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Executive Summary 

Deliverable D4.2 of the ORSHIN project presents three innovative prototypes for automatic pre-
silicon software security testing. These prototypes aim to enhance the resilience of embedded and 
IoT systems through open-source hardware and software solutions. 

• Fault Injection Demonstrator: Utilizes FPGA-based emulation to accelerate fault injection 

analysis on RISC-V systems. A custom Fault Injection Module (FIM) and high-speed 

debugger enable automated instruction skipping and vulnerability detection, significantly 

improving testing throughput and precision. 

• Hybrid Fuzzing Demonstrator: Combines fuzzing with concolic execution to overcome the 

limitations of traditional fuzzing. A Software Testing Acceleration Module (STAM) enables 

high-speed branch tracing and symbolic input generation, achieving superior coverage and 

vulnerability discovery rates. 

• Firmware Rehosting Platform (DMON): Enables secure and efficient testing of embedded 

firmware by rehosting it on a more capable system while maintaining hardware interaction 

fidelity. Built on the Zynq-7000 MPSoC, DMON supports real-time tracing and dynamic 

patching, facilitating advanced analysis of low-level firmware behavior. 

 

These prototypes demonstrate significant advancements in pre-silicon security testing, leveraging 
open-source architectures like RISC-V. The work contributes valuable tools and methodologies for 
future secure system development and auditing. 
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Chapter 1 Introduction 

The ORSHIN project, funded by the European Union under grant agreement no. 101070008 focuses 

on enhancing the security evaluation and resilience of IoT devices and embedded systems. In recent 

years, the advent of open and license-free processor architectures, namely RISC-V, presented both 

new opportunities and challenges to build more scalable security testing techniques. Leveraging 

from such open-source hardware platforms, the Work Package 4 (WP4) of the ORSHIN project 

focused on pre-silicon security testing to address, before market release, vulnerabilities occurring at 

both physical and logical levels. This focus is crucial due to the broad adoption of IoT devices in the 

various commercial and industrial sectors, often used for critical applications. Due to the tight 

relationship between hardware and software on such devices, post-silicon testing techniques cannot 

fully detect and address all potential bugs and vulnerabilities once the silicon tape-out is achieved, 

shifting priority towards pre-silicon counterparts. 

 

Pre-silicon security testing is usually backed by virtual environments, where the internal logic design 

and behavior of a microcontroller to be manufactured (processor, hardware accelerators) is modelled 

and tested. Such virtual environments typically run a mix of CPU instruction set emulation and RTL 

logic simulation, enabling extensive testing without effectively manufacturing the device. Although 

offering the convenience of a virtual platform with high behavioral inspection capability, such 

approaches are however computationally complex (time-consuming) and potentially prone to 

inaccuracy and human errors, diverging from the actual physical device behavior. As such, WP4 has 

responded to these challenges by developing hardware-backed, open-source frameworks for both 

firmware fault injection and logic bug testing, enabling comprehensive pre-silicon evaluation for a 

broad range of well-exploited vulnerabilities. 

 

This work resulted in three publicly available prototypes leveraging FPGA designs based on open-

source hardware and software components. The present deliverable describes the technical details 

and requirements to reproduce each prototype. As such, Chapter 2 introduces two demonstrators 

for hardware accelerated Fault Injection Emulation platform via a custom Fault Injection Module 

(FIM) and a logical hybrid Fuzzing platform backed by a high-speed firmware tracing hardware 

module. Chapter 3 introduces a third prototype of an open-source firmware rehosting platform, 

facilitating logical testing and security analysis in mixed scenarios. 
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Chapter 2 Fault Injection and Hybrid testing 

This chapter introduces two key demonstrators developed under Work Package 4, task 4.1 and 4.2 
of the ORSHIN project, aimed at advancing pre-silicon software security testing. The first 
demonstrator focuses on fault injection, leveraging a custom hardware-accelerated platform to 
emulate and analyze fault scenarios in embedded firmware. The second demonstrator explores 
hybrid fuzzing, combining traditional fuzzing techniques with symbolic execution to enhance 
vulnerability discovery in complex software logic. 

Both approaches are implemented on an open-source RISC-V-based FPGA platform and are 
designed to improve testing speed, coverage, and automation. The chapter begins by detailing the 
common hardware and software setup required for both demonstrators, followed by in-depth 
descriptions of each testing methodology and its implementation. 

 

2.1 Common platform setup 

This section provides instructions for setting up the demonstrator for pre-silicon testing. It is based 
on CORE-V-MCU project and features Fault Injection Module (FIM) integrated in the system-on-chip 
(SoC). It can be used to inspect and modify system state while the core is halted and in debug mode. 
This component is especially useful to perform fault injection analysis at high-speed on FPGA to 
develop pre-silicon countermeasures or to perform software testing and dynamic binary analysis. 
The references to all necessary Git repositories and binary components can be found in the following 
GitHub repository. 

Note: the final code and binaries are in a pending internal release process, so the content of the 
following GitHub repository can be updated. 

 

2.1.1 Hardware overview 

The basis for the demonstrator is a CORE-V-MCU. This is possible to follow their Quick Start Guide 
to setup the hardware and provide help with software components. We provide the bitstream files 
which can be programmed onto Xilinx Genesys2 via Vivado. Please refer to following GitHub 
repository for further instructions. 

 

It features the open-source 4-stage, in-order 32-bit RISC-V core CV32E40s (which we integrate 
instead of original CV32E40p), operating at a core frequency of 10 MHz. We customized the debug 
module of the emulated design according to our needs for a faster instruction skip, owing to our 
access to the source code of the emulated SoC. Highlighting the advantages of the RISC-V 
architecture's open-source nature, we developed a custom debugger.  

