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Executive Summary 

Deliverable D4.1 presents the successful implementation of Work Package 4, focused on pre-silicon 

security testing of embedded firmware. It comprises of two key tasks: 

• Task 4.1: Fault Injection Emulation 

Developed a hardware-assisted framework for fault injection on RISC-V systems, featuring 

a custom debug module and automatic code hardening via instruction duplication. 

• Task 4.2: Logical Vulnerability Testing 

Introduced the Software Testing Acceleration Module (STAM) for hybrid fuzzing and 

symbolic execution, enabling efficient tracing and code gadget resolution. This approach 

significantly improves vulnerability detection and outperforms existing tools. 

The prototype, publicly available with full documentation, includes FPGA bitfiles, firmware and driver 

for the debug connector, fault injection and hybrid fuzzing testing frameworks, a modified OpenOCD, 

and example test code. 

These contributions mark a major advancement in firmware security testing, combining hardware 

acceleration with intelligent software techniques while the open-source nature of the tools promotes 

broad adoption and collaboration. 
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Chapter 1 Introduction 

This deliverable presents the outcomes of Work Package 4 (WP4) of the ORSHIN project, which 

aims to enhance the security and resilience of embedded systems through open-source innovation. 

Task 4.1 and 4.2 of WP4 focus on pre-silicon security testing of firmware, addressing both physical 

and logical vulnerabilities in RISC-V-based platforms. 

As embedded systems become increasingly prevalent in critical applications, ensuring their security 

at the earliest stages of development is essential. Traditional post-silicon testing methods are often 

insufficient for detecting subtle or hardware-dependent vulnerabilities. Moreover, the open-source 

nature of RISC-V hardware introduces new opportunities—and challenges—for scalable, 

transparent, and collaborative security validation. WP4 responds to these challenges by developing 

hardware-accelerated, open-source frameworks for fault injection and logical vulnerability testing, 

enabling comprehensive pre-silicon evaluation of firmware security, while the prototypes resulted 

from the tasks T4.1 and T4.2 will be made publicly available. 

T4.1 introduces a hardware-assisted fault injection testing framework built around a custom Fault 

Injection Module (FIM). This module, integrated into an FPGA-emulated SoC, enables debugger-

driven instruction skip emulation and supports automated code hardening using duplication-based 

countermeasures tailored to the RISC-V instruction set. The framework leverages a high-speed 

QSPI interface and custom debug module extensions to achieve efficient and scalable testing. 

T4.2 extends this infrastructure with the Software Testing Acceleration Module (STAM), which adds 

hardware-assisted instruction and branch tracing capabilities. STAM introduces custom debug 

registers and a hardware-accelerated binary search engine to support high-throughput trace 

resolution. These enhancements enable a hybrid fuzzing framework that combines feedback-guided 

fuzzing with symbolic execution, significantly improving code coverage and vulnerability detection. 

The report begins with Chapter 1, which introduces the scope, motivation, and objectives of Work 

Package 4 within the ORSHIN project. Chapter 2 focuses on T4.1, detailing the design and 

implementation of a hardware-assisted fault injection testing framework. It covers the background 

on fault models, the rationale for using FPGA-based emulation, the architecture of the FIM, and the 

development of a code hardening tool tailored to the RISC-V instruction set. Chapter 3 presents 

T4.2, which extends the FIM into the STAM to support advanced software testing techniques. This 

chapter describes the tracing mechanisms, hybrid fuzzing methodology, and the integration of 

symbolic execution for improved vulnerability detection. Chapter 4 summarizes the key results and 

discusses future directions for research and development. The report concludes with Chapter 5, 

which provides a list of abbreviations used throughout the document, and Chapter 6, which compiles 

the references cited in the report. 

This deliverable provides a comprehensive technical account of the methodologies, 

implementations, and performance evaluations conducted in WP4, offering a robust foundation for 

further research and development in secure open-source embedded systems. 

 

Update: comparing to iD4.1, this deliverable contains reworked Chapter 3, as well as updated 

executive summary, introduction and conclusion chapters. 
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Chapter 2 Task 4.1 

2.1 Task Description 

Task 4.1 Design for Hardware/Firmware hybrid security testing (M03-M33; Task Lead: NXP) 

Closed-source hardware in production is not designed for security testing (i.e., limited introspection 

capability), making the security testing very challenging for traditional security testing methods (e.g., 

fuzzing, symbolic execution). In this task, we will design and implement novel and custom hardware 

accelerators for software security testing. The proposed method will enable hardware and software 

co-testing. 

 

2.2 Background on Fault attacks and code hardenings 

This section highlights the research conducted on fault injection, in particular on physical attacks that 

exploit hardware vulnerabilities. Additionally, instruction skip fault model is discussed as a fault effect 

commonly observed in silicon devices. Furthermore, the section delves into software-implemented 

fault tolerance and control flow integrity techniques as a mean to harden a system against faults. 

Finally, the section reviews studies which focus on emulating fault injection especially with a help of 

a debugger. 

 

2.2.1 Hardware Fault Injection Attacks 

Hardware-based fault injection involves introducing errors into the system by physically altering the 

hardware of the system. A comprehensive survey of distinct fault injection approaches is presented 

in [4], [5], [6]. In [7], multiple fault injection attacks on microcontroller-based cryptographic algorithm 

implementations are demonstrated. In [8], the practicality of fault injections is examined through 

empirical research. A systematic examination of fault injections in Internet-of-Things devices is 

conducted in [9]. 

 

2.2.2 Instruction Skip Fault Model 

The instruction skip fault model is a commonly studied fault model in the field of computer 

architecture and digital circuit design. This fault model occurs when one or more consecutive 

instructions in a program are not executed due to a fault in the hardware or software of the system. 

The number of instructions being skipped varies depending on the part of the system being corrupted 

(CPU fetches, pre-fetches, caches, instructions being read from memory lines). Faults in decoding 

and execution stage of the processor, results in greater variety of faults, that we will add to our 

simulation engine in a second stage. Here, we list some examples of works that achieved either 

single or multiple instruction skips through fault injection. 

Single instruction skip is a fault effect frequently seen in fault injection testing of many 

microcontrollers. A recent work [10] that was presented at Black Hat 2022 utilizes Voltage Fault 

Injection (VFI) for skipping a single instruction at different points in time in order to defeat ARM 

TrustZone. The work from [11] showed an exploit where VFI was used to escalate privilege in Linux 

from user space. Balasch et al. [12] investigated the effects of clock glitches on an 8-bit 

microcontroller and provided a possible explanation for the observed instruction skip. Colombier et 
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al. in [13] proposed a technique that uses multiple lasers in order to induce multiple single-bit faults 

in an ARM Cortex-M3. Menu et al. [14] investigated electromagnetic (EM) fault injections and 

questioned an EM fault model since the authors could skip multiple consecutive instructions with 

their method. Proy et al. [15] studied EM pulse effects at the ISA (instruction set architecture) level. 

Multiple Instruction Skip is less common but still dangerous fault effect is the multiple instruction skip 

which can be achieved either due to multiple glitches in a row or a single glitch impacting the critical 

path in the cores instruction pipeline. Rivière et al. [16] managed to skip up to four consecutive 

instructions by electromagnetically faulting the instruction cache of an ARM Cortex-M CPU. Blömer 

et al. [17] utilized multiple clock fault injections for attacking two consecutive instructions. Dutertre et 

al. [18] were able to skip groups of instructions by laser illumination on an 8-bit non-secure 

ATmega328P microcontroller. Yuce et al. [19] were able to skip multiple instructions stored in the 

target’s pipeline with clock glitches in a 32-bit LEON3 processor on a Xilinx FPGA. The authors of 

[20] reported EM-induced skips of up to six consecutive instructions with low repeatability on a RISC-

V FPGA implementation. 

 

2.2.3 Software-Implemented Fault Tolerance 

Software-Implemented Fault Tolerance (SWIFT) is an approach to improving the reliability of 

software systems by incorporating fault-tolerant techniques like error-detection and redundancy 

mechanisms directly into the software code with a goal to harden systems against fault models, 

particularly instruction skip faults. Moro et al. [21] provided a formal proof showing the efficiency of 

redundancy-based countermeasures against a single instruction skip. Their countermeasure 

consists of in replacing a non-idempotent instruction with an idempotent one and duplicating it. 

