

Funded by the European Union under grant agreement no. 101070008. Views and opinions expressed

are however those of the author(s) only and do not necessarily reflect those of the European Union.

Neither the European Union nor the granting authority can be held responsible for them.

D4.1

Report on security audit and testing

Project number 101070008

Project acronym ORSHIN

Project title
Open-source ReSilient Hardware and software

for Internet of thiNgs

Start date of the project 1st October, 2022

Duration 36 months

Call HORIZON-CL3-2021-CS-01

Deliverable type Report

Deliverable reference number CL3-2021-CS-01 / D4.1 / 1.0

Work package contributing to the

deliverable
WP4

Due date Jun 2025 – M33

Actual submission date 30th June 2025

Responsible organisation NXP

Editor
Jean-Michel Cioranesco, Oliver Diehl,

Volodymyr Bezsmertnyi, Ammar Ben Khadra

Dissemination level PU

Revision 1.0

Abstract

We proposed and developed two concepts of

hardware acceleration for SW security testing,

one for accelerating simulation of fault injection

on Software pre-silicon and the other to support

Logical Software testing such as Fuzzing or

Symbolic execution.

Keywords
Security Testing, Fault injection, Fuzzing, RISC-

V, Debugger, Logical vulnerabilities

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page I

Editor

NXP Semiconductors Germany GmbH (NXP)

Contributors (ordered according to beneficiary numbers)

Jean-Michel Cioranesco (NXP)

Oliver Diehl (NXP)

Volodymyr Bezsmertnyi (NXP)

Ammar Ben Khadra (NXP)

Reviewer (ordered according to beneficiary numbers)

Clarisse Ginet (TXP)

Jan Pleskac (TRPC)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information

is fit for any particular purpose. The content of this document reflects only the author`s view – the European

Commission is not responsible for any use that may be made of the information it contains. The users use the

information at their sole risk and liability.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page II

Executive Summary

Deliverable D4.1 presents the successful implementation of Work Package 4, focused on pre-silicon

security testing of embedded firmware. It comprises of two key tasks:

• Task 4.1: Fault Injection Emulation

Developed a hardware-assisted framework for fault injection on RISC-V systems, featuring

a custom debug module and automatic code hardening via instruction duplication.

• Task 4.2: Logical Vulnerability Testing

Introduced the Software Testing Acceleration Module (STAM) for hybrid fuzzing and

symbolic execution, enabling efficient tracing and code gadget resolution. This approach

significantly improves vulnerability detection and outperforms existing tools.

The prototype, publicly available with full documentation, includes FPGA bitfiles, firmware and driver

for the debug connector, fault injection and hybrid fuzzing testing frameworks, a modified OpenOCD,

and example test code.

These contributions mark a major advancement in firmware security testing, combining hardware

acceleration with intelligent software techniques while the open-source nature of the tools promotes

broad adoption and collaboration.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page III

Table of Content

Chapter 1 Introduction .. 1

Chapter 2 Task 4.1 ... 2

2.1 Task Description ... 2

2.2 Background on Fault attacks and code hardenings .. 2

2.2.1 Hardware Fault Injection Attacks ... 2

2.2.2 Instruction Skip Fault Model ... 2

2.2.3 Software-Implemented Fault Tolerance ... 3

2.2.4 Emulated Fault Injection .. 3

2.3 Concept Proposal .. 4

2.4 Task Objectives ... 5

2.5 Design and Implementation .. 7

2.5.1 Protection by Fault Injection Emulation .. 7

2.5.2 Debugger-Driven FI Testing ... 8

2.5.3 Debug Specification Extension .. 9

2.5.4 Code Hardening Tool ... 10

2.5.5 Hardware Implementation .. 11

2.6 Conclusion and Continuation of T4.1 .. 13

Chapter 3 Task 4.2 ... 15

3.1 Task Description ... 15

3.2 Concept Proposal .. 15

3.3 Task Objectives ... 18

3.4 Solution Design ... 18

3.5 STAM .. 19

3.6 Tracing Mechanism ... 21

3.7 Hardware Acceleration .. 23

3.8 Hybrid fuzzing ... 24

3.9 Implementation.. 24

3.10 Evaluation .. 25

3.10.1 Tracing ... 25

3.10.2 Hybrid fuzzing .. 26

3.11 Conclusion and Continuation of T4.2 ... 27

Chapter 4 Summary and Conclusion ... 29

Chapter 5 List of Abbreviations .. 30

Chapter 6 Bibliography ... 31

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page IV

List of Figures

Figure 1: Classification of Pre-Silicon Physical Attack Testing .. 5

Figure 2: Design for Hardware/Firmware hybrid FI security testing 6

Figure 3: Workflow of our Fault Injection Framework ... 7

Figure 4: Example of Protected Assembly Code ... 11

Figure 5: Block diagram of the FIM module ... 12

Figure 6: QSPI pinout of Teensy 4.1 .. 13

Figure 7 General architecture of a feedback directed fuzzer ... 16

Figure 8: Design for native system-level software security testing 18

Figure 9: Setup overview ... 19

Figure 10: Single Instruction Tracing ... 22

Figure 11: Branch Tracing Concept ... 23

Figure 12: Performance of different tracing strategies ... 26

Figure 13 Edge coverage comparison ... 27

List of Tables

Table 1: Control and Status Registers of Software Testing Automation Module 21

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 1

Chapter 1 Introduction

This deliverable presents the outcomes of Work Package 4 (WP4) of the ORSHIN project, which

aims to enhance the security and resilience of embedded systems through open-source innovation.

Task 4.1 and 4.2 of WP4 focus on pre-silicon security testing of firmware, addressing both physical

and logical vulnerabilities in RISC-V-based platforms.

As embedded systems become increasingly prevalent in critical applications, ensuring their security

at the earliest stages of development is essential. Traditional post-silicon testing methods are often

insufficient for detecting subtle or hardware-dependent vulnerabilities. Moreover, the open-source

nature of RISC-V hardware introduces new opportunities—and challenges—for scalable,

transparent, and collaborative security validation. WP4 responds to these challenges by developing

hardware-accelerated, open-source frameworks for fault injection and logical vulnerability testing,

enabling comprehensive pre-silicon evaluation of firmware security, while the prototypes resulted

from the tasks T4.1 and T4.2 will be made publicly available.

T4.1 introduces a hardware-assisted fault injection testing framework built around a custom Fault

Injection Module (FIM). This module, integrated into an FPGA-emulated SoC, enables debugger-

driven instruction skip emulation and supports automated code hardening using duplication-based

countermeasures tailored to the RISC-V instruction set. The framework leverages a high-speed

QSPI interface and custom debug module extensions to achieve efficient and scalable testing.

T4.2 extends this infrastructure with the Software Testing Acceleration Module (STAM), which adds

hardware-assisted instruction and branch tracing capabilities. STAM introduces custom debug

registers and a hardware-accelerated binary search engine to support high-throughput trace

resolution. These enhancements enable a hybrid fuzzing framework that combines feedback-guided

fuzzing with symbolic execution, significantly improving code coverage and vulnerability detection.

The report begins with Chapter 1, which introduces the scope, motivation, and objectives of Work

Package 4 within the ORSHIN project. Chapter 2 focuses on T4.1, detailing the design and

implementation of a hardware-assisted fault injection testing framework. It covers the background

on fault models, the rationale for using FPGA-based emulation, the architecture of the FIM, and the

development of a code hardening tool tailored to the RISC-V instruction set. Chapter 3 presents

T4.2, which extends the FIM into the STAM to support advanced software testing techniques. This

chapter describes the tracing mechanisms, hybrid fuzzing methodology, and the integration of

symbolic execution for improved vulnerability detection. Chapter 4 summarizes the key results and

discusses future directions for research and development. The report concludes with Chapter 5,

which provides a list of abbreviations used throughout the document, and Chapter 6, which compiles

the references cited in the report.

This deliverable provides a comprehensive technical account of the methodologies,

implementations, and performance evaluations conducted in WP4, offering a robust foundation for

further research and development in secure open-source embedded systems.

Update: comparing to iD4.1, this deliverable contains reworked Chapter 3, as well as updated

executive summary, introduction and conclusion chapters.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 2

Chapter 2 Task 4.1

2.1 Task Description

Task 4.1 Design for Hardware/Firmware hybrid security testing (M03-M33; Task Lead: NXP)

Closed-source hardware in production is not designed for security testing (i.e., limited introspection

capability), making the security testing very challenging for traditional security testing methods (e.g.,

fuzzing, symbolic execution). In this task, we will design and implement novel and custom hardware

accelerators for software security testing. The proposed method will enable hardware and software

co-testing.

2.2 Background on Fault attacks and code hardenings

This section highlights the research conducted on fault injection, in particular on physical attacks that

exploit hardware vulnerabilities. Additionally, instruction skip fault model is discussed as a fault effect

commonly observed in silicon devices. Furthermore, the section delves into software-implemented

fault tolerance and control flow integrity techniques as a mean to harden a system against faults.

Finally, the section reviews studies which focus on emulating fault injection especially with a help of

a debugger.

2.2.1 Hardware Fault Injection Attacks

Hardware-based fault injection involves introducing errors into the system by physically altering the

hardware of the system. A comprehensive survey of distinct fault injection approaches is presented

in [4], [5], [6]. In [7], multiple fault injection attacks on microcontroller-based cryptographic algorithm

implementations are demonstrated. In [8], the practicality of fault injections is examined through

empirical research. A systematic examination of fault injections in Internet-of-Things devices is

conducted in [9].

2.2.2 Instruction Skip Fault Model

The instruction skip fault model is a commonly studied fault model in the field of computer

architecture and digital circuit design. This fault model occurs when one or more consecutive

instructions in a program are not executed due to a fault in the hardware or software of the system.

The number of instructions being skipped varies depending on the part of the system being corrupted

(CPU fetches, pre-fetches, caches, instructions being read from memory lines). Faults in decoding

and execution stage of the processor, results in greater variety of faults, that we will add to our

simulation engine in a second stage. Here, we list some examples of works that achieved either

single or multiple instruction skips through fault injection.

