
the concept of probing security, as discussed in works such as [22, 27, 119].

Among the available tools, some rely on hardware simulation to estimate characteristics like tim-
ing and area during the pre-silicon design phase. For instance, CASCADE [181] is a framework
that integrates a largely automated, full-stack standard-cell design flow with state-of-the-art side-
channel analysis techniques. It enables efficient evaluation of side-channel leakage before chip
fabrication.

In the literature, some works incorporate toggle-based analysis within their evaluation workflows,
similar to the approach used in our tool. For example, [144] presents a leakage model for pre-
silicon power analysis in cryptographic designs. However, unlike our method, they rely exclusively
on proprietary tools, and their use of toggle count differs slightly from our approach.

In this context, some works investigate the accuracy of design time power estimation tools in
assessing the security level of a device against differential power attacks [19]. For example,
these models and tools can lack precision. Consider SPICE, a transistor-level simulator that
generates analog waveforms reliable enough to validate timing accuracy. While its high fidelity
suggests that it could be useful for side-channel leakage evaluation after layout, the study in [120]
shows that the statistical variation in power noise amplitude produced by SPICE is inconsistent
and not always accurate for side-channel analysis.

Motivations

In ORSHIN Work Package 3, one of our objectives was to explore new and effective tools to
simulate circuits and analyze their behavior, including in the presence of glitches. Our specific
goal was to define a methodology for modeling the power consumption of circuits using only
open-source tools. This effort led to the development of VoLPE, our dedicated tool for side-
channel analysis of digital circuits, particularly those protected by techniques such as secret
sharing or by replacing vulnerable parts with gadgets.

3.6.2 Workflow and Exploited tools

The aim of this work was to create a tool for the analysis of the side-channel attack resistance for
gadgets. All the tools used in the workflow are open source tools, and in particular we developed
a new one for the analysis phase that is called VoLPE (Verification of Leakages Propagation
Escalation).

ORSHIN D3.3 PU — public Page 112 of 139

D3.3 - Models for formal verification * ORSHIN

Hi?er:i:(e)vel Synthesis Sinthetized Simulation Analysis
e gn of With circuit, verilog With VCD file With Correlation
p OpenLane file Icarus VoLPE

the circuit

Configuration / Configuration

file (written by file (written by
the user) the user)

Figure 3.61: Workflow followed in this work and described in section 3.6.2.

Designing a digital circuit is a complex process that goes far beyond simply writing hardware
description language (HDL) code. Particularly in security applications such as cryptographic
hardware, the workflow includes not only design and verification but also implementation steps
that affect the physical characteristics of the circuit, characteristics that can inadvertently leak
information through side channels.

Synthesis

The general workflow begins with the synthesis phase. In this step, the HDL (Hardware Descrip-
tion Language) code is transformed into a netlist, which represents the circuit in terms of gates
and wires. During synthesis, various optimization techniques can be applied to improve perfor-
mance, reduce area, or lower power consumption. The input to the synthesis tool is a high level
Verilog description of the circuit, and output a verilog description of the synthetized circuit.

OpenLane

In our case, we perform the synthesis phase through OpenLane. OpenlLane is an open source
tool that takes a circuit description written in Verilog and produces a GDSII (or GDS2) file as
output [70, 148]. This GDSII file is a binary representation detailing the circuit’s various layers,
which is the format required by semiconductor foundries for physical fabrication.

To create a GDSII file, OpenLane follows a structured design flow consisting of six main steps.
The process begins with synthesis, where OpenlLane translates the logical Verilog description
into a netlist, that means in a comprehensive list of the circuit's components and how they are
interconnected. These components are chosen from a standard cell library provided within Open-
Lane. The synthesis step is carried out using an external tool called Yosys, which generates the
netlist [4]. This is followed by a static timing analysis performed by another tool, OpenSTA [71],
to evaluate the timing performance of the netlist.

Next, in the floorplanning stage, OpenLane determines how much space is needed to accom-
modate all the components on the chip. This is followed by the placement phase, which involves
positioning the components within the chip area. Placement is done in two stages: a rough
(coarse) placement to estimate general locations, and a fine placement to determine their exact
positions. During this step, OpenLane ensures there is no overlap between components.

The workflow then proceeds to Clock Tree Synthesis (CTS). The clock signal is vital for the
operation of many gates in a digital circuit, and this step ensures that the clock is distributed with
appropriate strength and timing to all required parts of the design.

Following CTS is the routing phase, where the actual physical connections such as signal paths,
power lines, and ground connections, are established between components.

ORSHIN D3.3 PU — public Page 113 of 139

D3.3 - Models for formal verification * ORSHIN

The final stage is signoff, where various checks are performed to validate the design before the
GDSill file is finalized. During both the CTS and routing phases, OpenLane may make changes to
the netlist in response to new design requirements. To verify that these changes haven't altered
the intended functionality of the circuit, a Logic Equivalence Check (LEC) is performed using
Yosys. This ensures that the modified netlist is functionally equivalent to the original one produced
during synthesis.

Throughout the entire process, OpenLane relies on a Process Design Kit (PDK), which is a
collection of foundry-specific files essential for chip design. The PDK includes the standard cell
library used during synthesis, as well as design rule checks and other data necessary for the
signoff stage. This ensures that the resulting design adheres to the foundry’s manufacturing
constraints and specifications.

Simulation

Once synthesis is complete, the process moves on to simulation. This phase is crucial for un-
derstanding how the circuit will behave under different conditions, such as estimating power con-
sumption, without the need to physically manufacture the design. Simulation helps verify func-
tionality and can provide insight into potential weaknesses or inefficiencies. In this case, the input
is the output of the sinthetization tool, and the output is a vcd file.

lcarus

An open source tool commonly used for simulation is Icarus Verilog. It compiles Verilog source
files into a .vvp executable, which can then be run to carry out the simulation. Alongside the circuit
description, a testbench is required—this is a separate file created by the user that defines the
sequence of input signals to apply during the simulation. As the simulation runs, Icarus generates
a .vcd (Value Change Dump) file, which records the changes in signal values over time. This file
can be viewed using waveform visualization tools like GTKWave, allowing users to observe how
each wire in the circuit behaves throughout the simulation.

Analysis

Finally, analysis is performed. This involves examining the simulation outputs to detect any unin-
tentional information leaks or vulnerabilities that could be exploited, for example, through power
analysis or timing attacks. This step is especially important in security-sensitive applications, as
it allows designers to address potential risks before fabrication. We perform this step exploiting
our new tool VoLPE, which takes as input the vcd file in output from the simulation tool, and gives
to use information about the correlation between the number of toggles counted for each input
and the Hamming weight or the Hamming distance of the corresponding input state.

3.6.3 Structure of VoLPE

The objective of this work is to develop a tool able of realistically analyzing a circuit’s vulnera-
bility to side-channel attacks (SCA). The resulting tool, named VoLPE (Verification of Leakages
Propagation Escalation), achieves this by simulating a synthesized circuit, produced using the
OpenLane digital design flow, and computing the correlation between the circuit’s inputs and a
power consumption model. This correlation value provides insight into the extent to which internal

ORSHIN D3.3 PU — public Page 114 of 139

D3.3 - Models for formal verification * ORSHIN

signal transitions leak information, thus helping to assess the circuit’s resistance to side-channel
leakage.

The overall structure of the workflow has been outlined in section 3.6.2 and figure 3.61. Once
the user has created a high-level description of the gadget in Verilog, the next step is to generate
its synthesized version using the OpenLane digital design flow. The resulting Verilog file, which
contains the synthesized netlist, is then provided as input to VoLPE, along with a user-defined
configuration file. Simulation is handled by a script named sim.sh, which executes the simulation
process and returns the resulting logs to VoLPE’s main module. VoLPE then processes these
logs to compute the relevant metrics, such as correlation values, and exports the results into an
Excel file for further analysis. From this point forward, the term circuit refers specifically to the
synthesized version produced by OpenLane.

Configuration file

Before running the tool, some essential information about the circuit to be simulated must be
provided. This is done via a configuration file, where the user fills in specific fields that define the
simulation parameters and circuit features. Below is a description of each field in the configuration
file:

* full: This field specifies whether the simulation should be exhaustive or partial. Setting
this field to ”y” enables exhaustive simulation, where all possible input combinations are
tested. Setting it to "n” enables partial simulation, using a subset of the input space. A
more detailed explanation is provided in next sessions.