This debugger communicates Debug Module Interface (DMI) commands over a custom QSPI 
protocol. Two debugging processes operate on the host: the conventional OpenOCD and our custom 
debugger. OpenOCD communicates with the HS-2 Debugger via USB, and HS-2 utilizes JTAG 
transport layer to interact with the SoC's debug module. Simultaneously, our custom debugger 
communicates with a Teensy 4.1 Arduino microcontroller. The Teensy is programmed to function as 
a QSPI master, receiving DMI commands from the host over USB and transmitting them to the SoC 
using a software-based QSPI implementation. Essentially, we supplemented the SoC with a 
hardware multiplexer responsible for managing JTAG and QSPI slave communication. The FIM (aka 
STAM according to D4.1) translates debugging commands into general Debug Module Interface 
commands, adhering to the RISC-V Debug Specification.  

In this particular design, DM implementation operates on an execution-based principle. This means 
that when the core enters debug mode, the code in the DM's ROM, referred to as the "park loop", is 
executed. We extended the DM registers and ROM code in line with our custom extension's 

https://github.com/orshinAtNXP/deliverable_4_2
https://github.com/orshinAtNXP/deliverable_4_2
https://github.com/openhwgroup/core-v-mcu
https://github.com/openhwgroup/core-v-mcu/tree/master/emulation/quickstart/README.md
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado/vivado-buy.html
https://github.com/orshinAtNXP/deliverable_4_2
https://github.com/orshinAtNXP/deliverable_4_2
https://openocd.org/
https://www.pjrc.com/store/teensy41.html
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specifications to allow automated program counter modification upon breakpoint. This fully 
automates the process of emulating an instruction skip on the chip without instrumenting the code 
being executed. To enable high-speed debugging and accommodate the use of two different 
debugger implementations, we adjusted the SoC's pinout, introducing 10 additional pins to integrate 
the QSPI interface. 

 

2.1.2 FPGAs and Debugger 

The demonstrator runs on Xilinx Genesys2 FPGA board and can be programmed via Vivado using 
USB-JTAG interface with our bitstream file. For emulating fault injections using the regular 
OpenOCD+GDB method, the setup also requires Digilent HS2 Debugger connected to the boards. 

 

2.1.3 FIM and CORE-V-MCU modifications 

The basic functionality offered by the FIM can be described as a high-speed interface to the CPU's 
debug module (DM), coupled with a tiny SRAM which extends the debug ROM included in the DM. 
By leveraging the functionalities offered by the DM, fault injection can be emulated by setting a 
hardware breakpoint and modifying the CPU's program counter (PC) after reaching the breakpoint. 

 

QSPI Interface 

The communication between the host and the DUT is based on a QSPI 
protocol; only mode 0 is supported. Teensy serves as a QSPI master, 
while the FIM is the slave. The FIM receives DMI commands (read/write 
DM register) through 10 QSPI pins and routes them to the DM. The DM 
responds with a 32-bit value in case of a read operation and FIM outputs 
via MISO pins. 

The FIM receives commands from the user via a QSPI interface. The 
commands are routed either towards the SoC's debug module (DM), 
through an adapter which can generate either APB or DMI transactions, 
or towards the internal extending component. Two asynchronous FIFOs 
take care of the clock-domain crossing between SPI clock and system 
clock. 

  

PIN SIGNAL 

JC1 sclk 

JC2 scl 

JC7 FIM sel 

JD1 MISO0 

JD2 MISO1 

JD3 MISO2 

JD4 MISO3 

JD7 MOSI0 

JD8 MOSI1 

JD9 MOSI2 

Table 1: FIM QSPI Pinout 
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Figure 1: Read transaction 

 

 

Figure 2: Write transaction 

 

2.1.4 Teensy Microcontroller 

We provide a library for Teensy which is able to communicate with the FIM through QSPI interface. 
Use flying wires or custom PCB to connect Teensy pins to FPGA. To compile and flash firmware via 
Arduino Studio follow these steps: 

- Connect Teensy via USB cable to computer. 

- Create a new Sketch in Arduino Studio. 

- Install Arduino Add-on for Teensy. 

- Select Teensy board by going to Boards Manager.  

- Configure it to run at 528 MHz by clicking Tools → CPU Speed → 528MHz.  

- Add horizon_orshin_teensy_fw library by going Sketch → Include Library → Add ZIP Library. 

Please refer to the following GitHub repository for further instructions for library download. 

- The Teensy Platform does not allow building with precompiled libs for some reason. Hence, 

we need to add this line compiler.libraries.ldflags= to the platform description file 

C: \Users\<username>\AppData\Local\Arduino15\packages\teensy\hardware\avr

\1.59.0\platform.txt 

- Use the following snippet to use the library: 

  

https://www.pjrc.com/teensy/td_download.html
https://github.com/orshinAtNXP/deliverable_4_2
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#include "Arduino.h" 

#include "horizon_orshin_teensy_fw_lib.h" 

 

// Define serial number for Teensy remote connection 

#define STR_SERIAL_NUMBER L"MY_PROGRAM_V1" 

 

// Set this to the hardware serial port you wish to use 

#define HWSERIAL Serial1 

 

unsigned int proxy_readBytes(char* buffer, unsigned int size) { 

  return Serial.readBytes(buffer, (size_t) size); 

} 

 

unsigned int proxy_write(const uint8_t* buffer, unsigned int size) { 

  return Serial.write(buffer, (size_t) size); 

} 

 

unsigned int proxy_available() { 

  return Serial.available(); 

} 

 

void proxy_interrupts() { 

  interrupts(); 

} 

 

void proxy_noInterrupts() { 

  noInterrupts(); 

} 

 

ext_funcs_t funcs = { 

  proxy_readBytes, 

  proxy_write, 

  proxy_available, 

  proxy_noInterrupts, 

  proxy_interrupts 

}; 

 

void setup() { 

  Serial.begin(20000000); 
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  Serial.print("Start QSPI:\n"); 

  horizon_orshin_setup(&funcs, 4); 

} 

 

void loop(){ 

  horizon_orshin_loop(); 

} 

 

- Now you can flash the firmware by clicking “Upload”. 

 

Refer to Teensy Firmware Description section regarding implementation details of the firmware. 

 

 

PIN SIGNAL 

14 MOSI2 

15 MOSI3 

16 scl 

17 sclk 

18 MOSI1 

19 MOSI0 

20 MISO2 

21 MISO3 

22 MISO0 

23 MISO1 

Table 2: QSPI Pinout of Teensy 

 

Figure 3: Pins locations on the Teensy Board 

 

2.1.5 Teensy Firmware Description 

Teensy firmware implements Length Value protocol for Teensy side. 