Single instruction skip is a fault effect frequently seen in fault injection testing of many

microcontrollers. A recent work [10] that was presented at Black Hat 2022 utilizes Voltage Fault

Injection (VFI) for skipping a single instruction at different points in time in order to defeat ARM

TrustZone. The work from [11] showed an exploit where VFI was used to escalate privilege in Linux

from user space. Balasch et al. [12] investigated the effects of clock glitches on an 8-bit

microcontroller and provided a possible explanation for the observed instruction skip. Colombier et

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 3

al. in [13] proposed a technique that uses multiple lasers in order to induce multiple single-bit faults

in an ARM Cortex-M3. Menu et al. [14] investigated electromagnetic (EM) fault injections and

questioned an EM fault model since the authors could skip multiple consecutive instructions with

their method. Proy et al. [15] studied EM pulse effects at the ISA (instruction set architecture) level.

Multiple Instruction Skip is less common but still dangerous fault effect is the multiple instruction skip

which can be achieved either due to multiple glitches in a row or a single glitch impacting the critical

path in the cores instruction pipeline. Rivière et al. [16] managed to skip up to four consecutive

instructions by electromagnetically faulting the instruction cache of an ARM Cortex-M CPU. Blömer

et al. [17] utilized multiple clock fault injections for attacking two consecutive instructions. Dutertre et

al. [18] were able to skip groups of instructions by laser illumination on an 8-bit non-secure

ATmega328P microcontroller. Yuce et al. [19] were able to skip multiple instructions stored in the

target’s pipeline with clock glitches in a 32-bit LEON3 processor on a Xilinx FPGA. The authors of

[20] reported EM-induced skips of up to six consecutive instructions with low repeatability on a RISC-

V FPGA implementation.

2.2.3 Software-Implemented Fault Tolerance

Software-Implemented Fault Tolerance (SWIFT) is an approach to improving the reliability of

software systems by incorporating fault-tolerant techniques like error-detection and redundancy

mechanisms directly into the software code with a goal to harden systems against fault models,

particularly instruction skip faults. Moro et al. [21] provided a formal proof showing the efficiency of

redundancy-based countermeasures against a single instruction skip. Their countermeasure

consists of in replacing a non-idempotent instruction with an idempotent one and duplicating it.

Replacement schemes were provided for the ARM instruction set, followed by a formal proof of

countermeasure efficiency. We adopt this approach for the RISC-V instructions in our code

hardening tool. In [22] Moro et al. performed evaluation of two countermeasures by launching

physical fault attacks and assessing the impact. Barenghi et al. [23] proposed software

countermeasures for cryptographic algorithms including intrusion and fault detection. Barry et al. [24]

implemented a LLVM compiler extension which protects against instruction skip attacks. Sharif et al.

[25] developed a compiler framework targeting RISC-V processors which hardens code using

various fault tolerance techniques. Schirmeier et al. [26] provided a fault injection framework for

detecting vulnerable code by emulating faults with a debugger. Kiaei et al. [27] perform assembly

rewriting and lift an x86 binary to an intermediate representation in order to harden vulnerable

instructions which they discover by emulating fault injections.

2.2.4 Emulated Fault Injection

In fault injection emulation, the FPGA is programmed to replicate faults that might occur in the actual

hardware, such as electrical or logical faults, to assess how a system or software responds to these

faults. A debugger can be used to change the software behavior simulating possible fault effects at

the software level. Here we highlight works, where a debugger is used for injection of the faults as it

is done in our work. Portela-Garcia et al. [28] utilized the On-Chip Debugger (OCD) to inject faults

into a microcontroller that supported JTAG debugging Fault Tolerance for RISC-V capabilities.

Instead of controlling the fault injection campaign from the host, they moved the controlling logic to

a separate Systems on Programmable Chip (SoPC) and the host only configures the fault injection

campaign via communication with SoPC. Mosdorf et al. [29] injected faults using the GDB debugger

and a J-Link debugger via the JTAG interface of an ARM device. Schirmeier et al. [30] provided a

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 4

fault injection framework for assessing the fault tolerance of a system by emulating faults with a

debugger on multiple emulators. Zhang et al. [31] utilized a debugger for the fault injection testing of

a real-time operating system. Ahmad et al. [32] developed a fault injection framework based on a

debugger for x86 CPUs and used GDB to interrupt the program’s execution to inject faults at runtime.

2.3 Concept Proposal

Hybrid software-hardware testing offers a comprehensive approach to security assessment by

combining the strengths of both software and hardware-based testing methodologies.

By integrating software-based techniques such as static and dynamic analysis with hardware-based

approaches like fault injection and side-channel analysis, hybrid testing provides a more thorough

evaluation of system vulnerabilities.

This approach enables the detection of both logical vulnerabilities in software code and physical

vulnerabilities arising from hardware-level weaknesses, offering a more holistic view of system

security compared to emulator-based testing.

Hybrid testing facilitates the identification of complex attack vectors that span across software and

hardware components, allowing for more effective mitigation strategies to be developed. For

example, it can identify vulnerabilities which are timing/hardware dependant and could be overlooked

when testing with an emulated virtual environment, which consists of an ISA simulator and C-model

of the hardware peripherals such as crypto-accelerators, firewalls, key-management blocks, memory

subsystem etc.

Pre-silicon fault injection testing plays a crucial role in ensuring the reliability and security of

integrated circuits before they are fabricated, or "taped out," for production. This testing methodology

involves intentionally inducing faults or errors in the hardware design to assess its resilience against

various fault injection attacks, such as voltage glitches, laser attacks, or electromagnetic

interference. Identifying vulnerabilities at the pre-silicon stage is paramount for mitigating the risk of

costly production errors and security breaches.

One of the primary reasons, why pre-silicon fault injection testing is critical, is its ability to uncover

design flaws and vulnerabilities early in the development process. By subjecting the hardware design

to simulated fault injection attacks, designers can identify weak points in the system architecture,

logic gates, or memory elements that may be susceptible to exploitation by malicious actors or

environmental factors. Addressing these vulnerabilities before tape-out reduces the likelihood of

costly design iterations or product recalls during the later stages of production.

Moreover, pre-silicon fault injection testing helps to validate the effectiveness of built-in security

mechanisms, such as error detection and correction codes, redundancy schemes, and secure boot

mechanisms. By subjecting these mechanisms to simulated fault injection attacks, designers can

assess their robustness and identify any potential weaknesses that may compromise the security of

the system. Strengthening these security features early in the design phase enhances the overall

security posture of the integrated circuit and reduces the risk of post-production security breaches.

Three approaches are possible for pre-silicon fault injection testing, resumed in Figure 1. First

approach is fault injection in RTL simulation, which has as advantages to provide a detailed, cycle-

accurate representation of the hardware design, to enable precise control over fault injection

scenarios and parameters and to allow for comprehensive testing of the entire system, including

complex interactions between hardware components. It also has disadvantages as it requires

significant computational resources and simulation time, limiting scalability, and it may overlook

timing-related issues or non-deterministic behaviour due to simulation abstraction. Additionally

matching a physical attack fault model, to several gates that must be flipped is not trivial.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 5

The second approach is fault injection on an Instruction set simulator with hardware peripherals

represented as C Models. The advantages of such a representation offer a balance between

accuracy and simulation speed, making it suitable for large-scale testing, allow for the integration of

software and hardware fault injection techniques, enabling more realistic testing scenarios, and

facilitate the reuse of existing software test suites and development tools. It has the disadvantages

that it offers limited accuracy compared to full RTL simulation, particularly for timing-sensitive

designs, and relies on the accuracy of C models to represent hardware peripherals, which may

introduce abstraction errors.

Finally, the third approach, and the one we focus in this task, is to emulate fault injection on an

FPGA. It has as advantage to provide a hardware-based testing environment, offering real-time

execution and accurate timing, allow for the injection of faults directly into the physical hardware,

enabling realistic testing scenarios and facilitate rapid prototyping and iterative testing, reducing

development time and cost.

As for the other methodologies, it presents several drawbacks. It requires additional effort and

expertise to implement fault injection capabilities on the FPGA, it offers limited scalability for testing

large-scale designs or complex systems and it may incur higher upfront costs for FPGA development

boards and associated tools.

In summary, each pre-silicon fault injection methodology offers distinct benefits and drawbacks,

depending on the specific requirements and constraints of the hardware design and testing

objectives. Full RTL simulation provides detailed accuracy but may be resource-intensive, while

simulation with C models balances accuracy with speed. FPGA emulation offers real-time testing

but requires additional setup and may have scalability limitations. Choosing the most appropriate

methodology depends on factors such as design complexity, testing goals, and available resources.

2.4 Task Objectives

Figure 1: Classification of Pre-Silicon Physical Attack Testing

 ery slow

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 6

The main objective of Task 4.1 is to design and implement a state-of-the-art, open source, hardware

accelerator for software FI testing on FPGA emulated system (see Figure 2).

The proposed method would enable hardware and software pre-silicon co-testing of fault injection

with various fault models.

We leverage the open source instruction set RISC-V and related open sourced hardware

implementations to prototype our solution. The Hardware implementation and Software testing is

performed on RV32IMC architecture.

We selected the FPGA emulation platform based on core CV32E40P from OpenHW [1] for our

development, which is a mature open source project offering years of code support, and a large

community that can possibly become user of our solution. In particular the open source project offers

full FPGA emulation, from which we can build our demonstrator, and run software on a custom

hardware variation of the SoC.

We named our custom block Fault Injection Module (FIM), This block enables direct instrumentation

of the RISCV core by a direct control of the Debug module. This module also implements its own

high speed protocol to optimize host communication and enable tracing and large memory

snapshotting in future developments of T4.2. The design of the FIM module has been integrated into

our demonstrator.

On the host side we develop a SW test framework using FIM and debug module instrumentation to

perform emulated fault injection on FPGA. Thanks to the direct control of the debug module, we will

have full CPU control with breakpoint capability and memory accesses. The design is kept to a

minimal size to limit resource utilization on FPGA. Furthermore, leveraging insights gained from the

fault injection campaign, we present a technique to harden vulnerable instructions by implementing

an assembly-level duplication-based countermeasure, adapted specifically for the nuances of the

RISC-V instruction set.