» sim: This field defines the total number of simulations to be performed. If full is set to vy,
the number of simulations must be exactly 22**, where = corresponds to the value of in_size
(the number of input bits). If full is set to n, then x can be any integer from 0 up to in_size,
and the corresponding number of simulations must be specified manually.

« clk: This field indicates whether the circuit includes a clock. Use y if a clock is required for
simulation, and n if the circuit is combinatorial (i.e., does not use a clock).

« period: This field sets the clock period (in nanoseconds or the simulation time unit). It also
defines how frequently the input values are updated during simulation. The value must be
large enough to allow the circuit to complete processing the current input before the next
input is applied. If, for example, the circuit’s longest propagation delay is 5 ns, the period
must be set to a value greater than 5 ns. To determine the appropriate period, the maximum
propagation delay must be calculated by identifying the slowest path through the circuit, i.e.
the path with the highest cumulative delay based on gate delays.

 cycles: This field indicates the number of clock cycles the circuit requires to complete its
computation. It should be equal to the number of register stages in the design plus one.

* in_size | out_size |/ rand_size: These fields define the number of input bits, output bits, and
random bits, respectively, used in the circuit. Random bits may be used for masking or
other security techniques.

* in_.name / out_.name: These fields specify the names of the variables representing the cir-
cuit’s inputs and outputs, as defined in the Verilog code.

ORSHIN D3.3 PU — public Page 115 of 139

W ORSHIN

D3.3 - Models for formal verification

Table 3.6: Sample of a configuration file.

sim: 576
full: n
clk: y
period: 5
cycles: 2
in_size: 6
in_name: in
rand_size: 2
out_size: 4
out_name: out
input a0 0.02
gate XNOR_DELAY 0.10
gate NAND_DELAY 0.20
gate XOR_DELAY 0.50
gate AND_DELAY 0.30
gate OR_DELAY 0.40

* input delayed_input_.name: These fields allow the user to define input arrival delays (in
nanoseconds). Each input bit can be assigned a delay value; if no delay is present, it
should be set to 0.

* delayed gate_name: This field is used to define the propagation delays associated with
each type of gate in the synthesized circuit (in nanoseconds). These delay values are used
in computing signal propagation and for timing-related analysis during simulation.

In table 3.6 is shown a sample of configuration file.

Some notes about simulations

Generally speaking, a simulated circuit will have an initial state. During simulation, a new input
is applied, potentially causing a change in the output. The simulation continues until the circuit
reaches a new stable state, at which point it is considered complete.

The first step executed by the tool involves generating the set of inputs and corresponding initial
states required for each simulation. These values are stored in a dedicated file to be used during
the simulation phase.

Exhaustive or partial simulation

As previously mentioned, the circuit can be simulated in two modes: exhaustively, where all pos-
sible input combinations are tested, or partially, using only a selected subset of inputs, depending
on the configuration provided by the user. The partial simulation option was introduced to ad-
dress the exponential growth in the number of required simulations as the number of input bits
increases. Since the number of possible input combinations doubles with each additional bit,
exhaustive simulation can quickly become computationally infeasible for larger circuits. Partial
simulation helps mitigate this by significantly reducing computation time, making the tool more
practical for analyzing complex designs.

ORSHIN D3.3 PU — public Page 116 of 139

W ORSHIN

D3.3 - Models for formal verification

Ideal or delayed propagation

After generating the initial states and input vectors, the tool proceeds with the simulation phase.
For each circuit under analysis, the tool supports three distinct types of simulation runs, each
modeling different timing scenarios.

« Circuit with no delays: In this mode, the circuit is treated as ideal, meaning all gate and
input delays are assumed to be zero. As a result, no glitches can occur during simulation.
This allows the tool to isolate and evaluate correlations that stem solely from the algorithmic
behavior of the circuit, rather than from its physical implementation.

+ Circuit with gate delays: In this run, gate-level delays are taken into account. The inclu-
sion of these delays can lead to the appearance of glitches, which are temporary signal
transitions caused by differing gate propagation times. This simulation models a circuit
with synchronized inputs that all arrive simultaneously, allowing the structural effects of the
implementation to be studied.

« Circuit with gate and input delays: This mode extends the previous one by also in-
corporating input arrival delays, simulating scenarios where inputs reach the circuit asyn-
chronously or at different times. This provides a more realistic representation of how the
circuit might behave in a real-world environment, especially when driven by unsynchronized
components or external sources.

Power consumption model

Once all simulations are completed, power consumption is estimated by analyzing the logs
generated during these runs. For each simulation, power usage is modeled based on how many
bit toggles occur in the output before it stabilizes into a new state. A toggle is a change in a single
bit's value, either from 0 to 1 or from 1 to 0.

The rationale behind using toggles as a power model is that each toggle roughly corresponds to
a switching activity, which in real digital circuits consumes dynamic power. Therefore, counting
toggles gives a reasonably accurate estimate of power usage.

This analysis step results in a list, often referred to as t/ (toggle list), where each entry corre-
sponds to the number of toggles observed in a single simulation. This list can then be used for
further analysis, such as computing average power, peak power, or comparing power efficiency
across different designs or inputs.

Consumption model

After generating a power consumption profile for each simulation, the next step is to identify the
operation responsible for that consumption. To achieve this, we introduce two distinct modeling
approaches, each implemented through a dedicated function:

* Input Consumption Model (I-CS): Captures the relationship between power consumption
and the input values that triggered it.

« Input-State Consumption Model (IS-CS): Captures the relationship between power con-
sumption and the combination of input values and the system’s initial state.

ORSHIN D3.3 PU — public Page 117 of 139

W ORSHIN

D3.3 - Models for formal verification

Since users may only be interested in specific bits or combinations of input and initial state bits,
we provide a selection function for each model. This function enables users to specify which bits
should be considered when building the corresponding consumption model. Once the relevant
bits are selected, a second function generates the respective model based on this selection.
Users can redefine these functions to suit their needs.

3.6.4 Results

In the final stage of the analysis, Pearson’s correlation coefficient is calculated to measure the
correlation between the power consumption values and the outputs of each consumption model.

3.6.5 Testing and results

Following the description of the developed tool provided in Section 3.6.3, this section presents
some of the results obtained through its application. We analyze the performance of the tool,
discuss the insights derived from the data it generated, and evaluate its effectiveness in modeling
and correlating power consumption based on the defined methodologies.

Analysis of some gadgets

In this section, we analyze the results obtained by applying the VoLPE tool to three cryptographic
gadgets, which were also examined in Section 3.4. The three gadgets under evaluation are: the
x operation implemented with a threshold implementation using two shares, the x operation with
a threshold implementation using three shares, and the y operation employing a domain-oriented
masking scheme.

For all the following examples, we considered three scenarios: one in which there are no delays,
neither in the inputs nor in the gates, one in which only the gates experience delays, and the other
in which both inputs and gates experience delays. In the latter case, these delays are randomly
specified in the configuration file.

Note that without countermeasures, the means and maximum values of the correlations with
random delays for both consumption models are approximately one (compared to the results in
tables 3.9, 3.12, 3.15).

x with two shares

In the x function, the inputs are three bits =1, x5 x3, and the output is one bit. When the threshold
implementation with two shares countermeasure is applied, each input bits is split into two shares
2y, x} (sec.3.4.1).

Single execution To facilitate the understanding of the analysis presented in Section 3.6.5, we
begin with an example illustrating a single execution of the tool. Table 3.7 displays the randomly
assigned delays used in this example, for all the shares of the three bits that serve as inputs to
the y function, as well as the delays associated with all possible gates (noting that only a subset
of these gates is actually used in the gadget under analysis). Table 3.8 presents the correlation
results of the consumption computed counting the toggles, as explained in section 3.6.3, and the
consumption models based on Hamming Weight and Hamming Distance for each of the three
inputs to the y function. This correlation is computed under three different scenarios: (i) no delay,
(i) delays applied to the gates, and (iii) delays applied to both gates and inputs.

ORSHIN D3.3 PU — public Page 118 of 139

D3.3 - Models for formal verification * ORSHIN

Table 3.7: Used delays for inputs and gates in the example, x with two shares.

Input Used delay (ns) Gate Used delay (ns)
0 0.57 XNOR 0.32
7 0.26 NAND 0.91
9 1 XOR 0.41
xd 0.70 AND 0.57
x5 0.64 OR 0.38
i 0.36 NOR 0.58

Table 3.8: Correlation results for the example, x with two shares.