A packet consists of 2 parts:  

- len (2 bytes) → Number of commands to execute 

- 5*len → the array of 5-byte commands. 

For each packet, it returns an array of 32-bit QSPI responses for each command. 

 

Teensy expects 5 bytes per command. 1st byte specifies the register to be addressed. LSB of 1st 
byte should be set if write to register is intended, hence the register value should be always shifted 
by 1 to left as LSB is reserved for R/W indication. Next 4 bytes contain the value to be written. Value 
bytes will be ignored in case of a read operation. Teensy returns the requested register value (4 
bytes) in case of a read operation or 0 in case of a write operation. 
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As an example, we take commands to activate DM (write 1 to register “DM Control” 0x10) and read 

DM status (read from register "DM Status" 0x11). Teensy should receive a sequence of 2 
commands: 

 

00 02 21 00 00 00 01 22 00 00 00 00 where: 

- 00 02 indicates that 2 commands are sent  

- 21 is 0x10 shifted by 1 to left and LSB is set to indicate write operation 

- 00 00 00 01 is value that we write to "DM Control" 

- 22 00 00 00 00 instructs DM to read "DM Status" register 0x11 (which is 0x22 after shift 

by 1 to left) and 00 00 00 00 are dummy bytes that will be ignored by FIM since it is a read 

operation 

 

And returned response is something along: 00 00 00 00 00 03 0C 82 where: 

- 00 00 00 00 is the result of the write operation, so no data is returned. 

- 00 03 0C 82 corresponds to the result of the read operation, so "DM Status" register value 

is returned. 

 

Internally, Teensy is supposed to implement QSPI in software and send 5 bytes (1 byte for register 
and 4 data bytes) including some dummy bytes (2 in current implementation) over its MOSI pins. 
Then it reads 4 bytes of response data and returns to the host via serial interface. 

 

2.1.6 Python Teensy Driver 

Clone rv_qspi_dbg repository into rv_qspi_dbg folder. Go to rv_qspi_dbg folder and clone 

rv_qspi_dbg_templates repository into templates folder. Please refer to the following GitHub 
repository to locate necessary Git repositories. 

 

Main script (teensy_dbg.py) connects to Teensy over serial connection. It provides python 
interface and ability to apply proper signals for debugging operation (e.g., halt, resume, read/write 
memory, set breakpoints) according to the RISC-V debug specification 0.13.  

 

To initialize the driver in python, run: 

dbg = RvTeensyDebugger('com15',memChunkSize=5000, timeout=5) 

 

Where com15 is the serial port under which Teensy is reachable and memChunkSize=5000 is a 
variable parameter which specifies the command throughput (number of commands that can be 
supplied at once to FPGA). This parameter varies depending on the host CPU and/or I/O handling 
capabilities as well as on type of connection (flying wires, interposer, PCB). The greater 

memChunkSize, the more prone the setup is to faulty transmission. To test if current 

memChunkSize is sufficient, run writeSpeed, readSpeed = 
dbg.memTest(0x1c000800,100000) and observe the fault ratio in the terminal output. In 
addition, the Teensy CPU speed can be reduced by reloading firmware via Arduino if faults are 
persistent. 

  

https://github.com/orshinAtNXP/deliverable_4_2
https://github.com/orshinAtNXP/deliverable_4_2
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2.2 Fault Injection Demonstrator 

The demonstrator is based on the work that was conducted for a scientific paper. 

For more details regarding FI testing methodology and implementation refer to article Duplication-
Based Fault Tolerance for RISC-V Embedded Software 

 

Fault injection is a method to evaluate the effects of faults in a system, in order to validate the 
effectiveness of countermeasures and mitigation techniques and to detect new weaknesses. 

 

Fault injection analysis can be performed using software-based simulation techniques, which can 
offer a very detailed view of the insight of the system but are extremely slow. FPGA-based emulation 
techniques, like the one proposed here, offer a less detailed view of the behavior of the system 
(which is anyway not always necessary) but can achieve much higher execution speed and can 
therefore be used to stress many more scenarios. 

 

2.2.1 Hardware 

Setup the platform as described in section Common platform setup. 

 

2.2.2 Software 

In other repositories you will find all necessary software components to run an FI campaign on a 
provided test code. 

 

2.2.3 Python FI Scripts 

Please refer to the following GitHub repository to locate necessary Git repository with code for fault 

injection demo. In fault_injection_testing there are 2 python scripts that conduct FI testing on the 

test binary: fi_runner.py uses standard OpenOCD+GDB debugging toolchain and teensy_fi.py 
uses custom high-speed debugger and DMI extension. 

 

To run fi_runner you need to: 

- Download and install in PATH riscv32-corev-elf-* the gcc toolchain 

- Setup and start OpenOCD version 0.11.0-rc2 with config file for HS2 

 

To run teensy_fi you need to: 

- Run pip install -r requirements.txt 

- Have Teensy connected and firmware uploaded 

 

Both scripts perform FI campaign of the test binary while using different methods of injecting faults. 
Scripts parse output of objdump and compile a list of instruction addresses that need to be skipped. 
Every instruction in that list is skipped and success of an attacker is determined. Finally, it outputs 
the list of vulnerable instructions. 

fi_runner starts gdb instance and sends commands to it. Within a single run it: 

- Resets the core. 

- Loads the binary in the memory. 

- Sets breakpoints at exception handler, at the end of main function and at FI location. 

https://link.springer.com/chapter/10.1007/978-3-031-70903-6_5
https://link.springer.com/chapter/10.1007/978-3-031-70903-6_5
https://github.com/orshinAtNXP/deliverable_4_2
https://www.embecosm.com/resources/tool-chain-downloads/#corev
https://sourceforge.net/projects/openocd/files/openocd/
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- Resumes the core. 

- Skips an instruction at FI location. 

- Evaluates success of FI based on encountered breakpoints. 

 

teensy_fi does basically the same, except that it uses Teensy for debug operations and configures 
special DM registers for on-target FI. 