Figure 2: Design for Hardware/Firmware hybrid FI security testing

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 7

2.5 Design and Implementation

2.5.1 Protection by Fault Injection Emulation

In this section, we introduce a methodology for protecting a firmware against instruction skip attacks

and provide an overview of the separate steps of the flow for code hardening. We call our approach

Skip Protection by Fault Injection Emulation (SPFIE) and incorporate it into a framework for fault

injection testing on an emulated RISC-V core. The framework can be used to embed continuous

security testing into the development process of the software, since it provides an efficient fault

injection testing and hardens code with minimal user interaction. Our framework is also capable of

skipping an arbitrary number of instructions in the given software, which can be used for identifying

vulnerable instructions or code snippets. A user provides a compiled binary that will be executed on

the target emulated core and configures the framework to test a list of critical functions. The

framework then performs fault injection (FI) testing by executing the binary on the core emulated

with an FPGA and produces a list of vulnerable instructions that require additional protection. Our

framework also requires access to the source code and build scripts of the software in order to be

embedded into the build flow. Having the sources, our code hardening tool finds and replaces

vulnerable instructions with a protected version of the original instruction. Finally, another iteration

of the fault injection testing is performed on the hardened code in order to verify the absence of the

previously detected vulnerabilities.

The framework uses fault injection emulation to identify vulnerable instruction addresses and uses

the results to patch the assembler language files. To ensure code security on each commit or major

source code modification automatically, firmware developers can incorporate this framework into the

build flow.

The workflow is depicted in the following Figure 3.

Figure 3: Workflow of our Fault Injection Framework

Next, we elaborate on every step of the process:

1. Generate and Build: Since our framework hardens the code at the assembly level, the

assembler language files need to be generated from the C sources. From the assembler

files, we build the initial binary for the fault injection campaign emulated on a FPGA.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 8

2. FI testing: In this step, the user performs FI testing by skipping the configured amount of

instructions for the given functions to test. The FI campaign results in a list of faulty addresses

that, if skipped via a fault injection, can lead to exploitable behavior.

3. Code Hardening: Given a list of faulty addresses, our code hardening tool performs a

transformation and duplication of the faulty instructions. The patched instructions are then

written to the assembler files. Detailed transformations of RISC-V instructions are described

in a later section.

4. Build and Verify: In the last step, the final binary is built from the patched assembler files,

and another iteration of the FI testing on the final binary can be performed to confirm the

absence of vulnerabilities and original functionality of the binary.

By integrating the SPFIE methodology in the build flow of the firmware, the developers can

continuously and automatically ensure the security of the code against instruction skip attacks, and

a secure version of the binary can be released. By viewing the logs of the framework, the developers

can get a direct feedback on the vulnerable instructions. This information can be analyzed in order

to gain an understanding of how skipped instructions can impact the code execution. An advantage

of this approach is scalability, since increasing the number of available emulators reduces the testing

time linearly. The developers can set up additional emulators and uniformly distribute the test

addresses across the emulators. Afterwards, the faulty addresses for each emulator instance can

be collected and put together for the code hardening. A disadvantage of this approach is that it

requires human guidance in form of provided names of the critical functions which are supposed to

be tested and hardened.

2.5.2 Debugger-Driven FI Testing

This section delves into the specifics of debugger-driven fault injection testing framework, which is

employed to skip instruction on an FPGA-emulated system-on-chip (SoC). Here, we describe how

the FI campaign is performed and accelerated by a custom debug specification extension.

The reason for opting for an emulation solution is the speed advantage it offers, whereby the code

is executed directly on an emulated target device, allowing for full available execution speed. This

facilitates the execution of binaries and the injection of faults much faster than simulation-based

solutions, enabling us to conduct fault injection testing on a large number of instructions. For this

purpose, an emulation environment needs to be configured to run tests. This includes setting up an

FPGA with a synthesized design of the target SoC and establishing the communication to the debug

module (DM). With an emulator set up, the user can start the fault injection campaign.

The fault injection testing is controlled by a Fault Injection Controller (FIC) which manages the fault

injection campaign by leveraging the debugger and the emulation setup in order to find vulnerable

places in the assembly code. The basic idea is to inject faults upon hitting a breakpoint at a target

instruction address. The debugger is used to configure special custom registers in the DM (discussed

in the next section) to simulate an instruction skip. By detecting an address, where a fault is supposed

to be injected, the DM alters the program counter according to the configuration. Before the FIC

starts FI testing, the user evaluates the attackers ability and determines, how many instructions an

attacker is potentially able to skip via fault injection into the particular SoC. This mainly depends on

the targeted architecture, CPU pipeline stages and the memory subsystem from where instructions

are fetched. It is a crucial information for the fault injection campaign and the subsequent code

hardening, since our instruction duplication technique introduces fault tolerance to a degree which

depends on attackers ability to skip a certain amount of instructions. The user also identifies and

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 9

provides a list of security critical functions in the binary that have to be tested. For each instruction

address in the function-under-test (FUT), the FIC does the following steps:

1. Reset the core to prevent interaction with the core state from the previous executions.

2. Load the executable into the memory.

3. Configure special registers in the DM for the automatic instruction skip.

4. Set breakpoint at exception handler.

5. Set breakpoint at last address of main function.

6. Resume the binary execution.

There are 3 possible outcomes of a single test run: the execution can time out, hit the breakpoint at

the exception handler or successfully execute the program and hit the breakpoint at the end of the

main function. The timeouts might need further investigation by the user. Execution of the exception

handler is an indication of detected fault injection, since the program didn't complete its execution. If

the program was executed successfully, that means the fault injection was not detected and silent

data corruption might have happened. So, at the end of the fault injection campaign, the FIC invokes

the code hardening routine and provides to it the list with faulty addresses for analysis.

2.5.3 Debug Specification Extension

To accelerate the fault injection campaign by minimizing host-to-target communication, we propose

a modification to the on-chip debug module. This enhancement allows for more efficient instruction

skipping. The openness of the RISC-V ecosystem grants access to the debug specification, offering

room for custom debug features. Controlling the debug module involves manipulating its internal

Control and Status Registers (CSRs), which includes 16 reserved registers designated for custom

functionalities. By detailing our method at the debug specification level, we ensure its independence

from specific debug module implementations, ensuring a level of portability across diverse RISC-V

system designs. In the following, we outline the specifications of three custom registers, explaining

their function in skipping an arbitrary number of instructions at runtime. This method optimizes the

FI process, contributing to enhanced efficiency while maintaining adaptability across varying system

architectures.

The custom debug registers designed for instruction skipping are as follows:

1. fi_address: This register stores the address of the target instruction where a fault is to be

injected during a single test. Upon setting the fi_address, the DM sets a hardware breakpoint

at the address in the fi_address register to be able to skip the target instruction before it is

executed.

2. hit_count: Within this register resides a numerical value indicating the number of times the

target instruction must be executed before the fault injection is triggered. The DM should

decrease the hit_count value by 1 every time the fi_address is encountered. Finally, if

hit_count value is 0, the fault is injected and the hardware breakpoint at fi_address is

removed.

3. pc_delta: Contained in this register is a signed integer that dictates the program counter's

advancement when the address specified in fi_address is encountered at least hit_count

times. This value determines the shift in the program counter upon meeting the specified

conditions.

As one can see, using this construction, we can also skip multiple consecutive instructions as well

by setting the pc_delta register accordingly. It is also possible to simulate more advanced fault

models such as jump to an arbitrary address, which can be useful in some cases, like for testing

unexpected control flow violations.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 10

2.5.4 Code Hardening Tool

The Code Hardening Tool (CHT) is invoked after the FI testing is completed. It gets the list of faulty

addresses and the number of skipped instructions in the FI campaign, and its goal is to patch the

faulty addresses in the assembler files by duplicating them. So, for each faulty address we need to

find the corresponding group of assembly instructions in the sources and replace it with a duplicated

sequence of idempotent instructions. An idempotent instruction is an instruction that can be executed

multiple times without changing the result beyond the first execution. In other words, the effect of the

instruction remains the same no matter how many times it is executed. Such instructions are useful

for the fault-tolerant replacement sequences that we propose. If every instruction in such a sequence

is duplicated more times than an attacker is able to skip, then every instruction in the sequence is

executed at least once, and the execution of the duplicated idempotent instruction sequence does

not lead to side effects that might change the result of the program's execution.

We define five instruction classes for the RISC-V IMC instruction set: idempotent, separable,

pseudo-instructions, compressed, and special instructions.

• Idempotent instructions can be duplicated without any transformations. These include store

and branching instructions as well as load and arithmetic instructions where every source

operand differs from the destination operand. The CHT can duplicate such instructions

directly without replacing them.

• Separable instructions are arithmetic operations where one of the source operands is

simultaneously the destination operand. Such instructions cannot be duplicated right away

and need to be replaced using an extra register. The extra register needs to be free, meaning

it should not have been used in the calculations before.

• Pseudo-instructions in RISC-V are assembler directives that are not part of the official

RISC-V instruction set but are provided by the assembler to make it easier for programmers

to write code. Pseudo-instructions are translated by the assembler into one or more actual

RISC-V instructions. When the CHT encounters such an instruction, it rewrites it using

special, idempotent, and separable instructions. Afterwards, every instruction in the resulting

sequence will be replaced by an idempotent one.

• Compressed instructions are a subset of the RISC-V instruction set that uses 16-bit

instructions instead of the standard 32-bit instructions. The compressed instruction set uses

the same instruction formats as the standard instruction set, but with shorter opcodes and

fewer operands. The compressed instructions will be "decompressed" by the CHT. The

decompression process involves looking up the underlying instruction and multiplying an

immediate value by a factor depending on the instruction. If the decompressed instruction is

a separable or a special instruction, it will be transformed into an idempotent instruction

accordingly.

• Special. Three special instructions in the standard set, namely jal, jalr, and auipc, are

generally not idempotent depending on operands. These instructions, commonly used for

jumps and subroutine calls, require transformation sequences that always rely on label-based

offsets within assembler files. This requirement arises because these instructions either use

or alter the program counter, and introducing new instructions into the assembler files can

affect their behavior.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 11

In order to harden an instruction, the CHT expands the target instruction if it is a pseudo-instruction

or decompresses it if it is a compressed instruction according to the instruction set specification.

Each instruction in the resulting sequence will be then transformed and duplicated after the

transformations. By duplicating each instruction in a sequence more times than the attacker can

skip, we ensure that every instruction in the sequence will be executed at least once, and an attacker

needs to be able to skip more instructions for a successful attack.

An example of the protection process is depicted in the following Figure 4.