Replacement schemes were provided for the ARM instruction set, followed by a formal proof of 

countermeasure efficiency. We adopt this approach for the RISC-V instructions in our code 

hardening tool. In [22] Moro et al. performed evaluation of two countermeasures by launching 

physical fault attacks and assessing the impact. Barenghi et al. [23] proposed software 

countermeasures for cryptographic algorithms including intrusion and fault detection. Barry et al. [24] 

implemented a LLVM compiler extension which protects against instruction skip attacks. Sharif et al. 

[25] developed a compiler framework targeting RISC-V processors which hardens code using 

various fault tolerance techniques. Schirmeier et al. [26] provided a fault injection framework for 

detecting vulnerable code by emulating faults with a debugger. Kiaei et al. [27] perform assembly 

rewriting and lift an x86 binary to an intermediate representation in order to harden vulnerable 

instructions which they discover by emulating fault injections. 

 

2.2.4 Emulated Fault Injection 

In fault injection emulation, the FPGA is programmed to replicate faults that might occur in the actual 

hardware, such as electrical or logical faults, to assess how a system or software responds to these 

faults. A debugger can be used to change the software behavior simulating possible fault effects at 

the software level. Here we highlight works, where a debugger is used for injection of the faults as it 

is done in our work. Portela-Garcia et al. [28] utilized the On-Chip Debugger (OCD) to inject faults 

into a microcontroller that supported JTAG debugging Fault Tolerance for RISC-V capabilities. 

Instead of controlling the fault injection campaign from the host, they moved the controlling logic to 

a separate Systems on Programmable Chip (SoPC) and the host only configures the fault injection 

campaign via communication with SoPC. Mosdorf et al. [29] injected faults using the GDB debugger 

and a J-Link debugger via the JTAG interface of an ARM device. Schirmeier et al. [30] provided a 
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fault injection framework for assessing the fault tolerance of a system by emulating faults with a 

debugger on multiple emulators. Zhang et al. [31] utilized a debugger for the fault injection testing of 

a real-time operating system. Ahmad et al. [32] developed a fault injection framework based on a 

debugger for x86 CPUs and used GDB to interrupt the program’s execution to inject faults at runtime. 

 

2.3 Concept Proposal 

Hybrid software-hardware testing offers a comprehensive approach to security assessment by 

combining the strengths of both software and hardware-based testing methodologies. 

By integrating software-based techniques such as static and dynamic analysis with hardware-based 

approaches like fault injection and side-channel analysis, hybrid testing provides a more thorough 

evaluation of system vulnerabilities.  

This approach enables the detection of both logical vulnerabilities in software code and physical 

vulnerabilities arising from hardware-level weaknesses, offering a more holistic view of system 

security compared to emulator-based testing. 

Hybrid testing facilitates the identification of complex attack vectors that span across software and 

hardware components, allowing for more effective mitigation strategies to be developed. For 

example, it can identify vulnerabilities which are timing/hardware dependant and could be overlooked 

when testing with an emulated virtual environment, which consists of an ISA simulator and C-model 

of the hardware peripherals such as crypto-accelerators, firewalls, key-management blocks, memory 

subsystem etc. 

Pre-silicon fault injection testing plays a crucial role in ensuring the reliability and security of 

integrated circuits before they are fabricated, or "taped out," for production. This testing methodology 

involves intentionally inducing faults or errors in the hardware design to assess its resilience against 

various fault injection attacks, such as voltage glitches, laser attacks, or electromagnetic 

interference. Identifying vulnerabilities at the pre-silicon stage is paramount for mitigating the risk of 

costly production errors and security breaches. 

One of the primary reasons, why pre-silicon fault injection testing is critical, is its ability to uncover 

design flaws and vulnerabilities early in the development process. By subjecting the hardware design 

to simulated fault injection attacks, designers can identify weak points in the system architecture, 

logic gates, or memory elements that may be susceptible to exploitation by malicious actors or 

environmental factors. Addressing these vulnerabilities before tape-out reduces the likelihood of 

costly design iterations or product recalls during the later stages of production. 

Moreover, pre-silicon fault injection testing helps to validate the effectiveness of built-in security 

mechanisms, such as error detection and correction codes, redundancy schemes, and secure boot 

mechanisms. By subjecting these mechanisms to simulated fault injection attacks, designers can 

assess their robustness and identify any potential weaknesses that may compromise the security of 

the system. Strengthening these security features early in the design phase enhances the overall 

security posture of the integrated circuit and reduces the risk of post-production security breaches. 

Three approaches are possible for pre-silicon fault injection testing, resumed in Figure 1. First 

approach is fault injection in RTL simulation, which has as advantages to provide a detailed, cycle-

accurate representation of the hardware design, to enable precise control over fault injection 

scenarios and parameters and to allow for comprehensive testing of the entire system, including 

complex interactions between hardware components. It also has disadvantages as it requires 

significant computational resources and simulation time, limiting scalability, and it may overlook 

timing-related issues or non-deterministic behaviour due to simulation abstraction. Additionally 

matching a physical attack fault model, to several gates that must be flipped is not trivial. 
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The second approach is fault injection on an Instruction set simulator with hardware peripherals 

represented as C Models. The advantages of such a representation offer a balance between 

accuracy and simulation speed, making it suitable for large-scale testing, allow for the integration of 

software and hardware fault injection techniques, enabling more realistic testing scenarios, and 

facilitate the reuse of existing software test suites and development tools. It has the disadvantages 

that it offers limited accuracy compared to full RTL simulation, particularly for timing-sensitive 

designs, and relies on the accuracy of C models to represent hardware peripherals, which may 

introduce abstraction errors. 

Finally, the third approach, and the one we focus in this task, is to emulate fault injection on an 

FPGA. It has as advantage to provide a hardware-based testing environment, offering real-time 

execution and accurate timing, allow for the injection of faults directly into the physical hardware, 

enabling realistic testing scenarios and facilitate rapid prototyping and iterative testing, reducing 

development time and cost. 

As for the other methodologies, it presents several drawbacks. It requires additional effort and 

expertise to implement fault injection capabilities on the FPGA, it offers limited scalability for testing 

large-scale designs or complex systems and it may incur higher upfront costs for FPGA development 

boards and associated tools. 

In summary, each pre-silicon fault injection methodology offers distinct benefits and drawbacks, 

depending on the specific requirements and constraints of the hardware design and testing 

objectives. Full RTL simulation provides detailed accuracy but may be resource-intensive, while 

simulation with C models balances accuracy with speed. FPGA emulation offers real-time testing 

but requires additional setup and may have scalability limitations. Choosing the most appropriate 

methodology depends on factors such as design complexity, testing goals, and available resources. 

 

 

2.4 Task Objectives 

Figure 1: Classification of Pre-Silicon Physical Attack Testing 
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The main objective of Task 4.1 is to design and implement a state-of-the-art, open source, hardware 

accelerator for software FI testing on FPGA emulated system (see Figure 2). 

The proposed method would enable hardware and software pre-silicon co-testing of fault injection 

with various fault models. 

We leverage the open source instruction set RISC-V and related open sourced hardware 

implementations to prototype our solution. The Hardware implementation and Software testing is 

performed on RV32IMC architecture. 

We selected the FPGA emulation platform based on core CV32E40P from OpenHW [1] for our 

development, which is a mature open source project offering years of code support, and a large 

community that can possibly become user of our solution. In particular the open source project offers 

full FPGA emulation, from which we can build our demonstrator, and run software on a custom 

hardware variation of the SoC. 

We named our custom block Fault Injection Module (FIM), This block enables direct instrumentation 

of the RISCV core by a direct control of the Debug module. This module also implements its own 

high speed protocol to optimize host communication and enable tracing and large memory 

snapshotting in future developments of T4.2. The design of the FIM module has been integrated into 

our demonstrator. 

On the host side we develop a SW test framework using FIM and debug module instrumentation to 

perform emulated fault injection on FPGA. Thanks to the direct control of the debug module, we will 

have full CPU control with breakpoint capability and memory accesses. The design is kept to a 

minimal size to limit resource utilization on FPGA. Furthermore, leveraging insights gained from the 

fault injection campaign, we present a technique to harden vulnerable instructions by implementing 

an assembly-level duplication-based countermeasure, adapted specifically for the nuances of the 

RISC-V instruction set. 