Hamming weight | Hamming distance

T i) I3 T i) I3
no del. ~0 ~0 0 ~0 ~0 0
gate del. ~0 ~0 0 ~0 ~0 0
gates/inputsdel. | 021 ~0 ~0 |0,02 ~0 ~ 0

Analysis of more executions After that, we did 100 execution of our tool in the case in which
both inputs and gates have some delays, with everytime these delays randomically computed.
Then we compute the mean and extract the maximum value for both the consumption model
cases (Hamming weight and Hamming distance) and for all the x inputs (z1, x5 and x3) (table
3.9).

We can note that the value of mean correlation for input =, is quite high w.r.t. the others, which
can tell us a possible leakage of this input value; this is highlighted in the both consumption model
cases, with Hamming weight and Hamming distance.

x with three shares

When the threshold implementation with three shares countermeasure is applied to function Yy,
each input bits is split into three shares =¥, x}, z7 (sec.3.4.1).

Single execution To facilitate the understanding of the analysis presented in Section 3.6.5, we
begin with an example illustrating a single execution of the tool. Table 3.10 displays the randomly
assigned delays used in this example, for all the shares of the three bits that serve as inputs to
the y function, as well as the delays associated with all possible gates (noting that only a subset
of these gates is actually used in the gadget under analysis). Table 3.11 presents the correlation
results of the consumption computed counting the toggles, as explained in section 3.6.3, and the
consumption models based on Hamming Weight and Hamming Distance for each of the three
inputs to the y function. This correlation is computed under three different scenarios: (i) no delay,
(i) delays applied to the gates, and (iii) delays applied to both gates and inputs.

Table 3.9: Mean and Max of the correlation results on 100 executions of VoLPE, x with two shares.

Hamming weight | Hamming distance
T X2 X3 T {0 T3
Mean with delays | 0,034 ~0 ~0]-0,001 ~0 ~0
Max with delays | 0,378 ~0 ~0] 0,059 ~0 ~0

ORSHIN D3.3 PU — public Page 119 of 139

D3.3 - Models for formal verification

W ORSHIN

Table 3.10: Used delays for inputs and gates in the example, x with three shares.

Input Used delay (ns) Gate Used delay (ns)
0 0.81 XNOR 0.06
7 0.26 NAND 0.87
x? 0.95 XOR 0.92
) 0.27 AND 0.27
xd 0.62 OR 0.57
x5 0.76 NOR 0.59
) 0.25
T3 0.64
x2 0.14
Table 3.11: Correlation results for the example, x with three shares.
Hamming weight Hamming distance
Zo T) ZTo I T2
no del. ~0 ~0 O ~0 ~0 O
gate del. ~0 ~0 ~0 ~0 ~0 ~0
gates/inputsdel. | ~0 ~0 ~0 ~0 ~0 ~0

Analysis of more executions After that, we did 100 execution of our tool in the case in which
both inputs and gates have some delays, with everytime these delays randomically computed.
Then we compute the mean and extract the maximum value for both the consumption model
cases (Hamming weight and Hamming distance) and for all the x inputs (z1, x5 and x3) (table
3.12).

Unlike the case of the function x with two shares, in this scenario even the row reporting the max-
imum correlation values across all executions shows consistently low correlation values (tending
to zero), different from what was observed for x with two shares.

Y with DOM

When DOM countermeasure is applied to function , each input bits is split into two shares z?,
r; (sec.3.4.1).

Single execution Table 3.13 displays the randomly assigned delays used in this example, for
all the shares of the three bits that serve as inputs to the y function, as well as the delays associ-
ated with all possible gates (noting that only a subset of these gates is actually used in the gadget
under analysis). Table 3.14 presents the correlation results of the consumption computed count-
ing the toggles, as explained in section 3.6.3, and the consumption models based on Hamming
Weight and Hamming Distance for each of the three inputs to the y function. This correlation is

Table 3.12: Mean and Max of the correlation results on 100 executions of VOLPE, x with three shares.

Hamming weight | Hamming distance
T X3 Zs3 T T2 Z3
Mean withdelays | ~0 ~0 ~0 ~0 ~0 ~0
Max withdelays | ~0 ~0 ~0 ~0 ~0 ~0

ORSHIN D3.3 PU — public Page 120 of 139

W ORSHIN

D3.3 - Models for formal verification

Table 3.13: Used delays for inputs and gates in the example, x with DOM scheme.

Input Used delay (ns) Gate Used delay (ns)
0 0.57 XNOR 0.40
7 0.29 NAND 0.19
9 0.03 XOR 0.65
xd 0.43 AND 0.77
3 0.94 OR 0.28
i 0.34 NOR 0.31

Table 3.14: Correlation results for the example, x with DOM scheme.

Hamming weight | Hamming distance

T i) T3 T i) T3
no del. ~ 0 ~0 ~0]|~0 ~ 0 0.004
gates del. 0,025 ~0 ~0 [0,025 ~0 0,329
gates/inputs del. | 0,030 ~0 ~0 | 0,080 ~0 0,429

computed under three different scenarios: (i) no delay, (ii) delays applied to the gates, and (iii)
delays applied to both gates and inputs.

Analysis of more executions After that, we did 100 execution of our tool in the case in which
both inputs and gates have some delays, with everytime these delays randomically computed.
Then we compute the mean and extract the maximum value for both the consumption model
cases (Hamming weight and Hamming distance) and for all the x inputs (z, 2 and z3) (table
3.15).

In this case, it should be noted that the mean correlation values for the inputs x; and x5 are not
particularly low and do not tend to zero. This observation suggests the possibility of leakage
associated with these inputs, although a more in-depth analysis is required to draw definitive
conclusions.

Analysis of the S-Box of AES

For the AES S-Box, we chose to conduct our tests on two distinct implementations. The first
implementation employs a lookup table to perform the byte substitution. The second implemen-
tation achieves the same functionality using a sequence of MUX gates. Unlike the first, this im-
plementation supports both encryption and decryption operations, with the mode determined by
a configuration bit: setting the bit to 0 enables encryption, while setting it to 1 enables decryption.
To explore the behavior of this design, we synthesized the circuit twice using OpenlLane, once
with the configuration bit fixed to 0 (indicating encryption only), and once without fixing the bit
value. When the bit is fixed to 0, OpenLane recognizes that the decryption logic is unused and

Table 3.15: Mean and Max of the correlation results on 100 executions of VoLPE, x with DOM scheme.

Hamming weight | Hamming distance
x1 T2 Z3 T T2 Zs3
Mean with delays | -0,036 ~0 ~0 0,086 ~0 0,125
Max with delays | 0,146 ~0 ~0 0,146 ~0 0,583

ORSHIN D3.3 PU — public Page 121 of 139

W ORSHIN

D3.3 - Models for formal verification

Table 3.16: Mean and Max of the correlation results on 100 executions of VoLPE, S-Box of AES implemented with
lookup table.

Hamming Weight | Hamming Distance
1 bit 8 bits 1 bit 8 bits

Mean with delays | 0.047 0,0189 | 0,3236 0,7792

Max with delays | 0,1128 0,0485 | 0,3836 0,8504

Table 3.17: Mean and Max of the correlation results on 100 executions of VoLPE, S-Box of AES implemented with
MUX - only encryption.

Hamming Weight | Hamming Distance
1 bit 8 bits 1 bit 8 bits

Mean with delays | 0,0356 0,0197 | 0,1555 0,1645

Max with delays 0,117 0,0398 | 0,2977 0,3181

removes it during synthesis. As a result, we obtained two different synthesized versions of the
second implementation.

In total, we tested three circuit variants: the lookup table-based implementation, and both synthe-
sized versions of the MUX-based design. For each circuit, we computed the correlation first for
each input bit individually, and then for all input bits considered collectively (see Section 4.1.4).
Note that in these cases the s-boxes are not protected by countermeasures, and in the next
sections it is clear how for no protected nonlinear functions our tool reveals some leakages of the
input values.

AES S-Box lookup table

Table 3.16 presents the results for the scenario where the AES S-Box is implemented using a
lookup table. In this case, we observe that the correlation values do not tend toward zero, neither
the maximum values nor the means. For each of the considered power consumption models,
two correlation values are reported: one calculated with respect to a single input bit, and another
computed with respect to all eight input bits of the S-Box.

AES S-Box MUX only encryption

Table 3.17 presents the results for the scenario in which the AES S-Box is implemented using
MUX gates, able to perform only encryption. In this case also, we observe that the correlation
values do not tend toward zero, neither the maximum values nor the means, and we can reach
the same conclusions as in section 3.6.5.