We start by having a vulnerable group of two consecutive instructions: a compressed instruction

c.add a0,s2 and a pseudo-instruction call fn. After the first step, the compressed instructions expand

into a separable instruction add a0,a0,s2 and the pseudo-instruction expands into the special

instruction jal ra,fn. After the applied transformation step, a return label is introduced, and the free

temporary register t0 is used in the transformation of the separable and the special instruction. The

instructions in the transformed sequence will be duplicated three times because the original group

size was 2. Finally, the original instructions in the assembler files will be replaced by the fault-tolerant

version.

2.5.5 Hardware Implementation

Our solution comprises of three distinct parts; The hardware module integrated in the SoC, which

interfaces with the debug module internally and externally to a master controller using a QSPI custom

interface, the controller which interfaces our host machine via USB2 and our embedded module

using QSPI interface and the Host test framework which controls the overall testing and execution

on the target.

The host controller can be for example a computer, which communicates to the DUT via a USB-to-

SPI bridge implemented for example on a Teensy 4.1 [2] board.

The host sets the hardware breakpoint. The CPU executes normally until it hits the breakpoint. The

CPU executes the debug code (in the debug ROM).

Figure 4: Example of Protected Assembly Code

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 12

The debug code must contain the instruction to jump into FIM code. The CPU performs the

programmed skip and continues the execution. The host can be programmed to automatically

emulate and monitor different scenarios (i.e. different locations of the breakpoint and different skip

mechanics).

Fault Injection Module (FIM)

The FIM module, integrated in an SoC, can be used to emulate fault injection.

This component is especially useful to perform fault injection analysis at highspeed on FPGA, to

develop countermeasures pre-silicon.

The basic functionality offered by the FIM can be described as a high-speed interface to the CPU’s

debug module (DM), coupled with a tiny SRAM which extends the debug ROM included in the DM.

By leveraging the functionalities offered by the DM, fault injection can be emulated by setting a

hardware breakpoint and modifying the CPU’s program counter (PC) after reaching the breakpoint.

An alternative approach could have been the implementation of something like an “hardware

OpenOCD” This would have surely granted faster execution speed (since it would have required less

messages exchanged between the host and the DUT), but would have required the implementation

of a more complex and harder to maintain FIM module.

The selected architecture, on the contrary, has been developed quickly and can support different

test strategies, which can be easily implemented on the host controller.

Figure 5: Block diagram of the FIM module

Debug Controller

We based our controller on the Arduino based Teensy board [2]. The Teensy board runs a

communication dispatcher, where it monitors incoming transactions from slave interface. It is

connected to the host computer with a full speed USB2 and receives serial commands. The incoming

commands to the FIM can be packed in multiple individual commands to the DMI. Commands are

unpacked and transferred to the slave interface, a custom QSPI protocol. The QSPI interface is

implemented as software code, but instrumenting a single IO register bank of the Teensy, which

gives it a hardware QSPI behaviour. Moreover the Teensy controller is clocked at 520MHz core

frequency, which allows high throughput to the DUT. An optimized interposer to the FPGA could

allow us to raise the CPU frequency, increasing the throughput even further. The Teensy can be

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 13

overclocked to 1GhZ, so the timing between the QSPI lines in the interconnection to the FPGA are

more of an issue, due to potential data losses.

Figure 6: QSPI pinout of Teensy 4.1

2.6 Conclusion and Continuation of T4.1

To accelerate debugger-driven fault injection testing, we designed an extension compliant with

RISC-V debug specification. Our methodology involves modifying the debug module within an SoC

to facilitate automatic skipping of an arbitrary number of instructions at a breakpoint. Through the

integration of special CSRs and debug module modifications, we achieved a reduction in the duration

of a single test run compared to using a pure debugger solution. Additionally, by replacing the

conventional JTAG debug transport protocol with a custom QSPI interface, we witnessed a

remarkable improvement in communication speed, enhancing the performance of the debugging

toolchain significantly. As a strategy to counter fault injection attacks, we introduced a duplication-

based code hardening technique adopted for the RISC-V instruction set to improve fault tolerance

of test binaries. By fault injection testing and patching only vulnerable parts of code, we were able to

completely prevent fault effects within the assumed threat model. Notably, the partial code hardening

introduced less size and runtime overhead compared to full code duplication while maintaining an

equivalent level of security. This approach ensures enhanced fault tolerance while minimizing the

associated resource demands.

This project opened some potential to investigate the topic further and to improve the current state

of the art. One of the big questions to examine is the possibility of skipping multiple consecutive

instructions. Different combinations of techniques and fault injection methods with various

parameters can be explored to physically attack hardware that can lead to multiple instruction skips.

With the advancements in hardware attacks, our approach would gain even more importance. The

fault injection testing can be accelerated if the communication to the tested device is minimal. For

this, the controlling logic can be moved to a specific device, which would control the target device,

load the code and inject faults. The open-source platforms would facilitate such developments due

to their ability to modify open hardware designs. The current approach could also be extended to

various fault models. The new fault models would then be implemented in the debug module, and

some additional hardware extensions would need to be done. One of the limitations of our approach

is that developers need to configure our fault injection framework what functions to test. So, an

interesting direction to look into would be an automatic way to detect critical functions in the code.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 14

Another part of our solution that requires developer intervention is timeout handling. To help

developers tackle this problem, efficient tracing needed to be implemented, as well as some

automatic tooling that helps developers understand if the timeout needs to be investigated further. A

way to improve our code hardening tool would be to implement it as a compiler extension. Overall,

our approach to improve fault tolerance of the code showed its efficiency and can help developers

secure critical parts of the embedded software.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 15

Chapter 3 Task 4.2

3.1 Task Description

Task 4.2 Advanced Security Testing of Mixed Source Firmware Programs (M06-M33; Task Lead:
NXP)

A complementary approach to hardware support for security testing, is a compiler support to enable

symbolic execution by instrumenting the code during compilation (SymCC). However, another

challenge is that although the hardware will be open, the software may not be fully open-source (i.e.,

a proprietary Wi-Fi or Bluetooth software stack). In this task, we propose to develop a toolchain

based on Inception, to lift closed-source software to a more abstract representation so that SymCC

could provide support for testing firmware programs mixing different level of semantics (e.g.,

assembly mixed with C/C++). This compiler extension could rely on hardware support developed in

T4.1.

3.2 Concept Proposal

Early experiments with Inception and SymCC have shown that the lifting of binaries, while it allows

to lift closed-source, comes with several drawbacks:

- Considerable engineering effort to precisely lift the instruction set of the RISC-V architecture.

- Considerable engineering effort of rehosting the firmware because of the re-modelling of the

required peripherals. This task is in particular a reoccurring one for each firmware which

poses an additional drawback of this approach.

- Inception and SymCC are incompatible with the tools developed in T4.1 which does not allow

to leverage them for native system-level security testing on FPGAs.

In contrast to Inception and SymCC, the hybrid testing approach involving test input mutation with

fuzzing library and smart input generation using symbolic engine has provided much more promising

results with less engineering effort to implement and maintain the tools. We discuss these points in

more detail in the following sections.

Feedback-guided Fuzzing

Feedback-guided fuzzing (also called graybox fuzzing) has emerged in recent years as an effective

technique for automatically detecting bugs and security vulnerabilities in software. Modern fuzzers

such as LibFuzzer [35] and AFL++ [34] are used regularly by security engineers in many

organizations. For example, the OSS-Fuzz [39] project regularly fuzzes hundreds of open-source

applications using thousands of CPU cores.

Figure 7 depicts the general architecture of a feedback-directed fuzzer. The fuzzer consists of four

key functions:

- Input generation: the fuzzer needs to continuously feed the software-under test (SUT) with

effective inputs to explore new code paths. Inputs could be generated in several ways. For

example, byte-level mutations of previous inputs have proved to be fast and reasonably

effective. However, detecting deeper bugs would most likely require structure-aware input

generation.

- Feedback evaluation: A graybox fuzzer depends on evaluating a feedback signal to guide it

towards new and interesting code paths. Upon finding a new path, the fuzzer would queue

the current input to be used later for input generation. AFL has pioneered using edge-level

coverage as a feedback signal. This feedback signal is fast to evaluate, generic, yet effective

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 16

in practice. Other fuzzers like LibFuzzer have built upon similar techniques but added more

sophisticated feedback signals like comparison tracing.

- Bug detection: the ultimate goal of a fuzzer is to detect security-relevant bugs like out-of-

bound memory accesses and undefined behaviors. To this end, fuzzers usually rely on

compiler-instrumentation to insert code that can check bug conditions at run-time. The

popular compilers gcc and clang provide special compiler flags to enable various bug

sanitizers like AddressSanitizer (ASan) [37]. Sanitizers not only enable early detection of

bugs, but they also provide detailed backtraces that are essential for root cause analysis.

- Scheduling: a fuzzer might discover many interesting inputs during a fuzz session. It will

gradually accumulate them in a seed queue. Expectedly, a scheduling problem would arise

here as the fuzzer needs to prioritize its seeds and select the next input to be mutated. This

scheduling problem has been studied in several works [40]. However, the expected gain from

improved scheduling is not high. It can be in the order of 2% higher coverage for a

sophisticated algorithm like in FSE [40]. Therefore, we do not consider scheduling further in

our project.

Concolic execution

Concolic execution, a blend of concrete and symbolic execution, is a software testing technique

designed to enhance the thoroughness of program analysis. By combining the real-world execution

of a program with specific inputs (concrete execution) and the theoretical analysis of the program

using symbolic inputs (symbolic execution), concolic execution aims to explore various execution

paths within the software.

The approach begins with concrete execution, where the program runs with actual inputs, allowing

testers to observe real behavior and outcomes. Simultaneously, symbolic execution uses symbolic

inputs to represent a range of possible values, enabling the exploration of multiple paths at once. As

the program executes, constraints for each path are generated and solved to produce new inputs

that drive the program down unexplored paths. This systematic exploration helps in identifying bugs

and vulnerabilities that might be missed by traditional testing methods.