 

Figure 2: Design for Hardware/Firmware hybrid FI security testing 
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2.5 Design and Implementation 

2.5.1 Protection by Fault Injection Emulation 

In this section, we introduce a methodology for protecting a firmware against instruction skip attacks 

and provide an overview of the separate steps of the flow for code hardening. We call our approach 

Skip Protection by Fault Injection Emulation (SPFIE) and incorporate it into a framework for fault 

injection testing on an emulated RISC-V core. The framework can be used to embed continuous 

security testing into the development process of the software, since it provides an efficient fault 

injection testing and hardens code with minimal user interaction. Our framework is also capable of 

skipping an arbitrary number of instructions in the given software, which can be used for identifying 

vulnerable instructions or code snippets. A user provides a compiled binary that will be executed on 

the target emulated core and configures the framework to test a list of critical functions. The 

framework then performs fault injection (FI) testing by executing the binary on the core emulated 

with an FPGA and produces a list of vulnerable instructions that require additional protection. Our 

framework also requires access to the source code and build scripts of the software in order to be 

embedded into the build flow. Having the sources, our code hardening tool finds and replaces 

vulnerable instructions with a protected version of the original instruction. Finally, another iteration 

of the fault injection testing is performed on the hardened code in order to verify the absence of the 

previously detected vulnerabilities. 

The framework uses fault injection emulation to identify vulnerable instruction addresses and uses 

the results to patch the assembler language files. To ensure code security on each commit or major 

source code modification automatically, firmware developers can incorporate this framework into the 

build flow. 

 

The workflow is depicted in the following Figure 3. 

 

 

Figure 3: Workflow of our Fault Injection Framework 

 

Next, we elaborate on every step of the process: 

1. Generate and Build: Since our framework hardens the code at the assembly level, the 

assembler language files need to be generated from the C sources. From the assembler 

files, we build the initial binary for the fault injection campaign emulated on a FPGA. 
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2. FI testing: In this step, the user performs FI testing by skipping the configured amount of 

instructions for the given functions to test. The FI campaign results in a list of faulty addresses 

that, if skipped via a fault injection, can lead to exploitable behavior. 

3. Code Hardening: Given a list of faulty addresses, our code hardening tool performs a 

transformation and duplication of the faulty instructions. The patched instructions are then 

written to the assembler files. Detailed transformations of RISC-V instructions are described 

in a later section. 

4. Build and Verify: In the last step, the final binary is built from the patched assembler files, 

and another iteration of the FI testing on the final binary can be performed to confirm the 

absence of vulnerabilities and original functionality of the binary. 

By integrating the SPFIE methodology in the build flow of the firmware, the developers can 

continuously and automatically ensure the security of the code against instruction skip attacks, and 

a secure version of the binary can be released. By viewing the logs of the framework, the developers 

can get a direct feedback on the vulnerable instructions. This information can be analyzed in order 

to gain an understanding of how skipped instructions can impact the code execution. An advantage 

of this approach is scalability, since increasing the number of available emulators reduces the testing 

time linearly. The developers can set up additional emulators and uniformly distribute the test 

addresses across the emulators. Afterwards, the faulty addresses for each emulator instance can 

be collected and put together for the code hardening. A disadvantage of this approach is that it 

requires human guidance in form of provided names of the critical functions which are supposed to 

be tested and hardened. 

 

2.5.2 Debugger-Driven FI Testing 

This section delves into the specifics of debugger-driven fault injection testing framework, which is 

employed to skip instruction on an FPGA-emulated system-on-chip (SoC). Here, we describe how 

the FI campaign is performed and accelerated by a custom debug specification extension.  

The reason for opting for an emulation solution is the speed advantage it offers, whereby the code 

is executed directly on an emulated target device, allowing for full available execution speed. This 

facilitates the execution of binaries and the injection of faults much faster than simulation-based 

solutions, enabling us to conduct fault injection testing on a large number of instructions. For this 

purpose, an emulation environment needs to be configured to run tests. This includes setting up an 

FPGA with a synthesized design of the target SoC and establishing the communication to the debug 

module (DM). With an emulator set up, the user can start the fault injection campaign.  

The fault injection testing is controlled by a Fault Injection Controller (FIC) which manages the fault 

injection campaign by leveraging the debugger and the emulation setup in order to find vulnerable 

places in the assembly code. The basic idea is to inject faults upon hitting a breakpoint at a target 

instruction address. The debugger is used to configure special custom registers in the DM (discussed 

in the next section) to simulate an instruction skip. By detecting an address, where a fault is supposed 

to be injected, the DM alters the program counter according to the configuration. Before the FIC 

starts FI testing, the user evaluates the attackers ability and determines, how many instructions an 

attacker is potentially able to skip via fault injection into the particular SoC. This mainly depends on 

the targeted architecture, CPU pipeline stages and the memory subsystem from where instructions 

are fetched. It is a crucial information for the fault injection campaign and the subsequent code 

hardening, since our instruction duplication technique introduces fault tolerance to a degree which 

depends on attackers ability to skip a certain amount of instructions. The user also identifies and 
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provides a list of security critical functions in the binary that have to be tested. For each instruction 

address in the function-under-test (FUT), the FIC does the following steps: 

1. Reset the core to prevent interaction with the core state from the previous executions. 

2. Load the executable into the memory. 

3. Configure special registers in the DM for the automatic instruction skip. 

4. Set breakpoint at exception handler. 

5. Set breakpoint at last address of main function. 

6. Resume the binary execution. 

There are 3 possible outcomes of a single test run: the execution can time out, hit the breakpoint at 

the exception handler or successfully execute the program and hit the breakpoint at the end of the 

main function. The timeouts might need further investigation by the user. Execution of the exception 

handler is an indication of detected fault injection, since the program didn't complete its execution. If 

the program was executed successfully, that means the fault injection was not detected and silent 

data corruption might have happened. So, at the end of the fault injection campaign, the FIC invokes 

the code hardening routine and provides to it the list with faulty addresses for analysis. 

 

2.5.3 Debug Specification Extension 

To accelerate the fault injection campaign by minimizing host-to-target communication, we propose 

a modification to the on-chip debug module. This enhancement allows for more efficient instruction 

skipping. The openness of the RISC-V ecosystem grants access to the debug specification, offering 

room for custom debug features. Controlling the debug module involves manipulating its internal 

Control and Status Registers (CSRs), which includes 16 reserved registers designated for custom 

functionalities. By detailing our method at the debug specification level, we ensure its independence 

from specific debug module implementations, ensuring a level of portability across diverse RISC-V 

system designs. In the following, we outline the specifications of three custom registers, explaining 

their function in skipping an arbitrary number of instructions at runtime. This method optimizes the 

FI process, contributing to enhanced efficiency while maintaining adaptability across varying system 

architectures. 

The custom debug registers designed for instruction skipping are as follows: 

1. fi_address: This register stores the address of the target instruction where a fault is to be 

injected during a single test. Upon setting the fi_address, the DM sets a hardware breakpoint 

at the address in the fi_address register to be able to skip the target instruction before it is 

executed. 

2. hit_count: Within this register resides a numerical value indicating the number of times the 

target instruction must be executed before the fault injection is triggered. The DM should 

decrease the hit_count value by 1 every time the fi_address is encountered. Finally, if  

hit_count value is 0, the fault is injected and the hardware breakpoint at fi_address is 

removed. 

3. pc_delta: Contained in this register is a signed integer that dictates the program counter's 

advancement when the address specified in fi_address is encountered at least hit_count 

times. This value determines the shift in the program counter upon meeting the specified 

conditions. 

As one can see, using this construction, we can also skip multiple consecutive instructions as well 

by setting the pc_delta register accordingly. It is also possible to simulate more advanced fault 

models such as jump to an arbitrary address, which can be useful in some cases, like for testing 

unexpected control flow violations. 
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2.5.4 Code Hardening Tool 

The Code Hardening Tool (CHT) is invoked after the FI testing is completed. It gets the list of faulty 

addresses and the number of skipped instructions in the FI campaign, and its goal is to patch the 

faulty addresses in the assembler files by duplicating them. So, for each faulty address we need to 

find the corresponding group of assembly instructions in the sources and replace it with a duplicated 

sequence of idempotent instructions. An idempotent instruction is an instruction that can be executed 

multiple times without changing the result beyond the first execution. In other words, the effect of the 

instruction remains the same no matter how many times it is executed. Such instructions are useful 

for the fault-tolerant replacement sequences that we propose. If every instruction in such a sequence 

is duplicated more times than an attacker is able to skip, then every instruction in the sequence is 

executed at least once, and the execution of the duplicated idempotent instruction sequence does 

not lead to side effects that might change the result of the program's execution. 

We define five instruction classes for the RISC-V IMC instruction set: idempotent, separable, 

pseudo-instructions, compressed, and special instructions. 