AES S-Box MUX encryption and decryption

Table 3.18 presents the results for the scenario in which the AES S-Box is implemented using
MUX gates, able to perform both encryption and decryption. In this case also, we observe that
the correlation values do not tend toward zero, neither the maximum values nor the means, and
we can reach the same conclusions as in sections before.

ORSHIN D3.3 PU — public Page 122 of 139

W ORSHIN

D3.3 - Models for formal verification

Table 3.18: Mean and Max of the correlation results on 100 executions of VoLPE, S-Box of AES implemented with
MUX - encryption and decryption.

Hamming Weight | Hamming Distance
1 bit 8 bits 1 bit 8 bits

Mean with delays | 0,0339 0,0148 | 0,1931 0,1993

Max with delays | 0,1536 0,0511 | 0,3298 0,4529

3.6.6 Conclusions and Future works

We developed a tool called VoLPE, designed to quantify the power consumption leakage of a cir-
cuit by analyzing the toggle activity observed during its simulation. Our workflow relies exclusively
on open-source tools. Because our analysis is based on the simulation of a synthesized netlist,
it provides more realistic results compared to approaches that evaluate higher-level descriptions
of cryptographic components.

Our methodology consists of the following key steps.

* Modeling power consumption: We identified a meaningful way to model a circuit’s power
consumption during computation. Since dynamic power consumption primarily arises from
switching activity, i.e., changes in signal values from 0 to 1 and vice versa, we chose to
model power based on the number of such transitions, commonly referred to as toggles.

» Defining input-related metrics: To correlate input data with power consumption, we de-
fined a consumption model. Specifically, we considered metrics such as Hamming weight
and Hamming distance of the inputs.

The most notable result concerns the countermeasures applied to the nonlinear function xy. We
analyzed three protection schemes: a two shares threshold implementation, a three shares
threshold implementation, and the DOM (Domain-Oriented Masking) scheme. As discussed in
Section 3.6.5, when examining the mean correlation values for each gadget, the three shares
threshold implementation of y shows correlations that tend toward zero, indicating strong pro-
tection. In contrast, our tool detects potential leakage in the other two cases (the two shares
implementation and the DOM-protected version). While leakage in the two shares implemen-
tation is expected due to its lower security order, the result for the DOM-protected x is more
surprising and warrants further investigation.

There are several potential improvements to be made in the implementation of the tool. In its
current state, only one power consumption model has been developed and integrated, along with
a limited set of selection functions and consumption models. Future enhancements could include
the incorporation of additional power models, selection functions, and consumption models, as
well as the ability for users to select the desired configuration before running computations.
Currently, VOLPE computes correlations only between the inputs and the power consumption
observed at the outputs of the gadget. A valuable extension would be the ability to simulate
probes at internal nodes of the circuit, enabling correlation analysis between inputs and power
consumption within specific sub-circuits.

ORSHIN D3.3 PU — public Page 123 of 139

W ORSHIN

D3.3 - Models for formal verification

Chapter 4

Summary, conclusion and outlook

The work in ORSHIN WP3 "Models for formal verification” has been very successful. Both the
task on micro-architectural side channels as well as the task on physical side channels have
produced significant results.

In the area of protection against micro-architectural side channels three hardware models were
developed. First, PROSPECT is a processor model that formally specifies the security guarantees
that a processor gives during speculative execution. Based on this model, we have formally
proven that constant-time code running on a PROSPECT processor is not vulnerable to Spectre
attacks. To show the feasibility of the proposed model, we have implemented a PROSPECT
compliant processor as an extension to an open-source RISC-V processor. This result has been
published at the prestigious Usenix Security conference [55].

The second and third models (AMi and Libra) follow the same model-driven approach to handle
other classes of micro-architectural attacks, more specifically control-flow leakage attacks. In
particular, AMi extends a processor with architectural features to handle control-flow leakage
attacks more efficiently using linearization and balancing, and Libra adds architectural features
that make balancing possible on a wider range of processors. We have again implemented both
models as an extension to an open-source RISC-V processor. AMi was published at IEEE S&P
[171] and Libra was published at ACM CCS [170].

Security and implementation cost in particular are critical for loT devices, which are the focus of
the ORSHIN project. Security does not come for free and will always require some overhead. It
is therefore important to understand how much this overhead can be reduced without sacrificing
security. With regards to physical side channels we worked in several directions.

We designed, implemented and manufactured a real silicon chip featuring three case studies of
state-of-the-art countermeasures, in order to examine gaps between security guarantees pro-
vided by theoretical models and practical implementations. We also performed comparative ex-
periments with state-of-the-art countermeasures on FPGA. In both cases our goal was to gain
deeper insight into discrepancies and help bridge the gap between theory and practice, which is
a primary objective of the ORSHIN project.

We have developed and implemented an open-source tool capable of analyzing hardware de-
signs for potential side-channel leakage. The entire workflow leading up to the use of the tool is
carried out using open-source electronic design automation tools, aligning with the objectives of
the ORSHIN project.

We have also developed several new countermeasures. The first countermeasure challenges an
assumption that is frequently made in current models for formal verification, is secure in prac-
tice, and leads to reduced implementation cost. In other words we have shown that current
models make an unnecessary assumption and this leads to bloated protected implementations.

ORSHIN D3.3 PU — public Page 124 of 139

D3.3 - Models for formal verification * ORSHIN

This result has been published at the DATE 2023 conference [102]. An extended version of
the DATE paper was published in the journal IEEE Transactions on Information Forensics and
Security [103].

The second countermeasure is tailored for applications with a strict requirement for low latency. In
such applications low latency is prioritized at the cost of greater chip area or higher randomness
cost, but they remain secondary design goals. We also implemented and evaluated our counter-
measure. It offers first-order security, is provable secure, and leads to reduced implementation
cost. Our prototype circuits are formally verified and secure in practice. This result has been
published at TCHES 2024 [158].

The third countermeasure is an extension of the second countermeasure to higher security or-
ders. Also here we designed the countermeasure and implemented and evaluated prototype
circuits in practice. The countermeasure provides provable higher-order security, and reduced
implementation cost compared to the state-of-the-art. Our prototype circuits are formally verified
and secure in practice. This result was published at TCHES 2025 [159].

Several prototype implementations of two countermeasures are available under an open-source
license and served as basis for the ORSHIN demonstrators reported in D3.2.

ORSHIN D3.3 PU — public Page 125 of 139

W ORSHIN

D3.3 - Models for formal verification

Bibliography

[1] Wokwi: chi with dom design, 2023. https://wokwi.com/projects/
341614374571475540.

[2] Wokwi: chi with three shares design, 2023. https://wokwi.com/projects/
341608574336631379.

[8] Wokwi: chi with two shares design, 2023. https://wokwi.com/projects/
341589685194195540.

[4] Yosys open synthesis suite, 2025. https://yosyshq.net/yosys/.

[5] Johan Agat. Transforming out timing leaks. In Proceedings of the 27th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 40-53. ACM, 2000.

[6] Sam Ainsworth and Timothy M. Jones. MuonTrap: Preventing cross-domain spectre-like
attacks by capturing speculative state. In ISCA, pages 132—-144. IEEE.

[7] Nadhem J. Al Fardan and Kenneth G. Paterson. Lucky thirteen: Breaking the tls and dtls
record protocols. In S&P, 2013.

[8] Martin R. Albrecht and Kenneth G. Paterson. Lucky microseconds: A timing attack on
amazon’s s2n implementation of tls. In EUROCRYPT, 2016.

[9] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida Garcia,
and Nicola Tuveri. Port contention for fun and profit. In S&P, 2019.

[10] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Frangois Dupressoir, and Michael
Emmi. Verifying constant-time implementations. In 25th USENIX Security Symposium
(USENIX Security 16), pages 53—70, 2016.

[11] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub.
Jasmin: High-assurance and high-speed cryptography. In CCS, pages 1807—-1823. ACM.

[12] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Frangois Dupressoir, and Michael
Emmi. Verifying constant-time implementations. In USENIX Security Symposium, pages
53-70. USENIX Association.

[13] AMD. Security Analysis of AMD Predictive Store Forwarding.
https://www.amd.com/system/files/documents/security-analysis-predictive-store-
forwarding.pdf.