Hybrid testing approach

Fuzzing, while effective in identifying crashes and simple bugs, faces several challenges such as

limited code coverage, high resource consumption, handling complex inputs, and missing subtle

issues like logic errors. Concolic execution addresses these limitations by combining concrete and

symbolic execution. This hybrid approach systematically explores different execution paths, leading

to higher code coverage. It leverages symbolic execution to understand and to explore the internal

logic of the program, making it easier to reproduce and to analyze results. By generating meaningful

inputs that explore new paths, concolic execution optimizes resource usage and reduces redundant

tests. It can handle complex input formats by generating constraints for symbolic variables, which

Software under Test

Input Generation Feedback evaluation

Bug detection Scheduling

Feedback-directed fuzzer

Figure 7 General architecture of a feedback directed fuzzer

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 17

are then solved to produce valid inputs that can lead to a new execution path. Concolic execution

precisely identifies the conditions under which bugs occur, including subtle logic errors and

vulnerabilities that might be missed by fuzzing alone.

Firmware Testing

We consider in this project the testing of firmware, which is the software directly interfacing with the

hardware. Several challenges arise in such settings compared to regular application software. First,

the computing resources available for executing firmware are quite limited. This means that it is

typically not possible to instrument firmware for bug detection and feedback evaluation. For example,

ASan requires at least double the amount of memory for its shadow memory implementation.

Similarly, running sophisticated input generation algorithms requires more computing resources than

what is typically available on microcontrollers. Moreover, microcontrollers usually have a diverse set

of peripherals and hardware modules that provide input to the firmware. Such diverse inputs are

difficult to accurately emulate by software emulator alone.

The scientific community has approached the above challenges by following three main approaches

that sometimes overlap:

• Recompilation: In this approach, the source code of the firmware is instrumented and

recompiled using a mainstream compiler. For example, one could compile the firmware using

clang while enabling ASan. Then, it could be tested using AFL++ on a standard x86-64

machine. This approach is fraught with perils though. It is likely that the firmware cannot be

recompiled in the first place due to an incompatibility in compiler options or inline assembly.

Even after recompilation, the security engineer will probably need to stub various hardware

dependencies before being able of running the firmware. The trouble won’t be over yet as

the end binary can be significantly different from the original one. This could cause the fuzzer

to produce a large number of false positives (and false negatives). As a consequence,

recompilation could still be worth pursuing, but only for library code or firmware components

with low hardware dependencies.

• Rehosting: it is possible to test firmware by running it inside a virtual execution environment

(VEE) using a full-system emulator like QEMU [38]. This setup requires an initial investment

in developing accurate hardware models for microcontroller peripherals. Consequently, the

amount of work required for setting up a VEE varies significantly depending on the target

hardware. In rehosting-based testing, the binary typically runs without instrumentation.

Instead, the VEE can be hooked to implement dynamic feedback evaluation and bug

detection. There has been a surging interest recently in rehosting and fast development of

VEEs like HALucinator [41] and others.

• Native execution: testing the firmware directly on the microcontroller provides several

benefits. First, it avoids the need for developing custom hardware models. That is, testing

can commence directly on the target. Additionally, it provides high fidelity that could be

necessary to detect timing issues and race conditions. Such fidelity is difficult to achieve in

VEEs. However, native testing comes with its own challenges. It is difficult to instrument

firmware on the target hardware. Therefore, bug detection and feedback evaluation should

be executed on an external host that communicates with the target. Additionally,

debuggability is often limited which makes it challenging to implement root cause analysis

and crash detection.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 18

3.3 Task Objectives

The aim of this task is to enable hardware support for logical vulnerability SW testing by

instrumenting code during compile- or runtime. The code instrumentation can accelerate SW testing

methodologies like feedback-guided fuzzing by efficient analysis and reporting of the code being

tested (code coverage, vulnerability detection). It will extend the FIM developed in the T4.1 to provide

features for tracing capabilities required for software security testing via hybrid fuzzing approach

where fuzzing is combined with concolic execution to produce more coverage. This extended version

of the FIM is called SW Testing Acceleration Module (STAM) throughout this chapter (see Figure 8).

Figure 8: Design for native system-level software security testing

3.4 Solution Design

Given all the arguments from above we focus on developing a hardware module STAM to extend an

existing debug infrastructure which will assist in our hybrid testing approach. One of the main

problems in firmware testing is the limited observability. Tracing can significantly enhance coverage-

guided fuzzing and concolic execution in firmware testing scenarios where targets don't provide

proper feedback into program execution flow.

For coverage-guided fuzzing, tracing helps efficiently track code coverage by identifying which parts

of the firmware are exercised during fuzzing. This ensures that the fuzzer focuses on unexplored

paths, improving the overall effectiveness of the fuzzing process. Additionally, leveraging on-target

tracing minimizes the overhead associated with traditional instrumentation, allowing for faster

execution of test cases and more efficient fuzzing cycles. Tracing also provides detailed insights into

the execution flow, enabling the identification of subtle bugs that might be missed by other testing

methods, which is particularly useful for detecting security vulnerabilities.

In the context of concolic execution, tracing facilitates the generation of new test cases based on the

observed execution paths, systematically covering different code branches and improving test

coverage. By providing real-time data on the execution flow, tracing helps in efficiently solving

constraints during symbolic execution, accelerating the process of finding feasible paths and

potential bugs.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 19

As one can see lightweight tracing capabilities are

essential for automated firmware testing. So we

took our setup from T4.1 and modified our target

SoC to facilitate instruction flow tracking using our

high-speed debugger. Furthermore we

incorporated a fuzzing library and symbolic engine

in our test framework. The combination of these

techniques yields us a necessary foundation for

automated testing of firmware on an emulated SoC

in pre-silicon phase.

The high-level overview of the solution for

automated testing of embedded RISC-V software is

presented in the Figure 9. The hardware setup is

basically the same as in T4.1. It involves 3 main

hardware pieces: a host computer which drives the

testing, our debug connector which transmits debug

commands at high-speed and the DUT emulated on

FPGA. Now we provide the functional description of

the components in the figure:

• Test framework is the software on the host that controls the testing process. It uses fuzzer

and symbolic engine for input generation and debug driver to control and trace the execution

of the firmware. The inputs are supplied to the target via serial communication channel.

• Fuzzer generates a series of bytes through mutating based on input corpus and coverage

provided by the framework.

• Driver library is an interface for controlling the target FPGA via the debug connector. It

communicates debug commands via USB serial interface which allows high throughput and

enables high-speed debugging.

• Symbolic engine analyzes the tested binary and symbolically executes it based on executed

basic blocks. The engine is also capable of building and resolving constraints for new paths

from which an input for an unvisited branch can be derived.

• Debug connector is a microcontroller which converts debug commands taken from serial

USB into QSPI signals that FIM can process.

• STAM (former FIM) relays debug commands from the host to the debug module and handles

commands related to our custom DMI registers. It features its own portion of SRAM for

storing the additional code that handles actions which are executed once a breakpoint is

encountered.

• Debug Module (DM) receives DMI commands and controls the core accordingly. The DM is

execution-based. This means that when the core enters debug mode, the code in the DM’s

ROM, referred to as the ”park loop”, is executed. This loop is supposed to wait for and

execute debug operations while the core is halted.

3.5 STAM

In order to gain more observability into the firmware execution we propose a modification of the DM

in form of extended register set. The STAM is designed to provide a flexible way of inspecting or

modifying system state on target at preset breakpoints. The general idea of our approach is to set

breakpoints (either hardware or software via ebreak instruction) and when hit, handle them

automatically on target using user provided code. For this, we integrate SRAM for instrumentation

Figure 9: Setup overview

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 20

code and another communication channel for transmitting relevant data to the host via a specific DM

register.

The official DMI specification allows for Custom Debug Module Registers (0x70-0x7f). In order to

enable efficient testing we propose to introduce the following custom registers:

Name Description Permissions
Memory-

mapped

STAM_CSR bit0: enable user redirect (R/W)

bit1: trace buffer full (R)

bit2: unused

bit3: trace buffer empty (R)

bit31~26: a double exponential mapping from

bit position to buffer size (R)

R/W Yes

TRACE_READ Returns the next data word (4 byte) in the

trace ring buffer

W No

TRACE_LOAD Indicates the amount of words in the trace

buffer

R Yes

BS_START Pointer to the start of the memory region

within STAM SRAM used to store data

R/W Yes

BS_END Pointer to the end of the memory region

within STAM SRAM used to store data

R/W Yes

BS_VALUE On write uses binary search algorithm as

hardware accelerator to search for a given

value within specified range of the memory.

The data in memory should be laid out in

ascending order.

R/W Yes

BS_RESULT_ADDR 0x0 if search failed. Otherwise memory

address of the requested value.

R Yes

BS_RESULT_IND -1: data not found

-2: search start address outside SRAM

-3: search end address outside SRAM

-4: start address bigger than end address

=>0: index of the found word

R Yes

FI_COUNT Contains the number of times the target

instruction must be executed before the fault

injection is triggered. The DM should

decrease the FI_COUNT value by 1 every

time the FI_LOC is encountered. Finally, if

FI_COUNT value is 0, the fault is injected

and the hardware breakpoint at FI_LOC is

removed.

R/W Yes

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 21

Some of the above registers should be implemented as memory-mapped such that user provided

assembly code could interact with hardware.

3.6 Tracing Mechanism

When the core is in a debug mode, because it was halted by a debugger or a breakpoint is hit, STAM

checks if redirect is enabled. In this case it points the core to execute the tracing code in STAM

SRAM which was written there by the debugger on the host. The tracing code may inspect or change

the system state and eventually communicate traced information to the outside by writing to a

specific memory location within SRAM which populates the trace buffer. The contents of the buffer

can be read out asynchronously by the debugger via TRACE_READ register.

There are two modes implemented for tracing, (1) the single instruction trace mode and (2) the

branch trace mode. Both modes will be described in detail in the following two subsections.

Single Instruction Tracing Mode

The single instruction trace mode allows to trace the code execution by single-stepping through the

code. The tracing can be activated by placing a simple code gadget into STAM memory and

instructing the core to step through executed code. The single tracing steps are depicted in Figure

10 and the following description refers to each step in the diagram.

• Step 1: The STAM is in control of the core until the tracing is disabled by the host. It steps

through the code and with every issued step-command.

• Step 2: On each step the core enters debug mode and the STAM code is executed which

stores the context. The trace code collects execution state information like the current

program counter (PC) in the trace buffer and eventually restores the context and exits the

debug mode.

• Step 3: The core continues the execution of the next instruction which will in turn start the

same process again. If the trace code detects that tracing is inactive or the buffer is full,

STAM would wait for the RESUME command from the host or until the buffer got emptied.