• Idempotent instructions can be duplicated without any transformations. These include store 

and branching instructions as well as load and arithmetic instructions where every source 

operand differs from the destination operand. The CHT can duplicate such instructions 

directly without replacing them. 

 

• Separable instructions are arithmetic operations where one of the source operands is 

simultaneously the destination operand. Such instructions cannot be duplicated right away 

and need to be replaced using an extra register. The extra register needs to be free, meaning 

it should not have been used in the calculations before. 

 

• Pseudo-instructions in RISC-V are assembler directives that are not part of the official 

RISC-V instruction set but are provided by the assembler to make it easier for programmers 

to write code. Pseudo-instructions are translated by the assembler into one or more actual 

RISC-V instructions. When the CHT encounters such an instruction, it rewrites it using 

special, idempotent, and separable instructions. Afterwards, every instruction in the resulting 

sequence will be replaced by an idempotent one. 

 

• Compressed instructions are a subset of the RISC-V instruction set that uses 16-bit 

instructions instead of the standard 32-bit instructions. The compressed instruction set uses 

the same instruction formats as the standard instruction set, but with shorter opcodes and 

fewer operands. The compressed instructions will be "decompressed" by the CHT. The 

decompression process involves looking up the underlying instruction and multiplying an 

immediate value by a factor depending on the instruction. If the decompressed instruction is 

a separable or a special instruction, it will be transformed into an idempotent instruction 

accordingly. 

 

• Special. Three special instructions in the standard set, namely jal, jalr, and auipc, are 

generally not idempotent depending on operands. These instructions, commonly used for 

jumps and subroutine calls, require transformation sequences that always rely on label-based 

offsets within assembler files. This requirement arises because these instructions either use 

or alter the program counter, and introducing new instructions into the assembler files can 

affect their behavior. 
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In order to harden an instruction, the CHT expands the target instruction if it is a pseudo-instruction 

or decompresses it if it is a compressed instruction according to the instruction set specification. 

Each instruction in the resulting sequence will be then transformed and duplicated after the 

transformations. By duplicating each instruction in a sequence more times than the attacker can 

skip, we ensure that every instruction in the sequence will be executed at least once, and an attacker 

needs to be able to skip more instructions for a successful attack. 

An example of the protection process is depicted in the following Figure 4.  

 

We start by having a vulnerable group of two consecutive instructions: a compressed instruction 

c.add a0,s2 and a pseudo-instruction call fn. After the first step, the compressed instructions expand 

into a separable instruction add a0,a0,s2 and the pseudo-instruction expands into the special 

instruction jal ra,fn. After the applied transformation step, a return label is introduced, and the free 

temporary register t0 is used in the transformation of the separable and the special instruction. The 

instructions in the transformed sequence will be duplicated three times because the original group 

size was 2. Finally, the original instructions in the assembler files will be replaced by the fault-tolerant 

version. 

 

2.5.5 Hardware Implementation 

Our solution comprises of three distinct parts; The hardware module integrated in the SoC, which 

interfaces with the debug module internally and externally to a master controller using a QSPI custom 

interface, the controller which interfaces our host machine via USB2 and our embedded module 

using QSPI interface and the Host test framework which controls the overall testing and execution 

on the target. 

The host controller can be for example a computer, which communicates to the DUT via a USB-to-

SPI bridge implemented for example on a Teensy 4.1 [2] board.  

The host sets the hardware breakpoint. The CPU executes normally until it hits the breakpoint. The 

CPU executes the debug code (in the debug ROM). 

Figure 4: Example of Protected Assembly Code 
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The debug code must contain the instruction to jump into FIM code. The CPU performs the 

programmed skip and continues the execution. The host can be programmed to automatically 

emulate and monitor different scenarios (i.e. different locations of the breakpoint and different skip 

mechanics). 

Fault Injection Module (FIM) 

The FIM module, integrated in an SoC, can be used to emulate fault injection. 

This component is especially useful to perform fault injection analysis at highspeed on FPGA, to 

develop countermeasures pre-silicon. 

The basic functionality offered by the FIM can be described as a high-speed interface to the CPU’s 

debug module (DM), coupled with a tiny SRAM which extends the debug ROM included in the DM. 

By leveraging the functionalities offered by the DM, fault injection can be emulated by setting a 

hardware breakpoint and modifying the CPU’s program counter (PC) after reaching the breakpoint. 

An alternative approach could have been the implementation of something like an “hardware 

OpenOCD” This would have surely granted faster execution speed (since it would have required less 

messages exchanged between the host and the DUT), but would have required the implementation 

of a more complex and harder to maintain FIM module. 

The selected architecture, on the contrary, has been developed quickly and can support different 

test strategies, which can be easily implemented on the host controller. 

 

Figure 5: Block diagram of the FIM module 

 

Debug Controller 

We based our controller on the Arduino based Teensy board [2]. The Teensy board runs a 

communication dispatcher, where it monitors incoming transactions from slave interface. It is 

connected to the host computer with a full speed USB2 and receives serial commands. The incoming 

commands to the FIM can be packed in multiple individual commands to the DMI. Commands are 

unpacked and transferred to the slave interface, a custom QSPI protocol. The QSPI interface is 

implemented as software code, but instrumenting a single IO register bank of the Teensy, which 

gives it a hardware QSPI behaviour. Moreover the Teensy controller is clocked at 520MHz core 

frequency, which allows high throughput to the DUT. An optimized interposer to the FPGA could 

allow us to raise the CPU frequency, increasing the throughput even further. The Teensy can be 
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overclocked to 1GhZ, so the timing between the QSPI lines in the interconnection to the FPGA are 

more of an issue, due to potential data losses. 

 

Figure 6: QSPI pinout of Teensy 4.1 

 

2.6 Conclusion and Continuation of T4.1 

To accelerate debugger-driven fault injection testing, we designed an extension compliant with 

RISC-V debug specification. Our methodology involves modifying the debug module within an SoC 

to facilitate automatic skipping of an arbitrary number of instructions at a breakpoint. Through the 

integration of special CSRs and debug module modifications, we achieved a reduction in the duration 

of a single test run compared to using a pure debugger solution. Additionally, by replacing the 

conventional JTAG debug transport protocol with a custom QSPI interface, we witnessed a 

remarkable improvement in communication speed, enhancing the performance of the debugging 

toolchain significantly. As a strategy to counter fault injection attacks, we introduced a duplication-

based code hardening technique adopted for the RISC-V instruction set to improve fault tolerance 

of test binaries. By fault injection testing and patching only vulnerable parts of code, we were able to 

completely prevent fault effects within the assumed threat model. Notably, the partial code hardening 

introduced less size and runtime overhead compared to full code duplication while maintaining an 

equivalent level of security. This approach ensures enhanced fault tolerance while minimizing the 

associated resource demands. 

This project opened some potential to investigate the topic further and to improve the current state 

of the art. One of the big questions to examine is the possibility of skipping multiple consecutive 

instructions. Different combinations of techniques and fault injection methods with various 

parameters can be explored to physically attack hardware that can lead to multiple instruction skips. 

With the advancements in hardware attacks, our approach would gain even more importance. The 

fault injection testing can be accelerated if the communication to the tested device is minimal. For 

this, the controlling logic can be moved to a specific device, which would control the target device, 

load the code and inject faults. The open-source platforms would facilitate such developments due 

to their ability to modify open hardware designs. The current approach could also be extended to 

various fault models. The new fault models would then be implemented in the debug module, and 

some additional hardware extensions would need to be done. One of the limitations of our approach 

is that developers need to configure our fault injection framework what functions to test. So, an 

interesting direction to look into would be an automatic way to detect critical functions in the code. 
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Another part of our solution that requires developer intervention is timeout handling. To help 

developers tackle this problem, efficient tracing needed to be implemented, as well as some 

automatic tooling that helps developers understand if the timeout needs to be investigated further. A 

way to improve our code hardening tool would be to implement it as a compiler extension. Overall, 

our approach to improve fault tolerance of the code showed its efficiency and can help developers 

secure critical parts of the embedded software. 
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Chapter 3 Task 4.2 

3.1 Task Description 

Task 4.2 Advanced Security Testing of Mixed Source Firmware Programs (M06-M33; Task Lead: 
NXP) 

A complementary approach to hardware support for security testing, is a compiler support to enable 

symbolic execution by instrumenting the code during compilation (SymCC). However, another 

challenge is that although the hardware will be open, the software may not be fully open-source (i.e., 

a proprietary Wi-Fi or Bluetooth software stack). In this task, we propose to develop a toolchain 

based on Inception, to lift closed-source software to a more abstract representation so that SymCC 

could provide support for testing firmware programs mixing different level of semantics (e.g., 

assembly mixed with C/C++). This compiler extension could rely on hardware support developed in 

T4.1. 