 

2.2.4 Test binary 

To run a FI campaign, you need a test binary, which needs to be compiled from sources provided in 

the firmware_core_v repository in the demo1 branch. Please refer to following GitHub repository 

to locate necessary Git repositories. You need the make tool and riscv32-corev-elf-* toolchain. 

To compile, go to Default folder and run make sec_boot. You will find the compiled sec_boot 

ELF binary in the Default folder. 

 

sec_boot implements a simple routine that verifies integrity of the memory by calculating hash and 
comparing it with a ground truth value. If the hashes do not match, an exception is raised. Otherwise, 
it outputs an AES test encryption vector over UART. A fault injection attack is considered successful 
if the target was faulted and the encryption vector has been extracted. 

 

2.3 Hybrid Fuzzing Demonstrator 

Fuzzing has proven to be an effective technique for testing software and uncovering vulnerabilities, 
primarily due to its ability to generate large volumes of mutated inputs and to achieve high test 
throughput. However, traditional fuzzing - especially in its graybox form - has limited insight into the 
internal logic of the software under test. It typically relies on coverage feedback, which can be 
insufficient when execution is gated by complex conditions, such as checks for magic values or deep 
nested branches. In such cases, the fuzzer may spend a significant amount of time generating inputs 
that fail to make meaningful progress. 

 

To overcome this limitation, we adopt a hybrid fuzzing approach that combines fuzzing with concolic 
execution. This integration allows us to intelligently guide input generation when the fuzzer is stuck 
and fails to discover new coverage. Concolic execution, while powerful, is computationally expensive 
and not suitable for continuous use. Therefore, we invoke it selectively, only when the fuzzer 
plateaus. 

 

Our branch tracing mechanism plays a key role in this process. When the fuzzer fails to make 
progress, we extract a concrete execution trace and feed it into the symbolic engine. This trace 
provides a precise path through the firmware, enabling the symbolic engine to efficiently compute 
path constraints. Using this information, the engine can suggest new inputs that are likely to steer 
execution toward unexplored branches. 

 

2.3.1 Hardware 

Setup the platform as described in section Common platform setup. 

 

2.3.2 Software 

In other repositories you will find all necessary software components to run hybrid fuzzer on a 
provided test code. 

https://github.com/orshinAtNXP/deliverable_4_2
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2.3.3 Test Binary 

To run a fuzzing campaign, you need a test binary, which needs to be compiled from sources 

provided in the firmware_core_v repository in the demo2 branch. Please refer to the following 

GitHub repository to locate necessary Git repository. You need the make tool and riscv32-corev-

elf-* toolchain. To compile, go to Default folder and run make concolic_test. You will find the 

compiled concolic_test ELF binary in the Default folder. 

 

concolic_test implements a custom test program that communicates over UART using a lightweight 
protocol. The firmware was instrumented with artificial vulnerabilities, such as buffer overflows, which 
trigger a crash and invoke the exception handler when exploited. 

 

2.3.4 Hybrid fuzzer 

Once you have the hardware setup, you can clone hybrid_fuzzer repository. Please refer to the 
following GitHub repository to locate necessary Git repository. To run the tool, you need to: 

- Make sure that our python module rv_qspi_dbg is accessible from the environment. 

- Run pip install -r requirements.txt 

- Place compiled test binary in the firmware folder 

- Adjust configuration file. There is an example configuration with explanations under 

./configs/corev_config.yaml 

- Run python ./src/main.py to execute tool with ./configs/corev_config.yaml 

configuration. 

 

https://github.com/orshinAtNXP/deliverable_4_2
https://github.com/orshinAtNXP/deliverable_4_2
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Chapter 3 Firmware rehosting on Open-Source 

hardware 

The overall ORSHIN-funded project has the ambition to create secure design methodologies, 
implementation, and testing approaches of secure hardware available in the open-source 
community. In this respect, a notable observation can be made on the significant prevalence of 
computing systems relying on constrained embedded devices whose software is strictly tailored for 
their physical capabilities to meet cost and efficiency requirements. Those embedded systems are 
particularly difficult to test in pre-production scenarios due to their inherent reduced physical 
interfaces and internal debugging capabilities. This observation raises some level of security and 
safety concerns for end users, companies, and manufacturers, which remains an open and active 
research topic. This third demonstrator aims to show the feasibility and provide guidance on building 
better open-source testing and debugging tooling for embedded systems via firmware rehosting. 

 

Firmware rehosting refers to the process of extracting a program and executing it in an environment 
different from the original hardware on which it was designed to run. This serves the main purpose 
of offering a more capable environment to inspect and instrument a given program for reverse 
engineering and testing purposes. In the context of embedded systems with reduced debugging 
capabilities, DMON aims to provide an open source rehosting platform that eases firmware testing 
and security analysis by enabling real-time firmware behavior inspection and memory tracing. Such 
capabilities are particularly useful in detecting and understanding the origin of various known 
software issues, such as memory corruption. 

 

Performing rehosting is a challenging task as it requires recreating an environment with enough 
fidelity for the rehosted firmware to run in a manner analogous to its original environment. The 
difficulty lies in the fact that recreating the hardware interactions of the original environment is 
typically hard to achieve due to the inherent complexity and diversity of physical devices. This 
difficulty generally varies depending on the level of abstraction inherent to the system being studied. 
Higher levels of abstraction decorrelate the software execution from its interactions with the 
underlying physical peripherals. As such, embedded systems firmware based on operating systems 
offers a clear distinction between high-level software and the underlying hardware interactions (e.g., 
drivers), ensuring portability over various physical devices. 