Name Description Permissions
Memory-

mapped

FI_LOC Contains the address of the target instruction

where a fault is to be injected during a single

test

R/W Yes

FI_VALUE Contains the address that dictates the

program counter's advancement when the

address specified in FI_LOC is encountered

at least FI_COUNT times. This value

determines the shift in the program counter

upon meeting the specified conditions.

R/W Yes

Table 1: Control and Status Registers of Software Testing Automation Module

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 22

Figure 10: Single Instruction Tracing

Branch Tracing Mode

The Branch Tracing Mode is a lightweight, high-performance tracing technique designed to capture

control flow transitions at runtime with minimal overhead. Unlike the Single Instruction Trace Mode,

which steps through every instruction, this mode focuses exclusively on control flow instructions,

making it particularly well-suited for edge-based feedback-guided fuzzing. In this context, detecting

new transitions between basic blocks is essential for steering input mutations and exploring deeper

execution paths.

Branch tracing operates by halting the processor at each indirect jump instruction and recording the

jump destination. To enable this, each indirect jump in the firmware binary is replaced with a software

breakpoint (e.g., an ebreak instruction). Since the original instruction is no longer present, a

corresponding tracing gadget is generated for each replaced instruction. These gadgets simulate

the original behavior, compute the new program counter (PC), and write the result to the trace buffer.

A jump table is also generated, mapping each breakpoint address to its corresponding gadget. This

enables efficient redirection during runtime.

In Figure 11, the required steps for the branch tracing concept are depicted.

• Step 1: The debugger loads the instrumented binary, tracing gadgets, and jump table into

the target system. It then sets the redirect bit in the STAM control and status register (CSR)

and starts program execution.

• Step 2: When an instrumented indirect jump is encountered, the core hits the inserted

breakpoint and enters debug mode. STAM detects this event, saves the current execution

context, and uses a hardware-accelerated binary search to locate the appropriate gadget in

the jump table based on the breakpoint address.

• Step 3: Control is transferred to the selected gadget, which simulates the original instruction,

computes the jump target, and writes the destination address to the trace buffer. Meanwhile,

the debugger asynchronously reads the buffer contents.

• Step 4: After the trace data is recorded, STAM restores the saved context and exits debug

mode. Execution resumes at the newly computed PC, continuing the program flow.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 23

Figure 11: Branch Tracing Concept

3.7 Hardware Acceleration

In real-world firmware, the number of instrumented indirect jump instructions can reach into the

thousands. Efficiently mapping each triggered breakpoint to its corresponding tracing gadget is

therefore critical for maintaining high execution throughput during branch tracing. To address this,

we implemented a hardware-accelerated binary search mechanism within STAM.

A naïve linear search through the jump table would introduce significant latency, especially as the

number of breakpoints increases. To mitigate this, we leveraged a binary search algorithm

implemented in hardware, which significantly reduces lookup time and enables near-constant-time

gadget resolution.

The hardware-accelerated binary search operates over a sorted jump table stored in memory. The

process is configured and executed as follows:

• Jump Table Preparation: All breakpoint addresses are sorted in ascending order and stored

contiguously in memory. Each entry corresponds to a tracing gadget.

• Configuration via Memory-Mapped Registers: The gadget specifies the memory range of the

jump table using the following memory-mapped control registers:

o BS_START: Start address of the jump table.

o BS_END: End address of the jump table.

o BS_VALUE: The address of the current breakpoint to be resolved.

• Search Execution and Result Retrieval: Once configured, the hardware performs a binary

search and writes the result to the BS_RESULT_IND register, which contains the index of

the matching entry in the jump table.

• Gadget Address Calculation: Since all tracing gadgets are of uniform size and laid out

sequentially in memory, the address of the target gadget can be computed as:

Gadget Address=GADGET_BASE+(BS_RESULT_IND×GADGET_SIZE)

where GADGET_BASE is the start address of the gadget region.

To ensure correctness and performance, the following layout constraints must be met: the jump table

must be sorted by breakpoint address and all gadgets must be of equal size and placed contiguously

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 24

in memory. This design enables fast and deterministic gadget resolution, which is essential for

maintaining the responsiveness of the tracing system under high-frequency breakpoint events.

3.8 Hybrid fuzzing

Fuzzing has proven to be an effective technique for testing software and uncovering vulnerabilities,

primarily due to its ability to generate large volumes of mutated inputs and achieve high test

throughput. However, traditional fuzzing - especially in its graybox form - has limited insight into the

internal logic of the software under test. It typically relies on coverage feedback, which can be

insufficient when execution is gated by complex conditions, such as checks for magic values or deep

nested branches. In such cases, the fuzzer may spend a significant amount of time generating inputs

that fail to make meaningful progress.

To overcome this limitation, we adopt a hybrid fuzzing approach that combines fuzzing with concolic

execution. This integration allows us to intelligently guide input generation when the fuzzer becomes

stuck and fails to discover new coverage. Concolic execution, while powerful, is computationally

expensive and not suitable for continuous use. Therefore, we invoke it selectively, only when the

fuzzer plateaus.

Our branch tracing mechanism plays a key role in this process. When the fuzzer fails to make

progress, we extract a concrete execution trace and feed it into the symbolic engine. This trace

provides a precise path through the firmware, enabling the symbolic engine to efficiently compute

path constraints. Using this information, the engine can suggest new inputs that are likely to steer

execution toward unexplored branches.

To support this, we capture an initial snapshot of the system state, including all general-purpose

registers (GPRs) and readable memory regions, excluding peripheral-mapped areas. This snapshot

is used to initialize the symbolic engine before each symbolic execution run. The user is responsible

for marking relevant memory locations or registers as symbolic, which defines the input space for

constraint solving.

During symbolic execution, we randomly select an unvisited branch from the trace and instruct the

engine to generate an input that would cause the program to take that path. Once a candidate input

is computed, it is delivered to the firmware via a serial interface. If the execution of this input results

in the invocation of an exception handler, we classify it as a crash.

This hybrid approach allows us to combine the speed and scalability of fuzzing with the precision of

symbolic reasoning on a concrete execution, significantly improving the depth and efficiency of

firmware testing.

3.9 Implementation

The prototype implementation of our system builds upon the platform developed in Task 4.1. We

extended the existing infrastructure by integrating the Software Testing Acceleration Module

(STAM), which introduces new DM registers to support the custom features described in previous

sections.

To support trace data collection and gadget execution, we connected 128 KB of SRAM to STAM.

This memory is fully addressable and accessible by the processor core, and is used for accessing

the trace buffer, tracing routines, and instrumentation gadgets. We also modified the existing debug

module to interoperate with STAM. Specifically, the DM ROM code was extended to check the

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 25

redirect bit and the status of the trace buffer. If redirection is enabled and the buffer is not full,

execution is redirected to the STAM SRAM region.

On the software side, we developed a Python-based driver library that enables the Teensy

microcontroller to act as a debug connector. This library supports both single instruction and branch

tracing modes, and provides a flexible interface for interacting with the STAM hardware.

To handle branching and indirect control flow instructions such as jalr and jr, we implemented a set

of tracing gadgets that simulate the original instruction behavior and record the computed jump

targets. These gadgets are used in the binary instrumentation process to enable branch tracing.

For broader applicability and to facilitate adoption by the research community, we integrated Teensy

support into OpenOCD[42], allowing our enhanced debug infrastructure to be used with standard

tooling.

Our hybrid fuzzing methodology is implemented using libFuzzer for input mutation and angr [36] for

symbolic execution of binaries. These tools are orchestrated to work in tandem with the STAM

tracing infrastructure, enabling efficient feedback-driven testing of firmware in a pre-silicon

environment.

3.10 Evaluation

3.10.1 Tracing

To evaluate the performance of our tracing strategies and demonstrate the effectiveness of our

hardware modifications, we conducted a benchmarking campaign using a firmware application that

performs SHA hashing across multiple rounds. Since standard tools like OpenOCD do not support

tracing of indirect jumps, we use instruction coverage per second (i/s) as our primary performance

metric. This metric reflects the number of application instructions executed per second while tracing

is active.

Our evaluation begins with a baseline measurement using standard debugging toolchain including

OpenOCD in combination with Digilent HS-2 as debug connector, which lacks native support for

tracing and especially for indirect jumps. Using basic step functionality of the debugger, tracing

performance was limited to approximately 60 i/s. This serves as a reference point for comparing the

impact of our enhancements.

We then tested a stepping-based approach using our custom high-speed debugger, which

communicates via a Teensy-based debug connector over a QSPI interface. Without any additional

acceleration features, this setup achieved a tracing speed of 11,000 i/s, representing a 180×

improvement over OpenOCD.

Building on this, we enabled Single Instruction Tracing Mode using a stepping gadget placed in

STAM SRAM. This configuration significantly boosted performance to 83,000 i/s, a 7.5× increase

over the previous setup and a 1,300× improvement over the OpenOCD baseline.

Next, we evaluated Branch Tracing Mode, where each indirect jump is instrumented with a dedicated

gadget. Initially, we implemented a software-based binary search in assembly to map breakpoints to

their corresponding gadgets. This approach yielded a tracing speed of approximately 380,000 i/s,

which is 4.5× faster than single-instruction gadget tracing and 6,300× faster than OpenOCD.

To further optimize performance, we replaced the software binary search with a hardware-

accelerated binary search engine, controlled via memory-mapped registers. This significantly

reduced the number of instructions executed per breakpoint and offloaded the search logic from the

core to dedicated hardware. As a result, we achieved a peak tracing performance of 700,000 i/s,

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 26

which is 85% faster than the software binary search and an impressive 11,700× improvement over

the OpenOCD baseline.

It is important to note that in our test case, all tracing gadgets and the jump table fit within the

available STAM SRAM. For larger firmware binaries, this may not be feasible, and dynamic reloading

of gadgets and jump tables would be required, potentially reducing performance due to the overhead

of memory transfers.

Figure 12 illustrates the performance of each tracing strategy and highlights the incremental benefits

of our acceleration techniques. These results demonstrate that our approach - combining a high-

speed debug interface with memory-resident tracing gadgets and hardware-assisted search - offers

substantial performance gains. Depending on the available FPGA resources and SoC design,

analysts can choose from a range of tracing configurations to balance performance and resource

usage. These tracing capabilities form the foundation for the hybrid fuzzing methodology described

in the next section.