3.2 Concept Proposal 

Early experiments with Inception and SymCC have shown that the lifting of binaries, while it allows 

to lift closed-source, comes with several drawbacks: 

- Considerable engineering effort to precisely lift the instruction set of the RISC-V architecture. 

- Considerable engineering effort of rehosting the firmware because of the re-modelling of the 

required peripherals. This task is in particular a reoccurring one for each firmware which 

poses an additional drawback of this approach. 

- Inception and SymCC are incompatible with the tools developed in T4.1 which does not allow 

to leverage them for native system-level security testing on FPGAs. 

In contrast to Inception and SymCC, the hybrid testing approach involving test input mutation with 

fuzzing library and smart input generation using symbolic engine has provided much more promising 

results with less engineering effort to implement and maintain the tools. We discuss these points in 

more detail in the following sections. 

Feedback-guided Fuzzing 

Feedback-guided fuzzing (also called graybox fuzzing) has emerged in recent years as an effective 

technique for automatically detecting bugs and security vulnerabilities in software. Modern fuzzers 

such as LibFuzzer [35] and AFL++ [34] are used regularly by security engineers in many 

organizations. For example, the OSS-Fuzz [39] project regularly fuzzes hundreds of open-source 

applications using thousands of CPU cores.  

Figure 7 depicts the general architecture of a feedback-directed fuzzer. The fuzzer consists of four 

key functions: 

- Input generation: the fuzzer needs to continuously feed the software-under test (SUT) with 

effective inputs to explore new code paths. Inputs could be generated in several ways. For 

example, byte-level mutations of previous inputs have proved to be fast and reasonably 

effective. However, detecting deeper bugs would most likely require structure-aware input 

generation. 

- Feedback evaluation: A graybox fuzzer depends on evaluating a feedback signal to guide it 

towards new and interesting code paths. Upon finding a new path, the fuzzer would queue 

the current input to be used later for input generation. AFL has pioneered using edge-level 

coverage as a feedback signal. This feedback signal is fast to evaluate, generic, yet effective 
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in practice. Other fuzzers like LibFuzzer have built upon similar techniques but added more 

sophisticated feedback signals like comparison tracing.  

- Bug detection: the ultimate goal of a fuzzer is to detect security-relevant bugs like out-of-

bound memory accesses and undefined behaviors. To this end, fuzzers usually rely on 

compiler-instrumentation to insert code that can check bug conditions at run-time. The 

popular compilers gcc and clang provide special compiler flags to enable various bug 

sanitizers like AddressSanitizer (ASan) [37]. Sanitizers not only enable early detection of 

bugs, but they also provide detailed backtraces that are essential for root cause analysis.  

- Scheduling: a fuzzer might discover many interesting inputs during a fuzz session. It will 

gradually accumulate them in a seed queue. Expectedly, a scheduling problem would arise 

here as the fuzzer needs to prioritize its seeds and select the next input to be mutated. This 

scheduling problem has been studied in several works [40]. However, the expected gain from 

improved scheduling is not high. It can be in the order of 2% higher coverage for a 

sophisticated algorithm like in FSE [40]. Therefore, we do not consider scheduling further in 

our project. 

Concolic execution 

Concolic execution, a blend of concrete and symbolic execution, is a software testing technique 

designed to enhance the thoroughness of program analysis. By combining the real-world execution 

of a program with specific inputs (concrete execution) and the theoretical analysis of the program 

using symbolic inputs (symbolic execution), concolic execution aims to explore various execution 

paths within the software. 

The approach begins with concrete execution, where the program runs with actual inputs, allowing 

testers to observe real behavior and outcomes. Simultaneously, symbolic execution uses symbolic 

inputs to represent a range of possible values, enabling the exploration of multiple paths at once. As 

the program executes, constraints for each path are generated and solved to produce new inputs 

that drive the program down unexplored paths. This systematic exploration helps in identifying bugs 

and vulnerabilities that might be missed by traditional testing methods. 

 

Hybrid testing approach 

Fuzzing, while effective in identifying crashes and simple bugs, faces several challenges such as 

limited code coverage, high resource consumption, handling complex inputs, and missing subtle 

issues like logic errors. Concolic execution addresses these limitations by combining concrete and 

symbolic execution. This hybrid approach systematically explores different execution paths, leading 

to higher code coverage. It leverages symbolic execution to understand and to explore the internal 

logic of the program, making it easier to reproduce and to analyze results. By generating meaningful 

inputs that explore new paths, concolic execution optimizes resource usage and reduces redundant 

tests. It can handle complex input formats by generating constraints for symbolic variables, which 

Software under Test 

Input Generation Feedback evaluation 

Bug detection Scheduling 

Feedback-directed fuzzer 

Figure 7 General architecture of a feedback directed fuzzer 
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are then solved to produce valid inputs that can lead to a new execution path. Concolic execution 

precisely identifies the conditions under which bugs occur, including subtle logic errors and 

vulnerabilities that might be missed by fuzzing alone. 

 

Firmware Testing 

We consider in this project the testing of firmware, which is the software directly interfacing with the 

hardware. Several challenges arise in such settings compared to regular application software. First, 

the computing resources available for executing firmware are quite limited. This means that it is 

typically not possible to instrument firmware for bug detection and feedback evaluation. For example, 

ASan requires at least double the amount of memory for its shadow memory implementation. 

Similarly, running sophisticated input generation algorithms requires more computing resources than 

what is typically available on microcontrollers. Moreover, microcontrollers usually have a diverse set 

of peripherals and hardware modules that provide input to the firmware. Such diverse inputs are 

difficult to accurately emulate by software emulator alone. 

The scientific community has approached the above challenges by following three main approaches 

that sometimes overlap: 

• Recompilation: In this approach, the source code of the firmware is instrumented and 

recompiled using a mainstream compiler. For example, one could compile the firmware using 

clang while enabling ASan. Then, it could be tested using AFL++ on a standard x86-64 

machine. This approach is fraught with perils though. It is likely that the firmware cannot be 

recompiled in the first place due to an incompatibility in compiler options or inline assembly. 

Even after recompilation, the security engineer will probably need to stub various hardware 

dependencies before being able of running the firmware. The trouble won’t be over yet as 

the end binary can be significantly different from the original one. This could cause the fuzzer 

to produce a large number of false positives (and false negatives). As a consequence, 

recompilation could still be worth pursuing, but only for library code or firmware components 

with low hardware dependencies.  

• Rehosting: it is possible to test firmware by running it inside a virtual execution environment 

(VEE) using a full-system emulator like QEMU [38]. This setup requires an initial investment 

in developing accurate hardware models for microcontroller peripherals. Consequently, the 

amount of work required for setting up a VEE varies significantly depending on the target 

hardware. In rehosting-based testing, the binary typically runs without instrumentation. 

Instead, the VEE can be hooked to implement dynamic feedback evaluation and bug 

detection. There has been a surging interest recently in rehosting and fast development of 

VEEs like HALucinator [41] and others.  

• Native execution: testing the firmware directly on the microcontroller provides several 

benefits. First, it avoids the need for developing custom hardware models. That is, testing 

can commence directly on the target. Additionally, it provides high fidelity that could be 

necessary to detect timing issues and race conditions. Such fidelity is difficult to achieve in 

VEEs. However, native testing comes with its own challenges. It is difficult to instrument 

firmware on the target hardware. Therefore, bug detection and feedback evaluation should 

be executed on an external host that communicates with the target. Additionally, 

debuggability is often limited which makes it challenging to implement root cause analysis 

and crash detection.  
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3.3 Task Objectives 

The aim of this task is to enable hardware support for logical vulnerability SW testing by 

instrumenting code during compile- or runtime. The code instrumentation can accelerate SW testing 

methodologies like feedback-guided fuzzing by efficient analysis and reporting of the code being 

tested (code coverage, vulnerability detection). It will extend the FIM developed in the T4.1 to provide 

features for tracing capabilities required for software security testing via hybrid fuzzing approach 

where fuzzing is combined with concolic execution to produce more coverage. This extended version 

of the FIM is called SW Testing Acceleration Module (STAM) throughout this chapter (see Figure 8). 