 

However, firmware found in constrained or critical embedded systems is usually tightly coupled to 
their physical environment to meet firmware size, costs, and real-time requirements. Due to those 
engineering constraints, embedded systems running bare-metal firmware hardly offer any layer of 
abstraction and, thus, are particularly hard to rehost in a viable and reproducible manner. The 
proposed concept of the present demonstrator asserts this issue by providing an Open-Source 
rehosting platform where firmware can be conveniently executed and tested on a more capable 
computing system while ensuring environment consistency through a hardware-in-the-loop 
approach. Hardware-in-the-loop keeps the original target coupled with the rehosting environment, 
providing hardware access to the software. However, approaches found in the literature hardly 
achieve proper timing performance of interactions and are, thus, hardly applicable to real-world, 
complex devices. The proposed architecture in DMON is based on an open-source logic design that 
is tightly coupled with a rehosting processor, which significantly improves timing consistency. 
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Figure 4: Architecture overview of DMON 

 

3.1 Architecture overview 

The core concept of DMON lies on integrated circuits featuring a combination of a Processing 
System (PS) and a Programmable Logic (PL) (Figure 3). Those components are usually referred to 
as “Mixed FPGA SoC” or “MPSoC” (Multi-Purpose System-on-Chip). The PS contains all the 
necessary components of a traditional System on Chip, which are a processor, internal peripherals, 
and memory controllers. The PS exhibits an execution speed of a higher order of magnitude than 
the rehosted embedded systems, which offers better performance during firmware bug testing and 
analysis. On the other hand, the PL embeds a user-programmable FPGA, along with the necessary 
interconnection with the PS. The PL ensures synchronization with the original target in a hardware-
in-the-loop scenario while providing real-time firmware tracing for in-depth analysis. 

 

DMON CORE 

The DMON CORE resides in the Processing System of the platform and refers to the high-
performance CPU running the rehosted firmware. At first, the DMON CORE runs a minimal code 
that is responsible for DMON platform initialization and self-testing. It contains a minimal bootloader 
able to retrieve a target firmware from an internal flash memory or via a host computer (via USB). 
On loading, the rehosted firmware is natively executed by the DMON CORE. Some specific 
architectural mechanisms present on the target embedded systems might not be present on the 
DMON platform. Hence, the DMON CORE contains minimal emulation code for those mechanisms, 
which generally handles specific CPU context switching and exception mechanisms. The emulation 
is lightweight and, thus, doesn’t imply a significant performance loss. 

 

MMU (Memory Management Unit) 

During ongoing firmware execution, DMON extensively relies on the MMU component of the 
rehosting CPU to redirect firmware accesses to memory-mapped peripherals. Since the peripherals 
of the original target are likely not implemented on the rehosting platform, those accesses are either 
redirected to handlers in the DMON CORE implementing those missing peripherals (emulation), or 
to the DMON FABRIC which interacts with the original target in a hardware-in-the-loop fashion. 

Thanks to the MMU, this redirection is seamless in the sense that the original memory map for which 
the firmware has been built is kept intact, removing the need of firmware patching and binary 
rewriting. DMON overshadows relevant memory regions by configuring MMU pages pointing to the 
DMON FABRIC, instead. Additionally, the MMU can be configured to redirect all access to firmware 
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data and/or code sections to the PASS-THROUGH IP of the DMON FABRIC, providing the tracing 
and dynamic data/instruction patching capabilities. 

Lately, the MMU can be used to manually solve memory-mapping conflicts. A memory mapping 
conflict occurs when some dereferenced memory regions (addresses) of the target match an 
address present on the rehosting platform, which would result in inaccurate behavior and, eventually, 
a crash. Dereferenced memory regions refer to memory locations that are effectively in-use by the 
re-hosted firmware. Such conflicts are likely to occur on complex targets. 

Another case of mapping conflict solved by the use of the MMU is the firmware loading location. To 
benefit from the execution speed-up during rehosting, the firmware code and data sections must 
reside in a memory bank internal to the Processing System (PS) of DMON. Since target firmware is 
not expected to feature position-independent code, section relocation might be required if the 
mapping doesn’t match an available internal memory bank on DMON. 

 

DMON FABRIC 

The DMON FABRIC contains two IPs and resides in the Programmable Logic (PL) of the platform. 
Overall, the DMON FABRIC handles low latency data tracing and interaction with the physical target 
(hardware-in-the-loop). 

 

DMON FABRIC: Pass-Through 

If required for security analysis, the DMON Pass-Through provides high-speed, continuous tracing 
and patching of all memory operations, including instruction fetching. 

In this case, the MMU is further configured to redirect all firmware code fetch and data read/write 
operations to the DMON Pass-Through instead of the internal memory controller. The Pass-Through 
IP dumps those memory accesses to the host computer over USB3 for further analysis. The IP 
ultimately redirects access to the original location in the internal memory of the PS and eventually 
patches the readout value in the case of a READ operation by the firmware. The patching done by 
the Pass-Through is what we refer to as a “dynamic patching” mechanism, as the patching logic 
and patch data can be dynamically reconfigured during ongoing firmware execution. This is 
particularly useful to dynamically instrument certain instructions during firmware analysis. 

 

DMON FABRIC: CFG & MMIO 

Accesses to memory-mapped peripherals redirected from the DMON CORE to the DMON FABRIC 
via the MMU configuration are seamlessly actuated on the attached target device via a physical 
debug interface. Conversely, interrupts triggered internally on the target are forwarded back to the 
DMON CORE for the firmware to perform the appropriate operation (interrupt handlers). This FPGA 
IP maintains tight synchronization with the target over the debugging interface. This IP further 
receives various parameters provided by the DMON CORE, in order, for instance, to configure the 
patching logic. 

High-speed Bus interconnect 

The high-speed interconnect enables the DMON CORE and the DMON FABRIC to communicate at 
low latency. Communications are native to the CPU via memory-mapped read and write operations. 
A bus interconnect allows multiple Manager interfaces to initiate memory operations on multiple 
Subordinate ones. Each Subordinate is accessed via a specified range of addresses. 

The DMON Pass-Through IP requires two bus interfaces, one Manager and one Subordinate, in 
order to actuate memory operations from the DMON CPU back into the memory subsystem (internal 
to the platform). 

The DMON CFG & MMIO comprise a single Subordinate interface on the bus to receive MMIO 
access and configuration. 