ORSHIN D3.3 PU — public Page 126 of 139

https://wokwi.com/projects/341614374571475540
https://wokwi.com/projects/341614374571475540
https://wokwi.com/projects/341608574336631379
https://wokwi.com/projects/341608574336631379
https://wokwi.com/projects/341589685194195540
https://wokwi.com/projects/341589685194195540

D3.3 - Models for formal verification * ORSHIN

[14] Nadav Amit, Fred Jacobs, and Michael Wei. JumpSwitches: Restoring the performance of
indirect branches in the era of spectre. In USENIX Annual Technical Conference, pages
285-300. USENIX Association.

[15] Victor Arribas, Zhenda Zhang, and Svetla Nikova. LLTI: low-latency threshold implementa-
tions. IEEE Trans. Inf. Forensics Secur., 16:5108-5123, 2021.

[16] Qinkun Bao, Zihao Wang, Xiaoting Li, James R. Larus, and Dinghao Wu. Abacus: Precise
side-channel analysis. In ICSE, pages 797-809. IEEE.

[17] Kristin Barber, Anys Bacha, Li Zhou, Yingian Zhang, and Radu Teodorescu. SpecShield:
Shielding speculative data from microarchitectural covert channels. In PACT, pages 151—
164. IEEE.

[18] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuffrida. Branch
History Injection: On the Effectiveness of Hardware Mitigations Against Cross-Privilege
Spectre-v2 Attacks. In USENIX Security, August 2022. Intel Bounty Reward.

[19] Alessandro Barenghi, Guido Bertoni, Fabrizio De Santis, and Filippo Melzani. On the ef-
ficiency of design time evaluation of the resistance to power attacks. In 74th Euromicro
Conference on Digital System Design, Architectures, Methods and Tools, DSD 2011, Au-
gust 31 - September 2, 2011, Oulu, Finland, pages 777—-785. IEEE Computer Society,
2011.

[20] Gilles Barthe, Sonia Belaid, Gaétan Cassiers, Pierre-Alain Fouque, Benjamin Grégoire,
and Francgois-Xavier Standaert. maskverif: Automated verification of higher-order masking
in presence of physical defaults. In Kazue Sako, Steve A. Schneider, and Peter Y. A. Ryan,
editors, Computer Security - ESORICS 2019 - 24th European Symposium on Research
in Computer Security, Luxembourg, September 23-27, 2019, Proceedings, Part I, volume
11735 of Lecture Notes in Computer Science, pages 300-318. Springer, 2019.

[21] Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed
higher-order masking. In CCS, pages 116—129. ACM, 2016.

[22] Gilles Barthe, Sonia Belaid, Francois Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed
higher-order masking. In 23rd ACM Conference on Computer and Communications Se-
curity, volume October 2016, pages 116—129, United States, October 2016. Association
for Computing Machinery (ACM).

[23] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao, Tiago
Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. High-assurance cryptography
in the spectre era. In IEEE Symposium on Security and Privacy, pages 1884—1901. IEEE.

[24] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure compilation of side-channel
countermeasures: the case of cryptographic “constant-time”. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pages 328-343. IEEE, 2018.

[25] Gilles Barthe, Tamara Rezk, and Martijn Warnier. Preventing timing leaks through
transactional branching instructions. Electronic Notes in Theoretical Computer Science,
153(2):33-55, 2006.

ORSHIN D3.3 PU — public Page 127 of 139

D3.3 - Models for formal verification * ORSHIN

[26] Arthur Beckers, Lennert Wouters, Benedikt Gierlichs, Bart Preneel, and Ingrid Ver-
bauwhede. Provable secure software masking in the real-world. In Josep Balasch and
Colin O’'Flynn, editors, Constructive Side-Channel Analysis and Secure Design - COSADE
2022, volume 13211 of LNCS, pages 215-235. Springer, 2022.

[27] Sonia Belaid, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb. IronMask:
Versatile verification of masking security. Cryptology ePrint Archive, Paper 2021/1671,
2021.

[28] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new cryp-
tographic library. In LATINCRYPT, volume 7533 of Lecture Notes in Computer Science,
pages 159-176. Springer.

[29] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Keccak. Cryptology
ePrint Archive, Paper 2015/389, 2015.

[30] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro
Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. SMoTherSpectre: Exploiting
speculative execution through port contention. In CCS, pages 785-800. ACM.

[31] Begul Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and Gilles
Van Assche. Efficient and first-order dpa resistant implementations of keccak. In Aurélien
Francillon and Pankaj Rohatgi, editors, Smart Card Research and Advanced Applications,
pages 187-199, Cham, 2014. Springer International Publishing.

[32] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko. Optimal first-order
boolean masking for embedded iot devices. In Thomas Eisenbarth and Yannick Teglia,
editors, Smart Card Research and Advanced Applications - CARDIS 2017, volume 10728
of LNCS, pages 22—41. Springer, 2017.

[33] Marton Bognar, Jo Van Bulck, and Frank Piessens. Mind the gap: Studying the insecurity
of provably secure embedded trusted execution architectures. In S&P, 2022.

[34] Marton Bognar, Hans Winderix, Jo Van Bulck, and Frank Piessens. Microprofiler: Princi-
pled side-channel mitigation through microarchitectural profiling. In EuroS&P, 2023.

[35] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida. Constan-
tine: Automatic side-channel resistance using efficient control and data flow linearization.
In CCS, 2021.

[36] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut T. Kandemir. CaSym:
Cache aware symbolic execution for side channel detection and mitigation. In IEEE Sym-
posium on Security and Privacy, pages 505-521. IEEE.

[37] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the keys to the intel SGX kingdom with transient out-of-order execution. In USENIX
Security Symposium, pages 991-1008. USENIX Association, 2018.

[38] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking tran-
sient execution through microarchitectural load value injection. In IEEE Symposium on
Security and Privacy, pages 54—72. IEEE.

ORSHIN D3.3 PU — public Page 128 of 139

D3.3 - Models for formal verification * ORSHIN

[39] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp
Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A systematic evaluation of
transient execution attacks and defenses. In USENIX Security Symposium, pages 249—
266. USENIX Association.

[40] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp
Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A systematic evaluation of
transient execution attacks and defenses. In USENIX Security, 2019.

[41] Gaétan Cassiers, Benjamin Grégoire, Itamar Levi, and Frangois-Xavier Standaert. Hard-
ware private circuits: From trivial composition to full verification. IEEE Trans. Computers,
70(10):1677-1690, 2021.

[42] Gaétan Cassiers and Frangois-Xavier Standaert. Trivially and efficiently composing
masked gadgets with probe isolating non-interference. IEEE Trans. Inf. Forensics Secur.,
15:2542-2555, 2020.

[43] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M. Tullsen, Deian Stefan,
Tamara Rezk, and Gilles Barthe. Constant-time foundations for the new spectre era. In
PLDI, pages 913-926. ACM.

[44] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer, Yunlu Huang, Ran-
jit Jhala, and Deian Stefan. FaCT: A flexible, constant-time programming language. In
SecDev, pages 69-76. IEEE Computer Society.

[45] Chandler Carruth. Speculative Load Hardening. https://llvm.org/docs/SpeculativeLoadHardening.html.

[46] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound
approaches to counteract power-analysis attacks. In Michael J. Wiener, editor, Advances
in Cryptology - CRYPTO '99, volume 1666 of LNCS, pages 398—412. Springer, 1999.

[47] Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia, and Pramod Subramanyan. A
formal approach to secure speculation. In CSF, pages 288—-303. IEEE.

[48] Yun Chen, Lingfeng Pei, and Trevor E. Carlson. Afterimage: Leaking control flow data and
tracking load operations via the hardware prefetcher. In ASPLOS, 2023.

[49] Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison. Speculative
privacy tracking (SPT): Leaking information from speculative execution without compromis-
ing privacy. In MICRO, pages 607—622. ACM.

[50] Md Hafizul Islam Chowdhuryy and Fan Yao. Leaking secrets through modern branch pre-
dictor in the speculative world.

[51] Many contributors. Github repository: Tinytapeout/tinytapeout-02, 2022. https://github.
com/TinyTapeout/tinytapeout-02.

[52] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. Practical
mitigations for timing-based side-channel attacks on modern x86 processors. In 2009 30th
IEEE Symposium on Security and Privacy, pages 45—60. IEEE, 2009.

[53] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Binsec/Rel: Efficient relational
symbolic execution for constant-time at binary-level. In IEEE Symposium on Security and
Privacy, pages 1021-1038. IEEE.

ORSHIN D3.3 PU — public Page 129 of 139

https://github.com/TinyTapeout/tinytapeout-02
https://github.com/TinyTapeout/tinytapeout-02

D3.3 - Models for formal verification * ORSHIN

[54] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Hunting the haunter - efficient re-
lational symbolic execution for spectre with haunted RelSE. In NDSS. The Internet Society.