 
Figure 8: Design for native system-level software security testing 

 

3.4 Solution Design 

Given all the arguments from above we focus on developing a hardware module STAM to extend an 

existing debug infrastructure which will assist in our hybrid testing approach. One of the main 

problems in firmware testing is the limited observability. Tracing can significantly enhance coverage-

guided fuzzing and concolic execution in firmware testing scenarios where targets don't provide 

proper feedback into program execution flow. 

For coverage-guided fuzzing, tracing helps efficiently track code coverage by identifying which parts 

of the firmware are exercised during fuzzing. This ensures that the fuzzer focuses on unexplored 

paths, improving the overall effectiveness of the fuzzing process. Additionally, leveraging on-target 

tracing minimizes the overhead associated with traditional instrumentation, allowing for faster 

execution of test cases and more efficient fuzzing cycles. Tracing also provides detailed insights into 

the execution flow, enabling the identification of subtle bugs that might be missed by other testing 

methods, which is particularly useful for detecting security vulnerabilities. 

In the context of concolic execution, tracing facilitates the generation of new test cases based on the 

observed execution paths, systematically covering different code branches and improving test 

coverage. By providing real-time data on the execution flow, tracing helps in efficiently solving 

constraints during symbolic execution, accelerating the process of finding feasible paths and 

potential bugs. 
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As one can see lightweight tracing capabilities are 

essential for automated firmware testing. So we 

took our setup from T4.1 and modified our target 

SoC to facilitate instruction flow tracking using our 

high-speed debugger. Furthermore we 

incorporated a fuzzing library and symbolic engine 

in our test framework. The combination of these 

techniques yields us a necessary foundation for 

automated testing of firmware on an emulated SoC 

in pre-silicon phase.  

The high-level overview of the solution for 

automated testing of embedded RISC-V software is 

presented in the Figure 9. The hardware setup is 

basically the same as in T4.1. It involves 3 main 

hardware pieces: a host computer which drives the 

testing, our debug connector which transmits debug 

commands at high-speed and the DUT emulated on 

FPGA. Now we provide the functional description of 

the components in the figure: 

• Test framework is the software on the host that controls the testing process. It uses fuzzer 

and symbolic engine for input generation and debug driver to control and trace the execution 

of the firmware. The inputs are supplied to the target via serial communication channel. 

• Fuzzer generates a series of bytes through mutating based on input corpus and coverage 

provided by the framework. 

• Driver library is an interface for controlling the target FPGA via the debug connector. It 

communicates debug commands via USB serial interface which allows high throughput and 

enables high-speed debugging. 

• Symbolic engine analyzes the tested binary and symbolically executes it based on executed 

basic blocks. The engine is also capable of building and resolving constraints for new paths 

from which an input for an unvisited branch can be derived. 

• Debug connector is a microcontroller which converts debug commands taken from serial 

USB into QSPI signals that FIM can process. 

• STAM (former FIM) relays debug commands from the host to the debug module and handles 

commands related to our custom DMI registers.  It features its own portion of SRAM for 

storing the additional code that handles actions which are executed once a breakpoint is 

encountered. 

• Debug Module (DM) receives DMI commands and controls the core accordingly. The DM is 

execution-based. This means that when the core enters debug mode, the code in the DM’s 

ROM, referred to as the ”park loop”, is executed. This loop is supposed to wait for and 

execute debug operations while the core is halted. 

 

3.5 STAM 

In order to gain more observability into the firmware execution we propose a modification of the DM 

in form of extended register set. The STAM is designed to provide a flexible way of inspecting or 

modifying system state on target at preset breakpoints. The general idea of our approach is to set 

breakpoints (either hardware or software via ebreak instruction) and when hit, handle them 

automatically on target using user provided code. For this, we integrate SRAM for instrumentation 

Figure 9: Setup overview 
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code and another communication channel for transmitting relevant data to the host via a specific DM 

register. 

The official DMI specification allows for Custom Debug Module Registers (0x70-0x7f). In order to 

enable efficient testing we propose to introduce the following custom registers: 

Name Description Permissions 
Memory-

mapped 

STAM_CSR bit0: enable user redirect (R/W) 

bit1: trace buffer full (R) 

bit2: unused 

bit3: trace buffer empty (R) 

bit31~26: a double exponential mapping from 

bit position to buffer size (R) 

R/W Yes 

TRACE_READ Returns the next data word (4 byte) in the 

trace ring buffer 

W No 

TRACE_LOAD Indicates the amount of words in the trace 

buffer 

R Yes 

BS_START Pointer to the start of the memory region 

within STAM SRAM used to store data 

R/W Yes 

BS_END Pointer to the end of the memory region 

within STAM SRAM used to store data 

R/W Yes 

BS_VALUE On write uses binary search algorithm as 

hardware accelerator to search for a given 

value within specified range of the memory. 

The data in memory should be laid out in 

ascending order. 

R/W Yes 

BS_RESULT_ADDR 0x0 if search failed. Otherwise memory 

address of the requested value. 

R Yes 

BS_RESULT_IND -1: data not found 

-2: search start address outside SRAM 

-3: search end address outside SRAM 

-4: start address bigger than end address 

=>0: index of the found word 

R Yes 

FI_COUNT Contains the number of times the target 

instruction must be executed before the fault 

injection is triggered. The DM should 

decrease the FI_COUNT value by 1 every 

time the FI_LOC is encountered. Finally, if  

FI_COUNT value is 0, the fault is injected 

and the hardware breakpoint at  FI_LOC is 

removed. 

R/W Yes 
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Some of the above registers should be implemented as memory-mapped such that user provided 

assembly code could interact with hardware. 

 

3.6 Tracing Mechanism 

When the core is in a debug mode, because it was halted by a debugger or a breakpoint is hit, STAM 

checks if redirect is enabled. In this case it points the core to execute the tracing code in STAM 

SRAM which was written there by the debugger on the host. The tracing code may inspect or change 

the system state and eventually communicate traced information to the outside by writing to a 

specific memory location within SRAM which populates the trace buffer. The contents of the buffer 

can be read out asynchronously by the debugger via TRACE_READ register. 

There are two modes implemented for tracing, (1) the single instruction trace mode and (2) the 

branch trace mode. Both modes will be described in detail in the following two subsections. 

Single Instruction Tracing Mode 

The single instruction trace mode allows to trace the code execution by single-stepping through the 

code. The tracing can be activated by placing a simple code gadget into STAM memory and 

instructing the core to step through executed code. The single tracing steps are depicted in Figure 

10 and the following description refers to each step in the diagram. 

• Step 1: The STAM is in control of the core until the tracing is disabled by the host. It steps 

through the code and with every issued step-command. 

• Step 2: On each step the core enters debug mode and the STAM code is executed which 

stores the context. The trace code collects execution state information like the current 

program counter (PC) in the trace buffer and eventually restores the context and exits the 

debug mode.  

• Step 3: The core continues the execution of the next instruction which will in turn start the 

same process again. If the trace code detects that tracing is inactive or the buffer is full, 

STAM would wait for the RESUME command from the host or until the buffer got emptied. 

Name Description Permissions 
Memory-

mapped 

FI_LOC Contains the address of the target instruction 

where a fault is to be injected during a single 

test 

R/W Yes 

FI_VALUE Contains the address that dictates the 

program counter's advancement when the 

address specified in FI_LOC is encountered 

at least FI_COUNT times. This value 

determines the shift in the program counter 

upon meeting the specified conditions. 

R/W Yes 

Table 1: Control and Status Registers of Software Testing Automation Module 
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Figure 10: Single Instruction Tracing 

 

Branch Tracing Mode 

The Branch Tracing Mode is a lightweight, high-performance tracing technique designed to capture 

control flow transitions at runtime with minimal overhead. Unlike the Single Instruction Trace Mode, 

which steps through every instruction, this mode focuses exclusively on control flow instructions, 

making it particularly well-suited for edge-based feedback-guided fuzzing. In this context, detecting 

new transitions between basic blocks is essential for steering input mutations and exploring deeper 

execution paths. 

Branch tracing operates by halting the processor at each indirect jump instruction and recording the 

jump destination. To enable this, each indirect jump in the firmware binary is replaced with a software 

breakpoint (e.g., an ebreak instruction). Since the original instruction is no longer present, a 

corresponding tracing gadget is generated for each replaced instruction. These gadgets simulate 

the original behavior, compute the new program counter (PC), and write the result to the trace buffer. 

A jump table is also generated, mapping each breakpoint address to its corresponding gadget. This 

enables efficient redirection during runtime. 