 



D4.2 – Prototype of automatic security pre-silicon SW testing  

ORSHIN D4.2 Public Page 14 

Physical target 

The physical target whose firmware has been rehosted on the DMON CORE processor is flashed a 
simple firmware stub, synchronizing with the DMON FABRIC. MMIO operations originating from the 
rehosted firmware are transparently actuated on the physical target on behalf of this firmware stub. 
However, the purpose of the stub is to catch interrupts happening on the target (e.g., systick timers, 
peripherals, external peripherals) and to forward them to the DMON FABRIC. The FABRIC 
subsequently warns the DMON CORE about the outstanding interrupt so that the appropriate 
interrupt handler can be executed in the rehosted firmware. 

 

Host USB interfaces 

DMON provides two distinct external USB interfaces connected to a host computer. Those interfaces 
are controlled by two individual host clients, serving different purposes. 

Main client (platform initialization and logging) 

The main client initializes the DMON platform by uploading the configuration of the MMU (relocation 
and conflict solving) and the firmware blob to rehost. This client accesses the DMON CORE via a 
low-speed USB 2.0 CDC (COM serial). After initializing the platform, it can further retrieve logging 
outputs emitted by the DMON CORE during firmware execution (triggered interrupts, faults) for 
debugging purposes. 

On firmware upload, the main client applies a simple binary patching pass by replacing a few specific 
instructions with dummy ones. This patch permits the DMON CORE to perform the compatibility 
emulation used to accommodate potential architectural differences, as described in the DMON 
CORE subsection. We refer to this mechanism as “static patching” contrasting with the “dynamic 
patching” done in real-time by the DMON Pass-Through (see DMON FABRIC: Pass-Through 
subsection). 

Optional client (firmware tracing) 

The second client accesses the DMON Pass-Through via a high-speed USB 3.0 interface for real-
time tracing collection. Additionally, the host can debug the ongoing DMON firmware execution by 
using the specific physical debug interface available on the rehosting Mixed-SoC platform. Although 
useful for debugging DMON itself during the development of the platform, such traditional debug 
interfaces particularly slow down firmware execution on the DMON CORE. Hence, the real-time 
tracing provided by DMON should be preferred to preserve the platform's performance. 

 

3.2 Rehosting flow overview 

The following describes the general flow during firmware rehosting of a microcontroller-based 
embedded system using the DMON platform: 

1. The original firmware is extracted from the microcontroller of the embedded system (original 

target) and replaced by the firmware stub. 

2. The microcontroller is connected to the DMON fabric debug interface. 

3. The host client (tracing) initializes the high-speed tracing. 

4. The second host client (config) initializes the target, configures the MMU according to the 

target microcontroller memory map, and finally uploads the previously extracted firmware 

blob. 
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5. The DMON CORE loads the firmware on its internal memory subsystem and starts executing 

it by branching on the firmware’s reset handler. 

• During ongoing firmware execution, architectural mechanisms are automatically and 

efficiently emulated by lightweight code on the DMON CORE. 

• Memory-mapped peripheral accesses (MMIO) are redirected to the original target via the 

DMON FABRIC. 

• Interrupts triggered on the original target are forwarded by the stub to the DMON CORE 

via the FABRIC in order to execute the appropriate firmware’s interrupt handler in time. 

6. The host client collects the firmware trace for real-time or post-analysis. 

 

3.3 Demonstrator requirements 

This section describes the requirements for replicating and testing the current DMON demonstrator. 
It contains references to open-sourced repositories that are enumerated in Chapter 4. 

 

3.3.1 Rehosting hardware requirements 

The demonstrator was developed on the ZedBoard development Board, embedding the Zynq-7000 
mixed CPU/FPGA system on chip. The latter employs a dual Cortex-A9 as application class 
processors, interconnected to an individually programmable FPGA fabric via a high-speed AXI bus 
interconnect. 

 

In summary: 

• ZedBoard development Board 

• If debugging the DMON platform itself is required: Digilent JTAG-HS3 USB to JTAG adapter 

or compatible equivalent (e.g., Digilent HS2). 

• Breadboard jumper wires (flywires) or the JTAG adapter & multiplexer (from JTAGMUX 

repo). 

• Two USB micro to USB-A cables. 

For high-speed instruction and data tracing, additional components are required on the host: 

• CYUSB3KIT-003 USB FX3 devkit 

• CYUSB3ACC-005 FMC interposer 

 

3.3.2 Rehosted target requirements 

The current demonstrator can “rehost” all kind of microcontroller-based embedded systems 
complying with the four requirements. Target requirements are further summarized in Table 3. 

 

R1. TARGET ISA requirement 

The demonstrator mainly targets the ARMv7-M variant of the ARMv7 32-bit microprocessor ISA. 
Although not compatible with other architecture families such as RISC-V or MIPS, the concept and 

https://digilent.com/reference/programmable-logic/zedboard/start
https://www.amd.com/fr/products/adaptive-socs-and-fpgas/soc/zynq-7000.html
https://developer.arm.com/Processors/Cortex-A9
https://digilent.com/reference/programmable-logic/zedboard/start
https://digilent.com/shop/jtag-hs3-programming-cable/
https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/
https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3acc-005/
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methodologies introduced by DMON are generic and can be applied to various others given the 
availability of a mixed FPGA SoC for the chosen architecture. 

The implementation of the DMON CORE is particularly tailored for the CPU execution modes, 
special-purpose registers and the Thumb Instruction Set found in the M (microcontroller) variants. 
For the rehosting to function properly, the DMON CORE particularly relies on emulating architectural 
specificity found in ARMv7-M on the Cortex A9 (ARMv7-A). Thus, DMON cannot rehost firmware 
that are built for application class ARMv7-A and ARMv7-R. However, those architectural variants are 
particularly rare in embedded ecosystems. 

DMON can rehost embedded systems with an ARMv8-M based microcontroller if the complete 
firmware image has been built for an ARMv7-M. Conversely, due to the inherent backward 
compatibility of the ARM ISA family, DMON is functional with ARMv6-M. 

 

R2. TARGET CPU IMPLEMENTATION 

DMON doesn’t rely on any ARM Cortex-specific feature and is thus compatible with any 
implementation of the ARMv6-M and ARMv7-M ISA. 