[55] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara Rezk, and
Frank Piessens. Prospect: Provably secure speculation for the constant-time policy. In
Joseph A. Calandrino and Carmela Troncoso, editors, 32nd USENIX Security Sympo-
sium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023, pages 7161-7178.
USENIX Association, 2023.

[56] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara Rezk, and
Frank Piessens. Prospect: Provably secure speculation for the constant-time policy (ex-
tended version), 2023.

[57] Florian Dewald, Heiko Mantel, and Alexandra Weber. AVR processors as a platform for
language-based security. In European Symposium on Research in Computer Security,
pages 427—-445. Springer, 2017.

[58] Siemen Dhooghe, Svetla Nikova, and Vincent Rijmen. Threshold implementations in the
robust probing model. In Begul Bilgin, Svetla Petkova-Nikova, and Vincent Rijmen, editors,
Proceedings of ACM Workshop on Theory of Implementation Security, TIS@CCS 2019,
London, UK, November 11, 2019, pages 30-37. ACM, 2019.

[59] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schilaffer. Ascon v1.2.
Submission to Round 1 of the NIST Lightweight Cryptography project, 2019.

[60] Goran Doychev, Dominik Feld, Boris Koépf, Laurent Mauborgne, and Jan Reineke.
CacheAudit: A tool for the static analysis of cache side channels. In USENIX Security
Symposium, pages 431-446. USENIX Association.

[61] Goran Doychev and Boris Kopf. Rigorous analysis of software countermeasures against
cache attacks. In PLDI, pages 406—421. ACM.

[62] Aneesh Kandi et Al ascon-hw-public, 2024. https://github.com/ascon/
ascon-hardware.

[63] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and
Francgois-Xavier Standaert. Composable masking schemes in the presence of physical de-
faults & the robust probing model. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):89—
120, 2018.

[64] F.Pizlo. What spectre and meltdown mean for WebKit. https://webkit.org/blog/8048/what-
spectre-and-meltdown-mean-for-webkit/.

[65] Jacob Fustos, Michael Garrett Bechtel, and Heechul Yun. SpectreRewind: Leaking secrets
to past instructions. In ASHES@CCS, pages 117-126. ACM.

[66] Jacob Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An efficient data-centric
defense mechanism against spectre attacks. In DAC, page 61. ACM.

[67] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis: Con-
crete results. In Cetin Kaya Kog, David Naccache, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2001, volume 2162 of LNCS, pages 251-261.
Springer, 2001.

ORSHIN D3.3 PU — public Page 130 of 139

https://github.com/ascon/ascon-hardware
https://github.com/ascon/ascon-hardware

D3.3 - Models for formal verification * ORSHIN

[68] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. 8(1):1-27.

[69] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. Journal of Cryptographic
Engineering, 8(1):1-27, 2018.

[70] GitHub. Openlane, 2025. https://github.com/The-OpenROAD-
Project/OpenLane/tree/master.

[71] GitHub. opensta, 2025. https://github.com/The-OpenROAD-Project/OpenSTA.

[72] Gilbert Goodwill, Benjamin Jun, Joshua Jaffe, and Pankaj Rohatgi. A testing methodology
for side-channel resistance validation. In NIST Non-Invasive Attack Testing Workshop,
2011.

[73] Louis Goubin and Jacques Patarin. DES and differential power analysis (the "duplication”
method). In Cetin Kaya Kog¢ and Christof Paar, editors, Cryptographic Hardware and Em-
bedded Systems - CHES’ 99, volume 1717 of LNCS, pages 158—172. Springer, 1999.

[74] Hannes Grof3, Rinat lusupov, and Roderick Bloem. Generic low-latency masking in hard-
ware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1-21, 2018.

[75] Hannes Grof3, Stefan Mangard, and Thomas Korak. Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. In Begul Bilgin, Svetla
Nikova, and Vincent Rijmen, editors, Theory of Implementation Security - TIS@CCS 2016,
page 3. ACM, 2016.

[76] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking: Com-
pact masked hardware implementations with arbitrary protection order. Cryptology ePrint
Archive, Paper 2016/486, 2016.

[77] Hannes Gross, David Schaffenrath, and Stefan Mangard. Higher-order side-channel pro-
tected implementations of keccak. In 2017 Euromicro Conference on Digital System Design
(DSD), pages 205-212, 2017.

[78] Hannes GroB3, Ko Stoffelen, Lauren De Meyer, Martin Krenn, and Stefan Mangard. First-
order masking with only two random bits. In Begl Bilgin, Svetla Petkova-Nikova, and
Vincent Rijmen, editors, Theory of Implementation Security - TIS@CCS 2019, pages 10—
23. ACM, 2019.

[79] Roberto Guanciale, Musard Balliu, and Mads Dam. InSpectre: Breaking and fixing mi-
croarchitectural vulnerabilities by formal analysis. In CCS, pages 1853-1869. ACM.

[80] Marco Guarnieri, Boris Kopf, José F. Morales, Jan Reineke, and Andrés Sanchez. Spectec-
tor: Principled detection of speculative information flows. In IEEE Symposium on Security
and Privacy, pages 1-19. |EEE.

[81] Marco Guarnieri, Boris Kopf, Jan Reineke, and Pepe Vila. Hardware-software contracts
for secure speculation. In IEEE Symposium on Security and Privacy, pages 1868—1883.
IEEE.

ORSHIN D3.3 PU — public Page 131 of 139

W ORSHIN

D3.3 - Models for formal verification

[82] Shengjian Guo, Yueqgi Chen, Peng Li, Yuegiang Cheng, Huibo Wang, Meng Wu, and
Zhigiang Zuo. SpecuSym: Speculative Symbolic Execution for Cache Timing Leak De-
tection.

[83] Shaobo He, Michael Emmi, and Gabriela F. Ciocarlie. Ct-fuzz: Fuzzing for timing leaks. In
ICST, pages 466—471. IEEE.

[84] Jann Horn. Speculative execution, variant 4: Speculative store bypass.
https://bugs.chromium.org/p/project-zero/issues/detail ?7id=1528.

[85] NewAE Technology Inc. Newae technology inc., chipwhisperer husky, 2020.
https://www.newae.com/product-page/chipwhisperer-husky.

[86] NewAE Technology Inc. Chipwhisperer-husky starter Kkit, 2023.
https://chipwhisperer.readthedocs.io/en/latest/Capture/ChipWhisperer-Husky.html.

[87] Teledyne LeCroy Inc. Operator's manual, wavesurfer 3000 oscilloscopes. User Manual,
November 2014.

[88] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume
2729 of LNCS, pages 463—481. Springer, 2003.

[89] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe,
Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. “they’re not that hard to mitigate”:
What cryptographic library developers think about timing attacks. In S&P, 2022.

[90] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry Ev-
tyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. SafeSpec: Banishing the spectre
of a meltdown with leakage-free speculation. In DAC, page 60. ACM.

[91] Sungkeun Kim, Farabi Mahmud, Jiayi Huang, Pritam Majumder, Neophytos Christou, Ab-
dullah Muzahid, Chia-Che Tsai, and Eun Jung Kim. ReViCe: Reusing victim cache to
prevent speculative cache leakage. In SecDev, pages 96—107. IEEE.

[92] David Knichel and Amir Moradi. Low-latency hardware private circuits. In Heng Yin, Ange-
los Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA,
USA, November 7-11, 2022, pages 1799-1812. ACM, 2022.

[93] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical independence and
leakage verification. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptol-
ogy - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Pro-
ceedings, Part I, volume 12491 of Lecture Notes in Computer Science, pages 787—816.
Springer, 2020.

[94] David Knichel, Pascal Sasdrich, and Amir Moradi. Generic hardware private circuits to-
wards automated generation of composable secure gadgets. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2022(1):323-344, 2022.

ORSHIN D3.3 PU — public Page 132 of 139

D3.3 -

W ORSHIN

Models for formal verification

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. In IEEE Symposium on Security
and Privacy, pages 1-19. |EEE.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO,
1999.

Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Annual International Cryptology Conference, pages 104—113. Springer, 1996.

Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, volume
1109 of LNCS, pages 104—113. Springer, 1996.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO,
volume 1666 of Lecture Notes in Computer Science, pages 388-397. Springer.

Boris Kopf and Heiko Mantel. Transformational typing and unification for automatically
correcting insecure programs. International Journal of Information Security, 6(2-3):107—
131, 2007.

Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael B. Abu-
Ghazaleh. Spectre returns! Speculation attacks using the return stack buffer. In WOOT @
USENIX Security Symposium. USENIX Association.

Dilip S. V. Kumar, Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. Low-cost
first-order secure boolean masking in glitchy hardware. In Design, Automation & Test in
Europe Conference & Exhibition, DATE 2023, Antwerp, Belgium, April 17-19, 2023, pages
1-2. IEEE, 2023.

S. V. Dilip Kumar, Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. Low-cost
first-order secure boolean masking in glitchy hardware. |IEEE Trans. Inf. Forensics Secur.,
20:2437-2449, 2025.

Adam Langley. ImperialViolet - Checking that functions are constant time with Valgrind.
https://www.imperialviolet.org/2010/04/01/ctgrind.html.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. Inferring fine-grained control flow inside SGX enclaves with branch shadowing.
In 26th USENIX Security Symposium (USENIX Security 17), pages 557-574, 2017.

Andrew J. Leiserson, Mark E. Marson, and Megan A. Wachs. Gate-level masking under a
path-based leakage metric. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in Com-
puter Science, pages 580-597. Springer, 2014.

Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. Conditional speculation: An
effective approach to safeguard out-of-order execution against spectre attacks. In HPCA,
pages 264-276. |IEEE.

ORSHIN D3.3 PU — public Page 133 of 139

D3.3 - Models for formal verification * ORSHIN

[108] Mikko H. Lipasti and John Paul Shen. Exceeding the dataflow limit via value prediction. In
MICRO, pages 226-237. ACM/IEEE Computer Society.

[109] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. Value locality and load
value prediction. In ASPLOS, pages 138—147. ACM Press.

[110] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio
Canella, and Daniel Gruss. Platypus: Software-based power side-channel attacks on x86.
In S&P, 2021.

[111] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown: Reading kernel memory from user space. In USENIX Security Sym-
posium, pages 973—990. USENIX Association, 2018.

[112] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yingian Zhang. A survey of microarchitec-
tural side-channel vulnerabilities, attacks, and defenses in cryptography. ACM Comput.
Surv., 2021.

[113] CodeMagic LTD. Wokwi: World’s most advanced esp32 simulator, 2019. https://wokwi.
com/.

[114] Giorgi Maisuradze and Christian Rossow. Ret2spec: Speculative execution using return
stack buffers. In CCS, pages 2109-2122. ACM.

[115] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage of masked
CMOS gates. In Alfred Menezes, editor, Topics in Cryptology - CT-RSA 2005, volume 3376
of LNCS, pages 351-365. Springer, 2005.

[116] Ross Mcllroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest. Spectre is
here to stay: An analysis of side-channels and speculative execution. abs/1902.05178.

[117] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. CopyCat:
Controlled Instruction-Level attacks on enclaves. In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[118] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program counter
security model: Automatic detection and removal of control-flow side channel attacks. In In-
ternational Conference on Information Security and Cryptology, pages 156—168. Springer,
2005.

[119] Maria Chiara Molteni, Jirgen Pulkus, and Vittorio Zaccaria. On robust strong-non-
interferent low-latency multiplications. IET Information Security, 16(2):127—132, November
2021.

[120] Kazuki Monta, Makoto Nagata, Josep Balasch, and Ingrid Verbauwhede. On the un-
predictability of spice simulations for side-channel leakage verification of masked cryp-
tographic circuits. In Proceedings of the 60th Annual ACM/IEEE Design Automation Con-
ference, DAC ’23, page 1-6. IEEE Press, 2025.

[121] Thorben Moos, Felix Wegener, and Amir Moradi. DI-la: Deep learning leakage assessment:
A modern roadmap for sca evaluations. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2021(3):552-598, Jul. 2021.

ORSHIN D3.3 PU — public Page 134 of 139

https://wokwi.com/
https://wokwi.com/

D3.3 - Models for formal verification * ORSHIN

[122] Amir Moradi and Tobias Schneider. Side-channel analysis protection and low-latency in
action - - case study of PRINCE and midori -. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes in Computer Science, pages
517-547, 2016.

[123] Nicolai Muller and Amir Moradi. PROLEAD A probing-based hardware leakage detection
tool. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):311-348, 2022.

[124] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank
Piessens. Plundervolt: Software-based fault injection attacks against intel sgx. In S&P,
2020.

[125] Rishub Nagpal, Barbara Gigerl, Robert Primas, and Stefan Mangard. Riding the waves
towards generic single-cycle masking in hardware. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(4):693-717, 2022.

[126] NANGATE. The nangate 45nm open cell library. https://www.nangate. com.

[127] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implementations
against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and Ninghui Li,
editors, Information and Communications Security - ICICS 2006, volume 4307 of LNCS,
pages 529-545. Springer, 2006.

[128] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implementations
against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and Ninghui Li, edi-
tors, Information and Communications Security, pages 529-545, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[129] Hardware Design Group: Institute of Applied Information Processing and Austria Commu-
nications, Graz. ascon-hardware, 2023. https://github.com/ascon/ascon-hardware.

[130] Hardware Design Group: Institute of Applied Information Processing and Austria
Communications, Graz. ascon-hardware-sca, 2023. https://github.com/ascon/
ascon-hardware-sca

[131] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The
case of aes. In Topics in Cryptology — CT-RSA, 2006.

[132] Emmanuel Pescosta, Georg Weissenbacher, and Florian Zuleger. Bounded model check-
ing of speculative non-interference. In ICCAD, pages 1-9. IEEE.

[133] Frank Piessens. Security across abstraction layers: old and new examples. In EuroS&PW,
2020.

[134] Josh Poimboeuf. [PATCH v2 0/4] Static calls [LWN.net]. https:/lwn.net/ml/linux-
kernel/cover.1543200841.git.jpoimboe@redhat.com/.

[135] Sepideh Pouyanrad, Jan Tobias Muhlberg, and Wouter Joosen. SCF-MSP: static detection
of side channels in MSP430 programs. In 15th International Conference on Availability,
Reliability and Security (ARES), pages 1-10, 2020.

ORSHIN D3.3 PU — public Page 135 of 139

https://www.nangate.com
https://github.com/ascon/ascon-hardware
https://github.com/ascon/ascon-hardware-sca
https://github.com/ascon/ascon-hardware-sca

D3.3 - Models for formal verification * ORSHIN

[136] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Capkun. Frontal attack: Leaking
Control-Flow in SGX via the CPU frontend. In USENIX Security, 2021.

[137] Zhenxiao Qi, Qian Feng, Yuegiang Cheng, Mengjia Yan, Peng Li, Heng Yin, and Tao Wei.
SpecTaint: Speculative Taint Analysis for Discovering Spectre Gadgets. In NDSS. The
Internet Society.

[138] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Measures
and counter-measures for smart cards. In Smart Card Programming and Security, 2001.

[139] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA): measures
and counter-measures for smart cards. In Isabelle Attali and Thomas P. Jensen, editors,
Conference on Research in Smart Cards - E-smart 2001, volume 2140 of LNCS, pages
200-210. Springer, 2001.

[140] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida. Rage against the ma-
chine clear: A systematic analysis of machine clears and their implications for transient
execution attacks. In USENIX Security Symposium, pages 1451-1468. USENIX Associa-
tion.

[141] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital Side-Channels through
obfuscated execution. In 24th USENIX Security Symposium (USENIX Security 15), August
2015.

[142] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M Tullsen, and
Ashish Venkat. | see dead p.ops: Leaking secrets via intel/amd micro-op caches. page 14.

[143] Oscar Reparaz, Begul Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Verbauwhede.
Consolidating masking schemes. In Rosario Gennaro and Matthew Robshaw, editors, Ad-
vances in Cryptology - CRYPTO 2015, volume 9215 of Lecture Notes in Computer Science,
pages 764—783. Springer, 2015.

[144] Rajat Sadhukhan, Paulson Mathew, Debapriya Basu Roy, and Debdeep Mukhopadhyay.
Count your toggles: a new leakage model for pre-silicon power analysis of crypto designs.
J. Electron. Test., 35(5):605-619, October 2019.

[145] Gururaj Saileshwar and Moinuddin K. Qureshi. CleanupSpec: An "Undo” approach to safe
speculation. In MICRO, pages 73—-86. ACM.

[146] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Magnus
Sjalander. Efficient invisible speculative execution through selective delay and value pre-
diction. In ISCA, pages 723-735. ACM.