Figure 12: Performance of different tracing strategies

3.10.2 Hybrid fuzzing

To evaluate the effectiveness of our hybrid fuzzing approach, we developed a custom test program

that communicates over UART using a lightweight protocol. The firmware was instrumented with

artificial vulnerabilities, such as buffer overflows, which trigger a crash and invoke the exception

handler when exploited. This setup allowed us to assess the ability of our system to discover real

faults through guided input generation.

We compared our approach against GDBFuzz[33], a state-of-the-art graybox fuzzer for embedded

systems that relies on hardware breakpoints to construct a basic block coverage map. While

GDBFuzz operates at the basic block level, our system tracks edge coverage in form of sequence

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 27

of taken branches, which provides finer-grained feedback and enables more precise guidance for

input mutation.

To ensure a fair comparison, we evaluated both tools over the same firmware and runtime

conditions. For each input generated by GDBFuzz that resulted in new basic block discovery, we re-

executed the firmware using our tracing infrastructure to compute the corresponding edge coverage.

This allowed us to normalize the results and compare the tools based on the same metric.

As shown in Figure 13 Edge coverage comparison, our hybrid fuzzer significantly outperforms

GDBFuzz in both coverage depth and discovery speed. Within the first minute of execution, our tool

covered 55 unique edges, whereas GDBFuzz required approximately 40 minutes to reach the same

level. Over the full 10-hour campaign, GDBFuzz failed to match the total edge coverage achieved

by our hybrid approach.

These results highlight the advantage of combining instruction-level tracing with symbolic execution.

By leveraging concrete execution traces and selectively invoking the symbolic engine, our system is

able to overcome input-dependent bottlenecks - such as magic number checks - and explore deeper

execution paths more efficiently. This leads to faster discovery of vulnerabilities and more

comprehensive firmware testing within the same time constraints. Ultimately, our enhancements to

the debug module and tracing infrastructure enable a powerful pre-silicon testing methodology that

surpasses traditional graybox fuzzing in both precision and performance.

Figure 13 Edge coverage comparison

3.11 Conclusion and Continuation of T4.2

In this task, we presented a novel approach to accelerating automated firmware testing in pre-silicon

environments by combining hardware-assisted tracing using an on-chip debug module with hybrid

fuzzing techniques. Our system, built around the Software Testing Acceleration Module (STAM),

introduces a set of custom debug features that enable efficient instruction flow tracing through both

single-instruction and branch-level modes. These tracing capabilities are tightly integrated with a

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 28

high-speed debug interface and supported by a hardware-accelerated binary search engine,

significantly improving trace resolution performance.

We demonstrated that our tracing infrastructure achieves up to 700,000 instructions per second - an

improvement of over 11,000× compared to conventional OpenOCD-based debugging. This

performance gain is critical for enabling scalable and responsive feedback mechanisms in fuzzing

workflows.

To further enhance test coverage, we implemented a hybrid fuzzing strategy that combines fast input

mutation with targeted symbolic execution. By leveraging concrete execution traces, our system can

guide the symbolic engine to explore previously unreachable paths, resulting in faster and deeper

coverage. In comparative evaluations, our hybrid fuzzer outperformed state-of-the-art graybox

fuzzers such as GDBFuzz, achieving significantly higher edge coverage in a fraction of the time.

There are multiple ways to improve the efficiency of hybrid fuzzer as future work. Silent data

corruption detection is beneficial for discovering more memory related vulnerabilities. So the

techniques like memory tagging or some sort of memory access control in hardware or software can

be implemented. One promising direction is the automation of symbolic variable selection to reduce

manual effort and improve scalability across diverse firmware targets. Another direction in improving

concolic execution is a development of more sophisticated logic for path exploration and interrupt

modelling. Finally, exploring adaptive fuzzing strategies that dynamically balance between fuzzing

and symbolic execution based on runtime feedback could lead to even more efficient path

exploration and vulnerability discovery.

Overall, our approach demonstrates that integrating hardware acceleration with intelligent software

testing strategies can dramatically improve the efficiency and effectiveness of firmware validation.

The modularity and openness of our implementation, including integration with OpenOCD and

support for standard tools like libFuzzer and angr, make it a practical and extensible solution for the

research and embedded systems communities. These contributions pave the way for more robust

and scalable pre-silicon testing methodologies capable of uncovering complex bugs and

vulnerabilities early in the development lifecycle of open-source hardware based on RISC-V.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 29

Chapter 4 Summary and Conclusion

This deliverable D4.1 documents the successful implementation of Task 4.1 and 4.2 in Work

Package 4 within the ORSHIN project, focusing on pre-silicon security testing of embedded firmware.

The work is structured into two tasks: T4.1, which addresses physical fault injection testing, and

T4.2, which targets logical vulnerability testing through hybrid fuzzing and symbolic execution.

In T4.1, we developed a novel hardware-assisted framework for fault injection testing on RISC-V-

based systems. This includes the design and implementation of the Fault Injection Module, a high-

speed debug interface integrated into an FPGA-emulated SoC. The framework supports debugger-

driven FI testing, enhanced by custom debug module extensions that simulate instruction skip

attacks. A code hardening approach was also introduced, enabling automatic identification and

patching of vulnerable instructions using duplication-based countermeasures tailored to the RISC-V

instruction set.

In T4.2, we extended the FIM into the Software Testing Acceleration Module (STAM), enabling

advanced software testing techniques. This includes hardware-assisted instruction and branch

tracing, a high-speed debug interface, and a hardware-accelerated binary search engine for efficient

gadget resolution. These capabilities support a hybrid fuzzing framework that combines input

mutation with symbolic execution, significantly improving code coverage and vulnerability detection.

Our evaluations demonstrated substantial performance gains and superior coverage compared to

existing tools like GDBFuzz.

We publicly provide our prototype and a detailed reproduction guide as part of the D4.2

demonstrator. The prototype includes a system-on-chip bitfile with an enhanced debug module for

FPGA emulation, Teensy firmware for custom communication, a high-speed debugging driver, and

a fault injection framework. It supports both a fast debugger and standard tools like GDB and

OpenOCD, including a modified OpenOCD for our Teensy connector. Also included are a hybrid

fuzzing tool using STAM for firmware testing and example test code for our platform.

Together, these contributions represent a significant advancement in the field of pre-silicon firmware

security testing. The integration of hardware acceleration with intelligent software testing strategies

has proven to be highly effective in identifying and mitigating vulnerabilities in embedded systems.

The open-source nature of the tools ensures broad accessibility and encourages adoption by the

wider research and development community.

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 30

Chapter 5 List of Abbreviations

Abbreviation Translation

FIM Fault injection Module

CPU Central Processing Unit

JTAG Joined Test Action Group

FI Fault injection

SW Software

HW Hardware

IF Interface

BKPT Breakpoint

STAM Software Testing Acceleration Module

DM Debug Module

DMI Debug Module Interface

QSPI Quad Serial Peripheral Interface

CSR Control and Status Register

GPR General Purpose Register

RTL Register Transfer Level

FPGA Field Programmable Gate Array

SoC System on Chip

SuT Software under Test

DuT Design under Test

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

ROM Read-Only Memory

SHA Secure Hash Algorithm

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 31

Chapter 6 Bibliography

[1] OpenHW – CV32E40P Manual - https://docs.openhwgroup.org/projects/cv32e40p-user-

manual/en/latest/intro.html

[2] PJRC – Teensy 4.1 Development Board - https://www.pjrc.com/store/teensy41.html

[3] RISC-V External Debug Support Version 0.13.2 - https://riscv.org/wp-

content/uploads/2019/03/riscv-debug-release.pdf

[4] 38. Ziade, H., Ayoubi, R., Velazco, R.: A survey on fault injection techniques (2004)

[5] 19. Giraud, C., Thiebeauld, H.: A survey on fault attacks. International Federation for

Information Processing Digital Library; Smart Card Research and Advanced Applications VI; 153

(2004). https://doi.org/10.1007/1-4020-8147-2 11

[6] 6. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice

guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006).

[7] 8. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic

devices: Theory, practice, and countermeasures. Proceedings of the IEEE 100(11), 3056–3076

(2012). https://doi.org/10.1109/JPROC.2012.2188769

[8] Breier, J., Hou, X.: How practical are fault injection attacks, really? 10, 113122–113130.

https://doi.org/10.1109/ACCESS.2022.3217212 , conference Name: IEEE Access

[9] Gangolli, A., Mahmoud, Q.H., Azim, A.: A systematic review of fault injection attacks

on IoT systems 11(13), 2023. https://doi.org/10.3390/electronics11132023,

https://www.mdpi.com/2079-9292/11/13/2023

[10] Sas, M., Mitev, R., Sadeghi, A.R.: Oops..! i glitched it again! how to multi-glitch the glitching-

protections on ARM TrustZone-m, http://arxiv.org/abs/2302.06932

[11] Timmers, N., Mune, C.: Escalating privileges in linux using voltage fault injection. In: 2017

Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). pp. 1–8 (2017).

https://doi.org/10.1109/FDTC.2017.16

[12] Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characterization of the

effects of clock glitches on 8-bit MCUs. In: 2011 Workshop on Fault Diagnosis and Tolerance in

Cryptography. pp. 105–114. https://doi.org/10.1109/FDTC.2011.9

https://docs.openhwgroup.org/projects/cv32e40p-user-manual/en/latest/intro.html
https://docs.openhwgroup.org/projects/cv32e40p-user-manual/en/latest/intro.html
https://www.pjrc.com/store/teensy41.html
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
https://doi.org/10.1007/1-4020-8147-2%2011
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/ACCESS.2022.3217212
https://doi.org/10.3390/electronics11132023
https://www.mdpi.com/2079-9292/11/13/2023
http://arxiv.org/abs/2302.06932
https://doi.org/10.1109/FDTC.2017.16
https://doi.org/10.1109/FDTC.2011.9

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 32

[13] Colombier, B., Grandamme, P., Vernay, J., Chanavat, E., Bossuet, L., de Laulanié, L.,

Chassagne, B.: Multi-spot laser fault injection setup: New possibilities for fault injection attacks. In:

Grosso, V., Pöppelmann, T. (eds.) Smart Card Research and Advanced Applications, vol. 13173,

pp. 151–166. Springer International Publishing. https://doi.org/10.1007/978-3-030-97348-3 ,

https://link.springer.com/10.1007/978-3-030-97348-3 , series Title: Lecture Notes in Computer

Science

[14] Menu, A., Dutertre, J.M., Potin, O., Rigaud, J.B., Danger, J.L.: Experimental analysis of the

electromagnetic instruction skip fault model. In: 2020 15th Design & Technology of Integrated

Systems in Nanoscale Era (DTIS). pp. 1–7. https://doi.org/10.1109/DTIS48698.2020.9081261

[15] Proy, J., Heydemann, K., Majéric, F., Cohen, A., Berzati, A.: Studying EM pulse effects on

superscalar microarchitectures at ISA level, http://arxiv.org/abs/1903.02623

[16] Rivière, L., Najm, Z., Rauzy, P., Danger, J.L., Bringer, J., Sauvage, L.: High precision fault

injections on the instruction cache of ARMv7-m architectures,

https://eprint.iacr.org/undefined/undefined

[17] Blömer, J., Silva, R.G.d., Günther, P., Krämer, J., Seifert, J.P.: A practical second-order fault

attack against a real-world pairing implementation, https://eprint.iacr.org/undefined/undefined

[18] Dutertre, J.M., Riom, T., Potin, O., Rigaud, J.B.: Experimental analysis

of the laser-induced instruction skip fault model. In: Askarov, A., Hansen, R.R., Rafnsson, W.