Our current implementation targets single core applications (most typical). DMON is compatible 
with dual-core scenarios by leveraging from the dual Cortex A9 embedded in the Zynq-7000 SoC, 
by further implementing synchronization between the two. Each core owns an individual FPGA pass-
through block. Multicore scenarios can also be achieved by the use of multiple physical Zedboard 
platforms with the addition of proper external synchronization logic between the platforms. 

 

R3. TARGET DEBUG INTERFACE requirement 

In order to perform external interactions with peripherals (MMIO), DMON must perform memory 
READ and WRITE operations on the connected physical target in the place of the original firmware. 
Microprocessors generally offer such capabilities via dedicated physical “debugging” interfaces. 

The demonstrator is currently compatible with the ARM Debug Interface v5 via the standardized 
JTAG-DP physical debug port (JTAG transport). The ARM Debug Interface further defines the 
MEM-AP (Memory Access Port), which provides access to the internal memory subsystem of the 
debugged target and is accessible via the physical debug port. As many microcontrollers offer the 
capability of disabling the debug port in post-production, one must ensure that the debug port and 
MEM-AP are fully accessible and functional prior rehosting a given target. 

Most ARM-based microcontrollers implement the JTAG-DP ARM debug port. Less common variants 
include the arm SW-AP (SWD – Single Wire Debug) to access the MEM-AP. SWD is another well-
known interface targeting more constrained physical devices (reduced external pinout). The 
demonstrator in its current state doesn’t implement it although being fully compatible with it by 

adapting the DMON FABRIC physical interface to the SWD protocol (vhd/dmon.vhd of the 
DMON_ZYNQ7000 repo). 

 

R4. TARGET FIRMWARE requirement 

The memory layout of rehosted target (via its firmware memory accesses) must not conflict with the 
layout of the rehosting platform since all firmware instructions are executed without emulation on the 
DMON CORE (native execution). Conflict may happen if the original firmware tries to access memory 
regions belonging to the DMON FABRIC (FPGA IPs) or to the UART (universal asynchronous 
receiver transmitter) controller of the Zynq-7000 SoC as the latter is being used by the DMON 
configuration client. 
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 IMPLEMENTED COMPATIBLE INCOMPATIBLE 

R1. TARGET ISA ARMv7-M, ARMv6-M ARMv7E-M Other microprocessor 

architecture families 

R2. TARGET CPU 

IMPLEMENTATION 

All ARM CORTEX M in 

single core setups 

Dual Core Cortex M  

R3. TARGET 

DEBUG 

INTERFACE 

Arm Debug Interface v5 

via JTAG transport 

(JTAG-DP) 

Arm Debug Interface 

v5 via SWD transport 

(SW-DP) 

 

Other physical debug 

interface with target 

memory access 

Undocumented or 

locked-out debug port 

R4. TARGET 

FIRMWARE 

Single Core bare-metal 

and RTOS firmwares 

(without secure 

extension) 

Secure extension 

mode of ARM-v7 

(with TrustZone) 

 

Table 3: Summary of target requirements for the current DMON demonstrator 

 

3.3.3 Host hardware and software requirements 

Preparing a new DMON platform (platform bring-up) by generating the DMON image and 
programming the Zynq-7000 requires the Vivado 2019.1 design suit. The platform has not been 
tested on other versions. This version of the Vivado design suit requires an X86 or AMD64 computer 
running the Ubuntu 18.04 GNU/Linux distribution. This older version of Ubuntu can be installed on a 
virtual machine or a Docker container. We recommend Distrobox or Toolbox tools to conveniently 
set up a Docker container for a specified GNU/Linux distribution. 

The DMON project automates various building and flashing steps of the Vivado design suit via the 
CMake build system. Both CMake and GNU Make are required. 

 

Flashing the target embedded systems with firmware stubs further requires various specific 
toolchains and buildsystems. Those requirements are detailed in the subdirectory for the chosen 
target in the DMON_TARGETS repository. 

 

Once the platform bring-up is done on a Zedboard, rehosting various target firmware (rehosting 
setup) solely requires the Python interpreter for running the DMON configuration client. The DMON 
client has been tested on versions 3.6.9 (Ubuntu 18.04) and 3.13.2 (latest maintenance release to 
date). 

 

3.4 Demonstrator evaluation 

The “platform bring-up” refers to the process of preparing a new Zedboard dev board for rehosting 
by flashing the DMON CORE and FABRIC. The platform bring-up procedure is done only once on a 
new Zedboard devboard. The “rehosting setup” refers to the process of rehosting a target firmware 
on bring-up completion. The host requirements for both bring-up and rehosting setup are described 
in the section Host hardware and software requirements. 

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://github.com/89luca89/distrobox
https://github.com/containers/toolbox
https://cmake.org/
https://www.gnu.org/software/make/
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This contains references to open-sourced repositories that are enumerated in the chapter Source 
repositories. 

 

3.4.1 Platform bring-up 

The bring-up process should be done only once on a given Zedboard, by taking the following steps: 

1. Power-on the Zedboard using the supplied jack power supply. 

• (If real-time firmware tracing is required) 

1. Connect the CYUSB3KIT-003 FX3 devkit to its FMC interposer and further connect the 

FX3 to the host computer using the supplied USB Type-B cable. 

2. Clone the DMON_TRACE repository and follow the instructions to build and flash the FX3 

firmware and further build the host client. 

2. Set the Zynq-7000 boot mode to JTAG by setting the following jumpers on the Zedboard. 

The central pin must be either connected to  GND (OFF) or 3V3 (ON). 