[147] Pascal Sasdrich, Begdl Bilgin, Michael Hutter, and Mark E. Marson. Low-latency hard-
ware masking with application to AES. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(2):300-326, 2020.

[148] Sneh Saurabh. RTL to GDS Implementation Flow, page 69-82. Cambridge University
Press, 2023.

[149] Tobias Schneider and Amir Moradi. Leakage assessment methodology - a clear roadmap
for side-channel evaluations. Cryptology ePrint Archive, Paper 2015/207, 2015.

ORSHIN D3.3 PU — public Page 136 of 139

D3.3 - Models for formal verification * ORSHIN

[150] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl, and Daniel
Gruss. ConTEXT: A generic approach for mitigating spectre. In NDSS. The Internet Society.

[151] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss. NetSpec-
tre: Read arbitrary memory over network. In ESORICS (1), volume 11735 of Lecture Notes
in Computer Science, pages 279-299. Springer.

[152] Laurent Simon, David Chisnall, and Ross Anderson. What you get is what you c: Control-
ling side effects in mainstream ¢ compilers. In EuroS&P, 2018.

[153] Luigi Soares, Michael Canesche, and Fernando Magno Quintao Pereira. Side-channel
elimination via partial control-flow linearization. =~ ACM Trans. Program. Lang. Syst.
(TOPLAS), 2023.

[154] Mohammadkazem Taram, Ashish Venkat, and Dean M. Tullsen. Context-sensitive fencing:
Securing speculative execution via microcode customization. In ASPLOS, pages 395-410.
ACM.

[155] Jan Philipp Thoma, Jakob Feldtkeller, Markus Krausz, Tim Glineysu, and Daniel J. Bern-
stein. BasicBlocker: ISA redesign to make spectre-immune CPUs faster. In RAID, pages
103-118. ACM.

[156] Elena Trichina. Combinational Logic Design for AES SubByte Transformation on Masked
Data. http://eprint.iacr.org/2003/236, 2003.

[157] Paul Turner. Retpoline: A software construct for preventing branch-target-injection.
https://support.google.com/fags/answer/7625886.

[158] Dilip Kumar S. V., Siemen Dhooghe, Josep Balasch, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Time sharing - A novel approach to low-latency masking. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2024(3):249-272, 2024.

[159] Dilip Kumar S. V., Siemen Dhooghe, Josep Balasch, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Higher-order time sharing masking. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2025(2):235-267, 2025.

[160] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying Microarchitec-
tural Timing Leaks in Rudimentary CPU Interrupt Logic. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 178—195. ACM,
2018.

[161] Daan Vanoverloop, Hans Winderix, Lesly-Ann Daniel, and Frank Piessens. Compiler sup-
port for control-flow linearization using architectural mimicry. 2024.

[162] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi, Rami Gdkhan
Kici, Ranijit Jhala, Dean M. Tullsen, and Deian Stefan. Automatically eliminating speculative
leaks from cryptographic code with blade. 5:1-30.

[163] Matt Venn. From idea to chip design in minutes!, 2022. https://tinytapeout.com/.

[164] Matt Venn. Tiny tapeout 2, 2022. https://tinytapeout.com/runs/tt02/.

ORSHIN D3.3 PU — public Page 137 of 139

http://eprint.iacr.org/2003/236
https://tinytapeout.com/

W ORSHIN

D3.3 - Models for formal verification

[165] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Abhik
Roychoudhury. KLEESpectre: Detecting information leakage through speculative cache
attacks via symbolic execution. 29(3):14:1-14:31.

[166] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Abhik Roy-
choudhury. Oo7: Low-overhead Defense against Spectre Attacks via Program Analysis.

[167] Ofir Weisse, lan Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris Kasikci. NDA: Pre-
venting speculative execution attacks at their source. In MICRO, pages 572-586. ACM.

[168] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MicroWalk: A
framework for finding side channels in binaries. In ACSAC, pages 161-173. ACM.

[169] Jan Wichelmann, Florian Sieck, Anna Patschke, and Thomas Eisenbarth. Microwalk-ClI:
Practical side-channel analysis for JavaScript applications. abs/2208.14942.

[170] Hans Winderix, Marton Bognar, Lesly-Ann Daniel, and Frank Piessens. Libra: Architec-
tural Support For Principled, Secure And Efficient Balanced Execution On High- End Pro-
cessors. In ACM SIGSAC Conference on Computer and Communications Security (CCS),
2024.

[171] Hans Winderix, Marton Bognar, Job Noorman, Lesly-Ann Daniel, and Frank Piessens.
Architectural mimicry: Innovative instructions to efficiently address control-flow leakage in
data-oblivious programs. In S&P, 2024.

[172] Hans Winderix, Jan Tobias Mihlberg, and Frank Piessens. Compiler-assisted hardening
of embedded software against interrupt latency side-channel attacks. In EuroS&P, 2021.

[173] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating timing side-
channel leaks using program repair. In Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pages 15—26, 2018.

[174] Meng Wu and Chao Wang. Abstract interpretation under speculative execution. In PLDI,
pages 802—-815. ACM.

[175] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W. Fletcher, and
Josep Torrellas. InvisiSpec: Making speculative execution invisible in the cache hierarchy.
In MICRO, pages 428-441. IEEE Computer Society.

[176] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low noise, 13 cache
Side-Channel attack. In 23rd USENIX Security Symposium (USENIX Security 14), pages
719-732, 2014.

[177] Jiyong Yu, Lucas Hsiung, Mohamad EIl Hajj, and Christopher W. Fletcher. Data oblivious
ISA extensions for side channel-resistant and high performance computing. In NDSS,
2019.

[178] Jiyong Yu, Trent Jaeger, and Christopher Wardlaw Fletcher. All your pc are belong to us:
Exploiting non-control-transfer instruction btb updates for dynamic pc extraction. In ISCA,
2023.

[179] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christo-
pher W. Fletcher. Speculative taint tracking (STT): A comprehensive protection for specu-
latively accessed data. In MICRO, pages 954—-968. ACM.

ORSHIN D3.3 PU — public Page 138 of 139

D3.3 - Models for formal verification * ORSHIN

[180] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin

Beurdouche. HACL*: A verified modern cryptographic library. In CCS, pages 1789-1806.
ACM.

[181] Danilo Sijagi¢, Josep Balasch, Bohan Yang, Santosh Ghosh, and Ingrid Verbauwhede.
Towards efficient and automated side channel evaluations at design time. In Lejla Batina,
Ulrich Kiihne, and Nele Mentens, editors, PROOFS 2018. 7th International Workshop on

Security Proofs for Embedded Systems, volume 7 of Kalpa Publications in Computing,
pages 16—-31. EasyChair, 2018.

ORSHIN D3.3 PU — public Page 139 of 139

	Introduction
	Models for formal reasoning about software and micro-architectural side-channel leakage in processors
	ProSpeCT: Provably Secure Constant-Time Speculation
	Introduction
	Problem Statement
	Informal Overview
	Further information

	Architectural Mimicry: Innovative Instructions to Efficiently Address Control-Flow Leakage
	Introduction
	Problem Statement
	Assumptions and Security Objectives
	Informal overview of Architectural Mimicry
	Further information

	Libra: Architectural Support For Principled, Secure And Efficient Balanced Execution On High-End Processors
	Introduction
	Terminology and Background
	Threat Model
	Overview of Libra
	Advanced Features
	Hardware-Software Security Contract
	Further information

	Models for formal verification of resistance of open-source cryptographic hardware against physical side-channel and fault injection attacks
	Low-cost first-order secure boolean masking in glitchy hardware
	Introduction
	Low-Cost Masked AND2 Gadget
	Composing Secure Masked Circuits
	Further information

	Time sharing - A novel approach to low-latency masking
	Introduction
	Preliminaries
	Time Sharing Masking
	Advantages of TSM
	Further information

	Higher-Order Time Sharing Masking
	Introduction
	Preliminaries
	Higher-Order Time Sharing Masking (HO-TSM)
	Further information

	Side-channel analysis of three designs in Tiny Tapeout board
	Introduction
	Acquisition setup
	Acquisitions with the LED connected
	Acquisitions with the LED disconnected
	Conclusions and Future works

	Leakage assessment of some implementations of Ascon with countermeasures
	Introduction
	State of the art
	Experiments
	Conclusions and Future works

	Side-channel leakages analysis with VoLPE
	Introduction
	Workflow and Exploited tools
	Structure of VoLPE
	Results
	Testing and results
	Conclusions and Future works

	Summary, conclusion and outlook
	Bibliography