(eds.) Secure IT Systems, vol. 11875, pp. 221– 237. Springer International Publishing.

https://doi.org/10.1007/978-3-030-35055-0, http://link.springer.com/10.1007/978-3-030-35055-0 ,

series Title: Lecture Notes in Computer Science

[19] Yuce, B., Ghalaty, N.F., Santapuri, H., Deshpande, C., Patrick, C., Schaumont, P.: Software

fault resistance is futile: Effective single-glitch attacks. In: 2016 Workshop on Fault Diagnosis and

Tolerance in Cryptography (FDTC). pp. 47–58. https://doi.org/10.1109/FDTC.2016.21

[20] Elmohr, M.A.: Embedded systems security: On EM fault injection on RISC-v and BR/TBR PUF

design on FPGA

[21] Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification of a software

countermeasure against instruction skip attacks 4(3), 145–156. https://doi.org/10.1007/s13389-

014-0077-7, http://link.springer.com/10.1007/s13389-014-0077-7

[22] Moro, N., Heydemann, K., Dehbaoui, A., Robisson, B., Encrenaz, E.: Experimental evaluation

of two software countermeasures against fault attacks. In: 2014 IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST). pp. 112–117.

https://doi.org/10.1109/HST.2014.6855580

https://doi.org/10.1007/978-3-030-97348-3
https://link.springer.com/10.1007/978-3-030-97348-3
https://doi.org/10.1109/DTIS48698.2020.9081261
http://arxiv.org/abs/1903.02623
https://eprint.iacr.org/undefined/undefined
https://eprint.iacr.org/undefined/undefined
https://doi.org/10.1007/978-3-030-35055-0
http://link.springer.com/10.1007/978-3-030-35055-0
https://doi.org/10.1109/FDTC.2016.21
https://doi.org/10.1007/s13389-014-0077-7
https://doi.org/10.1007/s13389-014-0077-7
http://link.springer.com/10.1007/s13389-014-0077-7
https://doi.org/10.1109/HST.2014.6855580

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 33

[23] Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic

devices: Theory, practice, and countermeasures 100(11), 3056–3076.

https://doi.org/10.1109/JPROC.2012.2188769 , conference Name: Proceedings of the IEEE

[24] Barry, T., Couroussé, D., Robisson, B.: Compilation of a countermeasure against instruction-

skip fault attacks. In: Proceedings of the Third Workshop on Cryptography and Security in

Computing Systems. pp. 1–6. ACM. https://doi.org/10.1145/2858930.2858931 ,

https://dl.acm.org/doi/10.1145/2858930.2858931

[25] Sharif, U., Mueller-Gritschneder, D., Schlichtmann, U.: COMPAS: Compiler assisted software-

implemented hardware fault tolerance for RISC-v. In: 2022 11th Mediterranean Conference on

Embedded Computing (MECO). pp. 1–4. https://doi.org/10.1109/MECO55406.2022.9797144 ,

ISSN: 2637-9511

[26] Schirmeier, H., Hoffmann, M., Dietrich, C., Lenz, M., Lohmann, D., Spinczyk, O.: FAIL*: An

open and versatile fault-injection framework for the assessment of software-implemented hardware

fault tolerance. In: 2015 11th European Dependable Computing Conference (EDCC). pp. 245–255

(2015). https://doi.org/10.1109/EDCC.2015.28

[27] Kiaei, P., Breunesse, C.B., Ahmadi, M., Schaumont, P., Woudenberg, J.v.: Rewrite to

reinforce: Rewriting the binary to apply countermeasures against fault injection. In: 2021 58th

ACM/IEEE Design Automation Conference (DAC). pp. 319–324 (2021).

https://doi.org/10.1109/DAC18074.2021.9586278

[28] Portela-Garc´ıa, M., L´opez-Ongil, C., Garcia Valderas, M.G., Entrena, L.: Fault injection in

modern microprocessors using on-chip debugging infrastructures. IEEE Transactions on

Dependable and Secure Computing 8(2), 308–314 (2011). https://doi.org/10.1109/TDSC.2010.50

[29] MOSDORF, M., SOSNOWSKI, J.: Fault injection in embedded systems using gnu debugger

(2011)

[30] Schirmeier, H., Hoffmann, M., Dietrich, C., Lenz, M., Lohmann, D., Spinczyk, O.: FAIL*: An

open and versatile fault-injection framework for the assessment of software-implemented hardware

fault tolerance. In: 2015 11th European Dependable Computing Conference (EDCC). pp. 245–255

(2015). https://doi.org/10.1109/EDCC.2015.28

[31] Zhang, Y., Liu, B., Zhou, Q.: A dynamic software binary fault injection system for real-time

embedded software. In: The Proceedings of 2011 9th International Conference on Reliability,

Maintainability and Safety. pp. 676–680 (2011). https://doi.org/10.1109/ICRMS.2011.5979375

[32] Ahmad, H.A.h., Sedaghat, Y., Moradiyan, M.: LDSFI: a lightweight dynamic software-based

fault injection. In: 2019 9th International Conference on Computer and Knowledge Engineering

https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1145/2858930.2858931
https://dl.acm.org/doi/10.1145/2858930.2858931
https://doi.org/10.1109/MECO55406.2022.9797144
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/DAC18074.2021.9586278
https://doi.org/10.1109/TDSC.2010.50
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/ICRMS.2011.5979375

D4.1 – Report on security audit and testing

ORSHIN D4.1 Public Page 34

(ICCKE). pp. 207–213 (2019). https://doi.org/10.1109/ICCKE48569.2019.8964875 , ISSN: 2643-

279X

[33] Max Eisele, Daniel Ebert, Christopher Huth, and Andreas Zeller. 2023. Fuzzing Embedded

Systems using Debug Interfaces. In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA 2023). Association for Computing

Machinery, New York, NY, USA, 1031–1042. https://doi.org/10.1145/3597926.3598115

[34] Michal Zalewski. American fuzzy lop (afl). https://github.com/google/AFL, 2014

[35] Kostya Serebryany et al. libfuzzer - a library for coverage-guided fuzz testing.

https://llvm.org/docs/LibFuzzer.html, 2015

[36] F. Wang and Y. Shoshitaishvili, "Angr - The Next Generation of Binary Analysis," 2017 IEEE

Cybersecurity Development (SecDev), Cambridge, MA, USA, 2017, pp. 8-9, doi:

10.1109/SecDev.2017.14.

[37] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. 2012.

AddressSanitizer: a fast address sanity checker. In Proceedings of the 2012 USENIX conference on

Annual Technical Conference (USENIX ATC'12). USENIX Association, USA, 28.

[38] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In Proceedings of the

annual conference on USENIX Annual Technical Conference (ATEC '05). USENIX Association,

USA, 41.

[39] Kostya Serebryany. OSS-Fuzz - google’s continuous fuzzing service for open

source software. Vancouver, BC, August 2017. USENIX Association.

[40] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. 2020. Boosting fuzzer efficiency: an

information theoretic perspective. In Proceedings of the 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA, 678–689.

https://doi.org/10.1145/3368089.3409748

[41] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen,

David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and

Mathias Payer. HALucinator: Firmware re-hosting through abstraction layer

emulation. In 29th USENIX Security Symposium (USENIX Security 20), pages

1201–1218. USENIX Association, August 2020.

[42] Open On-Chip Debugger: https://openocd.org/

https://doi.org/10.1109/ICCKE48569.2019.8964875
https://doi.org/10.1145/3597926.3598115
https://github.com/google/AFL
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/3368089.3409748
https://openocd.org/

	Chapter 1 Introduction
	Chapter 2 Task 4.1
	2.1 Task Description
	2.2 Background on Fault attacks and code hardenings
	2.2.1 Hardware Fault Injection Attacks
	2.2.2 Instruction Skip Fault Model
	2.2.3 Software-Implemented Fault Tolerance
	2.2.4 Emulated Fault Injection

	2.3 Concept Proposal
	2.4 Task Objectives
	2.5 Design and Implementation
	2.5.1 Protection by Fault Injection Emulation
	2.5.2 Debugger-Driven FI Testing
	2.5.3 Debug Specification Extension
	2.5.4 Code Hardening Tool
	2.5.5 Hardware Implementation
	Fault Injection Module (FIM)
	Debug Controller

	2.6 Conclusion and Continuation of T4.1

	Chapter 3 Task 4.2
	3.1 Task Description
	3.2 Concept Proposal
	Feedback-guided Fuzzing
	Concolic execution
	Hybrid testing approach
	Firmware Testing

	3.3 Task Objectives
	3.4 Solution Design
	3.5 STAM
	3.6 Tracing Mechanism
	Single Instruction Tracing Mode
	Branch Tracing Mode

	3.7 Hardware Acceleration
	3.8 Hybrid fuzzing
	3.9 Implementation
	3.10 Evaluation
	3.10.1 Tracing
	3.10.2 Hybrid fuzzing

	3.11 Conclusion and Continuation of T4.2

	Chapter 4 Summary and Conclusion
	Chapter 5 List of Abbreviations
	Chapter 6 Bibliography