JMP11 OFF (GND) 

JMP10 OFF (GND) 

JMP9  OFF (GND) 

JMP8  OFF (GND) 

 

3. Clone the DMON_ZYNQ7000 repository  

 

4. Build the DMON FABRIC FPGA bitstream by executing the following commands from the 

root directory of the repository: 

mkdir build 

cd build 

cmake .. 

make vv 

 

5. Build the full FSBL (AMD bootloader) with DMON CORE firmware and FPGA bitstream. 

make fsbl 

 

6. Flash the Zynq-7000 SoC. 

make flash 

 

7. Power-off the Zedboard. 

 

8. Set the Zynq-7000 boot mode to QSPI flash (previously flashed). 

JMP11 OFF (GND) 
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JMP10 ON  (GND) 

JMP9  OFF (GND) 

JMP8  OFF (GND) 

 

9. Power-on the board. 

 

3.4.2 Rehosting setup 

The rehosting setup process is done on every rehosting session for a given target device and 
firmware, and is performed as follows: 

1. Ensure the whole Zedboard is powered-off at this stage. 

 

2. Connect the UART labelled micro-USB connector to the host computer. This would show-up 

as a CDC device (/dev/ttyACMx under GNU/Linux) 

 

3. (If debugging the DMON platform itself is required) Connect the Digilent HS3 or equivalent 

on the JTAG labelled 2.0 mm pitch header 

 

4. The target should be flashed with the proper firmware stub. To target the same 

microcontroller as in the DMON_TARGETS repository, follow the subsequent instruction for 

firmware building and flashing. If targeting a different microcontroller, use the 

DMON_TARGETS repository as a reference to implement a firmware stub. 

 

5. Power-up the target board and connect its JTAG interface to the JTAG adapter & multiplexer 

from the JTAGMUX repo to the JA1 and JB1 PMOD connectors of Zedboard. The JTAG 

interface must be unlocked and functional.  

Without the JTAGMUX adapter, one can connect the target to the PMOD using flywires 
following the pinout. 

 

6. (If the real-time firmware tracing is required) Connect the FX3 to the host computer and 

connect FMC interposer of the FX3 to the FMC connector of the Zedboard prior the power-

up of the later. Proceed to reset the FX3 by pressing the SW1 labelled button. 

 

7. Power-up the Zedboard via the power switch 

 

8. Configure the reference client cli.py in the root directory of  DMON_ZYNQ7000 by setting 

the appropriate MMU settings (CLI.mmap()) and dynamic patching 

(CLI.add_relacation()). Refer to the documentation available in cli.py regarding the usage 

of the CLI class. 

 

9. Execute the cli.py by providing the path to the target firmware as a program option, such as 

./python cli.py ../firmwares/stm32_blink. The firmware image must be in the ELF 

standard format in order for the client to detect the segments to be loaded along with the 
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firmware start address. These details can be set manually in the case of a raw firmware 

image by modifying the Python client. 

 

10. At this point, the firmware is being executed on the DMON CORE, synchronizing with the 

original target via the DMON FABRIC. 

 

11. The main client continues to trace various logging outputs from the DMON CORE on the 

terminal. 

 

12. (If real-time firmware tracing is required) Execute the host client as described in the 

DMON_TRACE repository. Memory addresses and values are traced to stdout. 

 

13. (If the DMON CORE debugging is required) Debug the DMON CORE using traditional tools 

such as GDB via the OpenOCD tool or the Segger JLink client. Ensure that GDB interprets 

the DMON CORE firmware and the rehosted target firmware with the proper memory map 

(instruction & data addresses). For more details, refer to the reference GDB script 

scripts/gdb.init in the DMON_ZYNQ7000 repo. 

 

3.4.3 Running the example firmware 

We provide examples for two target microcontrollers: 

• The LPC1850 from NXP via the LPC1850-db1 devboard from Diolan 

• The STM32F4 from Micro via the NUCLEO-F401RE devboard (same company) 

Open-source example firmware and instructions on how to build the replacement stub firmware for 
each target are available in the DMON_TARGETS repo under individual subdirectories. A reference 
Python host client is available on the main DMON_ZYNQ7000 repo for each target. 

 

The provided examples include various target firmware implementations such as simple bare-metal 
peripheral test routines (e.g., led blink) or more complex RTOS-based ones. Those target firmware 
can be executed natively on the original target or via the DMON platform to ensure the consistency 
of the rehosting process. 

 

https://openocd.org/
https://www.segger.com/downloads/jlink/
https://www.nxp.com/products/LPC1850FET256
https://diolan.com/lpc1850db1
https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html
https://www.st.com/en/evaluation-tools/nucleo-f401re.html
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Chapter 4 Source repositories 

Repository reference Repository URI 

NXP Deliverable Overview https://github.com/orshinAtNXP 

DMON_ZYNQ7000 https://gitlab.eurecom.fr/dmon/dmon_zynq7000 

DMON_TARGETS https://gitlab.eurecom.fr/dmon/dmon_targets 

DMON_TRACE https://gitlab.eurecom.fr/dmon/dmon_usb3_trace 

JTAGMUX https://github.com/eurecom-s3/JTAGMux 

 

Each repository contains the orshin git tag, pointing to the repository state at the time of the 
deliverable release. 
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Chapter 5 Summary and Conclusion 

The present deliverable D4.2, details three prototypes for automatic security testing in pre-silicon, 

outlining the hardware and software components, testing methodologies, and setup requirements 

for reproducibility. It focuses on two primary prototypes resulting from task T4.1 “Report on security 

audit and testing”. The first one describes a hardware-accelerated Fault Injection Emulation platform 

via a custom Fault Injection Module (FIM) tightly coupled to a RISC-V processor. The other 

demonstrator focuses on logical hybrid fuzzing fed by a high-speed tracing module implemented 

along a RISC-V. Both prototypes are implemented on an FPGA platform. Additionally, the present 

deliverable introduces DMON, an open source rehosting platform that facilitates firmware testing and 

security analysis by executing firmware in an environment separate from its original 

hardware, improving inspection and instrumentation capabilities. The platforms are mostly based on 

open-source hardware and software components, and the materials resulting from this work are 

open-sourced. 

Overall, D4.2 demonstrates practical advancements for automatic security testing in pre-silicon, 

thanks to the advent of license-free and open processor architectures, addressing critical needs in 

the development of resilient hardware and software for IoT and embedded systems. Ecosystems 

based on open architecture like RISC-V made the implementation and experimentation with such 

architecture possible for firmware vulnerability testing and fault injection emulation. The resulting 

prototypes exhibit significant enhancements in the performance and depth of security analysis 

compared to the state-of-the-art approaches applied to IoT and embedded devices, offering valuable 

open-source tools for future system development and auditing. 
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