In Figure 11, the required steps for the branch tracing concept are depicted.  

• Step 1: The debugger loads the instrumented binary, tracing gadgets, and jump table into 

the target system. It then sets the redirect bit in the STAM control and status register (CSR) 

and starts program execution. 

• Step 2: When an instrumented indirect jump is encountered, the core hits the inserted 

breakpoint and enters debug mode. STAM detects this event, saves the current execution 

context, and uses a hardware-accelerated binary search to locate the appropriate gadget in 

the jump table based on the breakpoint address. 

• Step 3: Control is transferred to the selected gadget, which simulates the original instruction, 

computes the jump target, and writes the destination address to the trace buffer. Meanwhile, 

the debugger asynchronously reads the buffer contents. 

• Step 4: After the trace data is recorded, STAM restores the saved context and exits debug 

mode. Execution resumes at the newly computed PC, continuing the program flow. 
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Figure 11: Branch Tracing Concept 

 

3.7 Hardware Acceleration 

In real-world firmware, the number of instrumented indirect jump instructions can reach into the 

thousands. Efficiently mapping each triggered breakpoint to its corresponding tracing gadget is 

therefore critical for maintaining high execution throughput during branch tracing. To address this, 

we implemented a hardware-accelerated binary search mechanism within STAM. 

A naïve linear search through the jump table would introduce significant latency, especially as the 

number of breakpoints increases. To mitigate this, we leveraged a binary search algorithm 

implemented in hardware, which significantly reduces lookup time and enables near-constant-time 

gadget resolution. 

The hardware-accelerated binary search operates over a sorted jump table stored in memory. The 

process is configured and executed as follows: 

• Jump Table Preparation: All breakpoint addresses are sorted in ascending order and stored 

contiguously in memory. Each entry corresponds to a tracing gadget. 

• Configuration via Memory-Mapped Registers: The gadget specifies the memory range of the 

jump table using the following memory-mapped control registers: 

o BS_START: Start address of the jump table. 

o BS_END: End address of the jump table. 

o BS_VALUE: The address of the current breakpoint to be resolved. 

• Search Execution and Result Retrieval: Once configured, the hardware performs a binary 

search and writes the result to the BS_RESULT_IND register, which contains the index of 

the matching entry in the jump table. 

• Gadget Address Calculation: Since all tracing gadgets are of uniform size and laid out 

sequentially in memory, the address of the target gadget can be computed as:  

Gadget Address=GADGET_BASE+(BS_RESULT_IND×GADGET_SIZE) 

 

where GADGET_BASE is the start address of the gadget region. 

To ensure correctness and performance, the following layout constraints must be met: the jump table 

must be sorted by breakpoint address and all gadgets must be of equal size and placed contiguously 
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in memory. This design enables fast and deterministic gadget resolution, which is essential for 

maintaining the responsiveness of the tracing system under high-frequency breakpoint events. 

 

3.8 Hybrid fuzzing 

Fuzzing has proven to be an effective technique for testing software and uncovering vulnerabilities, 

primarily due to its ability to generate large volumes of mutated inputs and achieve high test 

throughput. However, traditional fuzzing - especially in its graybox form - has limited insight into the 

internal logic of the software under test. It typically relies on coverage feedback, which can be 

insufficient when execution is gated by complex conditions, such as checks for magic values or deep 

nested branches. In such cases, the fuzzer may spend a significant amount of time generating inputs 

that fail to make meaningful progress. 

To overcome this limitation, we adopt a hybrid fuzzing approach that combines fuzzing with concolic 

execution. This integration allows us to intelligently guide input generation when the fuzzer becomes 

stuck and fails to discover new coverage. Concolic execution, while powerful, is computationally 

expensive and not suitable for continuous use. Therefore, we invoke it selectively, only when the 

fuzzer plateaus. 

Our branch tracing mechanism plays a key role in this process. When the fuzzer fails to make 

progress, we extract a concrete execution trace and feed it into the symbolic engine. This trace 

provides a precise path through the firmware, enabling the symbolic engine to efficiently compute 

path constraints. Using this information, the engine can suggest new inputs that are likely to steer 

execution toward unexplored branches. 

To support this, we capture an initial snapshot of the system state, including all general-purpose 

registers (GPRs) and readable memory regions, excluding peripheral-mapped areas. This snapshot 

is used to initialize the symbolic engine before each symbolic execution run. The user is responsible 

for marking relevant memory locations or registers as symbolic, which defines the input space for 

constraint solving. 

During symbolic execution, we randomly select an unvisited branch from the trace and instruct the 

engine to generate an input that would cause the program to take that path. Once a candidate input 

is computed, it is delivered to the firmware via a serial interface. If the execution of this input results 

in the invocation of an exception handler, we classify it as a crash. 

This hybrid approach allows us to combine the speed and scalability of fuzzing with the precision of 

symbolic reasoning on a concrete execution, significantly improving the depth and efficiency of 

firmware testing. 

 

3.9 Implementation 

The prototype implementation of our system builds upon the platform developed in Task 4.1. We 

extended the existing infrastructure by integrating the Software Testing Acceleration Module 

(STAM), which introduces new DM registers to support the custom features described in previous 

sections. 

To support trace data collection and gadget execution, we connected 128 KB of SRAM to STAM. 

This memory is fully addressable and accessible by the processor core, and is used for accessing 

the trace buffer, tracing routines, and instrumentation gadgets. We also modified the existing debug 

module to interoperate with STAM. Specifically, the DM ROM code was extended to check the 
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redirect bit and the status of the trace buffer. If redirection is enabled and the buffer is not full, 

execution is redirected to the STAM SRAM region. 

On the software side, we developed a Python-based driver library that enables the Teensy 

microcontroller to act as a debug connector. This library supports both single instruction and branch 

tracing modes, and provides a flexible interface for interacting with the STAM hardware. 

To handle branching and indirect control flow instructions such as jalr and jr, we implemented a set 

of tracing gadgets that simulate the original instruction behavior and record the computed jump 

targets. These gadgets are used in the binary instrumentation process to enable branch tracing. 

For broader applicability and to facilitate adoption by the research community, we integrated Teensy 

support into OpenOCD[42], allowing our enhanced debug infrastructure to be used with standard 

tooling. 

Our hybrid fuzzing methodology is implemented using libFuzzer for input mutation and angr [36] for 

symbolic execution of binaries. These tools are orchestrated to work in tandem with the STAM 

tracing infrastructure, enabling efficient feedback-driven testing of firmware in a pre-silicon 

environment. 

 

3.10 Evaluation 

3.10.1 Tracing 

To evaluate the performance of our tracing strategies and demonstrate the effectiveness of our 

hardware modifications, we conducted a benchmarking campaign using a firmware application that 

performs SHA hashing across multiple rounds. Since standard tools like OpenOCD do not support 

tracing of indirect jumps, we use instruction coverage per second (i/s) as our primary performance 

metric. This metric reflects the number of application instructions executed per second while tracing 

is active. 

Our evaluation begins with a baseline measurement using standard debugging toolchain including 

OpenOCD in combination with Digilent HS-2 as debug connector, which lacks native support for 

tracing and especially for indirect jumps. Using basic step functionality of the debugger, tracing 

performance was limited to approximately 60 i/s. This serves as a reference point for comparing the 

impact of our enhancements. 

We then tested a stepping-based approach using our custom high-speed debugger, which 

communicates via a Teensy-based debug connector over a QSPI interface. Without any additional 

acceleration features, this setup achieved a tracing speed of 11,000 i/s, representing a 180× 

improvement over OpenOCD. 

Building on this, we enabled Single Instruction Tracing Mode using a stepping gadget placed in 

STAM SRAM. This configuration significantly boosted performance to 83,000 i/s, a 7.5× increase 

over the previous setup and a 1,300× improvement over the OpenOCD baseline. 

Next, we evaluated Branch Tracing Mode, where each indirect jump is instrumented with a dedicated 

gadget. Initially, we implemented a software-based binary search in assembly to map breakpoints to 

their corresponding gadgets. This approach yielded a tracing speed of approximately 380,000 i/s, 

which is 4.5× faster than single-instruction gadget tracing and 6,300× faster than OpenOCD. 

To further optimize performance, we replaced the software binary search with a hardware-

accelerated binary search engine, controlled via memory-mapped registers. This significantly 

reduced the number of instructions executed per breakpoint and offloaded the search logic from the 

core to dedicated hardware. As a result, we achieved a peak tracing performance of 700,000 i/s, 
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which is 85% faster than the software binary search and an impressive 11,700× improvement over 

the OpenOCD baseline. 

It is important to note that in our test case, all tracing gadgets and the jump table fit within the 

available STAM SRAM. For larger firmware binaries, this may not be feasible, and dynamic reloading 

of gadgets and jump tables would be required, potentially reducing performance due to the overhead 

of memory transfers. 

Figure 12 illustrates the performance of each tracing strategy and highlights the incremental benefits 

of our acceleration techniques. These results demonstrate that our approach - combining a high-

speed debug interface with memory-resident tracing gadgets and hardware-assisted search - offers 

substantial performance gains. Depending on the available FPGA resources and SoC design, 

analysts can choose from a range of tracing configurations to balance performance and resource 

usage. These tracing capabilities form the foundation for the hybrid fuzzing methodology described 

in the next section. 

 

Figure 12: Performance of different tracing strategies 

 

3.10.2 Hybrid fuzzing 

To evaluate the effectiveness of our hybrid fuzzing approach, we developed a custom test program 

that communicates over UART using a lightweight protocol. The firmware was instrumented with 

artificial vulnerabilities, such as buffer overflows, which trigger a crash and invoke the exception 

handler when exploited. This setup allowed us to assess the ability of our system to discover real 

faults through guided input generation. 

We compared our approach against GDBFuzz[33], a state-of-the-art graybox fuzzer for embedded 

systems that relies on hardware breakpoints to construct a basic block coverage map. While 

GDBFuzz operates at the basic block level, our system tracks edge coverage in form of sequence 



D4.1 – Report on security audit and testing  

ORSHIN D4.1  Public Page 27 

of taken branches, which provides finer-grained feedback and enables more precise guidance for 

input mutation. 

To ensure a fair comparison, we evaluated both tools over the same firmware and runtime 

conditions. For each input generated by GDBFuzz that resulted in new basic block discovery, we re-

executed the firmware using our tracing infrastructure to compute the corresponding edge coverage. 

This allowed us to normalize the results and compare the tools based on the same metric. 

As shown in Figure 13 Edge coverage comparison, our hybrid fuzzer significantly outperforms 

GDBFuzz in both coverage depth and discovery speed. Within the first minute of execution, our tool 

covered 55 unique edges, whereas GDBFuzz required approximately 40 minutes to reach the same 

level. Over the full 10-hour campaign, GDBFuzz failed to match the total edge coverage achieved 

by our hybrid approach. 

These results highlight the advantage of combining instruction-level tracing with symbolic execution. 

By leveraging concrete execution traces and selectively invoking the symbolic engine, our system is 

able to overcome input-dependent bottlenecks - such as magic number checks - and explore deeper 

execution paths more efficiently. This leads to faster discovery of vulnerabilities and more 

comprehensive firmware testing within the same time constraints. Ultimately, our enhancements to 

the debug module and tracing infrastructure enable a powerful pre-silicon testing methodology that 

surpasses traditional graybox fuzzing in both precision and performance. 

 

Figure 13 Edge coverage comparison 

 

3.11 Conclusion and Continuation of T4.2 

In this task, we presented a novel approach to accelerating automated firmware testing in pre-silicon 

environments by combining hardware-assisted tracing using an on-chip debug module with hybrid 

fuzzing techniques. Our system, built around the Software Testing Acceleration Module (STAM), 

introduces a set of custom debug features that enable efficient instruction flow tracing through both 

single-instruction and branch-level modes. These tracing capabilities are tightly integrated with a 
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high-speed debug interface and supported by a hardware-accelerated binary search engine, 

significantly improving trace resolution performance. 

We demonstrated that our tracing infrastructure achieves up to 700,000 instructions per second - an 

improvement of over 11,000× compared to conventional OpenOCD-based debugging. This 

performance gain is critical for enabling scalable and responsive feedback mechanisms in fuzzing 

workflows. 

To further enhance test coverage, we implemented a hybrid fuzzing strategy that combines fast input 

mutation with targeted symbolic execution. By leveraging concrete execution traces, our system can 

guide the symbolic engine to explore previously unreachable paths, resulting in faster and deeper 

coverage. In comparative evaluations, our hybrid fuzzer outperformed state-of-the-art graybox 

fuzzers such as GDBFuzz, achieving significantly higher edge coverage in a fraction of the time. 

There are multiple ways to improve the efficiency of hybrid fuzzer as future work. Silent data 

corruption detection is beneficial for discovering more memory related vulnerabilities. So the 

techniques like memory tagging or some sort of memory access control in hardware or software can 

be implemented. One promising direction is the automation of symbolic variable selection to reduce 

manual effort and improve scalability across diverse firmware targets. Another direction in improving 

concolic execution is a development of more sophisticated logic for path exploration and interrupt 

modelling. Finally, exploring adaptive fuzzing strategies that dynamically balance between fuzzing 

and symbolic execution based on runtime feedback could lead to even more efficient path 

exploration and vulnerability discovery. 

Overall, our approach demonstrates that integrating hardware acceleration with intelligent software 

testing strategies can dramatically improve the efficiency and effectiveness of firmware validation. 

The modularity and openness of our implementation, including integration with OpenOCD and 

support for standard tools like libFuzzer and angr, make it a practical and extensible solution for the 

research and embedded systems communities. These contributions pave the way for more robust 

and scalable pre-silicon testing methodologies capable of uncovering complex bugs and 

vulnerabilities early in the development lifecycle of open-source hardware based on RISC-V. 
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Chapter 4 Summary and Conclusion 

This deliverable D4.1 documents the successful implementation of Task 4.1 and 4.2 in Work 

Package 4 within the ORSHIN project, focusing on pre-silicon security testing of embedded firmware. 

The work is structured into two tasks: T4.1, which addresses physical fault injection testing, and 

T4.2, which targets logical vulnerability testing through hybrid fuzzing and symbolic execution. 

In T4.1, we developed a novel hardware-assisted framework for fault injection testing on RISC-V-

based systems. This includes the design and implementation of the Fault Injection Module, a high-

speed debug interface integrated into an FPGA-emulated SoC. The framework supports debugger-

driven FI testing, enhanced by custom debug module extensions that simulate instruction skip 

attacks. A code hardening approach was also introduced, enabling automatic identification and 

patching of vulnerable instructions using duplication-based countermeasures tailored to the RISC-V 

instruction set.  

In T4.2, we extended the FIM into the Software Testing Acceleration Module (STAM), enabling 

advanced software testing techniques. This includes hardware-assisted instruction and branch 

tracing, a high-speed debug interface, and a hardware-accelerated binary search engine for efficient 

gadget resolution. These capabilities support a hybrid fuzzing framework that combines input 

mutation with symbolic execution, significantly improving code coverage and vulnerability detection. 

Our evaluations demonstrated substantial performance gains and superior coverage compared to 

existing tools like GDBFuzz. 

We publicly provide our prototype and a detailed reproduction guide as part of the D4.2 

demonstrator. The prototype includes a system-on-chip bitfile with an enhanced debug module for 

FPGA emulation, Teensy firmware for custom communication, a high-speed debugging driver, and 

a fault injection framework. It supports both a fast debugger and standard tools like GDB and 

OpenOCD, including a modified OpenOCD for our Teensy connector. Also included are a hybrid 

fuzzing tool using STAM for firmware testing and example test code for our platform. 

Together, these contributions represent a significant advancement in the field of pre-silicon firmware 

security testing. The integration of hardware acceleration with intelligent software testing strategies 

has proven to be highly effective in identifying and mitigating vulnerabilities in embedded systems. 

The open-source nature of the tools ensures broad accessibility and encourages adoption by the 

wider research and development community. 
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Chapter 5 List of Abbreviations  

Abbreviation Translation 

FIM Fault injection Module 

CPU Central Processing Unit 

JTAG Joined Test Action Group 

FI Fault injection 

SW Software 

HW Hardware 

IF Interface 

BKPT Breakpoint 

STAM Software Testing Acceleration Module 

DM Debug Module 

DMI Debug Module Interface 

QSPI Quad Serial Peripheral Interface 

CSR Control and Status Register 

GPR General Purpose Register 

RTL Register Transfer Level 

FPGA Field Programmable Gate Array 

SoC System on Chip 

SuT Software under Test 

DuT Design under Test 

SRAM Static Random Access Memory 

UART Universal Asynchronous Receiver Transmitter 

ROM Read-Only Memory 

SHA Secure Hash Algorithm 
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