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Executive Summary

Deliverable 5.1 (D5.1) focuses on essential and beyond essential security and privacy (S&P)
guarantees for inter-device communication in restricted environments. It is part of ORSHIN WP5
and tackles two tasks related to the communications of constrained devices using open-source
hardware (OSH):

T5.1: develop inter-device protocols for constrained OSH devices providing essential S&P guar-
antees. These guarantees include confidentiality, integrity, authenticity, and anonymity.

T5.2: develop inter-device protocols for constrained OSH devices assuring beyond-essential S&P
guarantees, like forward and future secrecy and post-quantum key agreement.

D5.1 successfully addresses T5.1 and T5.2 and the related ORSHIN WP5 objectives with
novel and practical contributions. Its first four Chapters focus on works where we researched
state of the art communication technologies and assessed if and how they provide essential and
beyond-essential S&P guarantees. We target pervasive technologies like Bluetooth, NFC, and
FIDO2. We discover new vulnerabilities and attacks and develop novel toolkits to reproduce them
and effective countermeasures. Thanks to our contributions billions of connected devices now
provide stronger security and privacy guarantees. Then, we take advantage of the findings of the
four Chapter to design three next-generation security and privacy protocols for Bluetooth. The
protocols provide essential and beyond-essential S&P properties and can be shipped to protect
the entire Bluetooth ecosystem. Next, we summarize the technical content of each Chapter.

In Chapter 1 we present a security evaluation of pervasive and proprietary wireless commu-
nication protocols used by Xiaomi for its e-scooters (T5.1). We uncover that Xiaomi protocols fail
to provide even basic S&P guarantees as they rely on security through obscurity or ad-hoc but
vulnerable mechanisms, including obfuscation and unauthenticated key agreement.

In Chapter 2 we discuss forward and future secrecy guarantees of Bluetooth, a pervasive
protocol used by IoT devices, including OSH ones (T5.2). We find two new vulnerabilities in
the Bluetooth specification related to improper session key derivation. We develop six attacks
exploiting these vulnerabilities to impersonate and machine-in-the-middle (MitM) any Bluetooth
device, regardless of its hardware and software details. We fix the attacks with an enhanced
session key derivation protocol.

In Chapter 3 we analyze FIDO2 (Fast IDentity Online v2), a popular authentication protocol
for single-factor and multi-factor authentication. FIDO2 involves constrained loT devices, like USB
dongles used to authenticate. We check if FIDO2 provides the essential and beyond-essential
security properties promised in it specification (T5.1, T5.2), including authenticity, and availability.
We uncover two new classes of attacks for FIDO2 we call client impersonation (Cl) and API con-
fusion (AC). The Cl and AC attacks can be used to delete FIDO2 credentials or track users with
FIDO2 credentials. We successfully evaluate the attacks on six popular FIDO2 authenticators in-
cluding ones from Yubico, Feitian, Solokey, and Google and propose effective countermeasures.

ORSHIN D5.1 PU Page VI
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In Chapter 4 we propose three new protocols for inter-device communication providing essen-
tial and beyond-essential security and privacy guarantees (T5.1, T5.2). We design, implement,
and evaluate them for Bluetooth, to showcase that they can be deployed on a pervasive loT
technology used by billions of devices, including constrained and OSH ones.

As shown Chapter 5, D5.1 results in nine open-access research papers and related research
artifacts. The contributions in the first four Chapters informed the creation of BlueBrothers: three
new inter-device communication protocols providing essential and beyond-essential S&P guar-
antees. The BlueBrothers protocols are described in Chapter 4 and are used in the ORSHIN
demonstrator to secure Bluetooth communication in constrained environments. The full list of
D5.1 contributions is in the Contribution section in the Conclusion.
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Introduction

Our society depends on connected devices to provide essential and even safety-critical services
including telecommunication, energy distribution, smart mobility, e-commerce, and so on. A de-
vice is a collection of software, like an operating system, and hardware, such as a central process-
ing unit, that are working together towards a common goal. Billions of devices are daily connected
with many communication protocols, including wireless ones like Bluetooth and wired ones like
USB. Connected devices can operate in a restricted environment, including scenarios without the
presence of a trusted authority, like a public key infrastructure, or with limited computational and
memory capabilities, such as battery-powered IoT devices.

Connected devices, including smartphones, smart wearables, and smart vehicles, manage
sensitive and safety-critical data and should provide security and privacy (S&P) guarantees. For
example, data confidentiality contributes to security and privacy as it allows the secure exchange
of data even in an attacker’s presence and protects sensitive data from unauthorized access.
S&P breaches result in large scale and critical threats to connected devices, including loss of
sensitive data, user tracking, and command injection. Our goal with the ORSHIN project is to
create methodologies and tools to build secure and privacy-preserving devices taking advantage
of open-source hardware (OSH) and software (OSS).

Deliverable 5.1 (D5.1) contributes to ORSHIN’s WP5 (Secure Auth and Comms) and fo-
cuses on S&P guarantees for inter-device communication in restricted environments. Inter-device
communication includes wireless protocols like Bluetooth, Wi-Fi, and NFC. A restricted environ-
ment comprises mobile, loT, and OT devices such as smartphones, wearables, industrial con-
trollers, and (electric) vehicles. These devices can use OSS and OSH components such as a
Linux OS and a RISC-V CPU. The deliverable has two tasks:

T5.1: develop inter-device protocols for constrained OSH devices providing essential S&P guar-
antees. These guarantees include confidentiality, integrity, authenticity, and anonymity.

T5.2: develop inter-device protocols for constrained OSH devices assuring beyond-essential S&P
guarantees, like forward and future secrecy and post-quantum key agreement.

D5.1 successfully addresses T5.1 and T5.2 and the related WP5 objectives with novel and
practical contributions. lts first four Chapters focus on works where we researched state of the
art communication technologies and assessed if and how they provide essential and beyond-
essential S&P guarantees. We target pervasive technologies like Bluetooth, NFC, and FIDO2.
We discover new vulnerabilities and attacks and develop novel toolkits to reproduce them and
effective countermeasures. Thanks to our contributions billions of connected devices now provide
stronger security and privacy guarantees.

We pivot on the findings of Chapters 1 to 4 to design three next-generation security and pri-
vacy protocols for Bluetooth, we call BlueBrothers. The protocols provide essential and beyond-
essential S&P properties, including confidentiality, authenticity, post-quantum key agreement, and

ORSHIN D5.1 PU Page 4 of 121
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forward and future secrecy. They can be employed to protect the entire Bluetooth ecosystem ei-
ther at the application layer or below. The protocols are secure by design, simple to understand
and implement, and open. We formally model and verify them and provide a proof of concept
implementation to the research community. We experimentally evaluate them in constrained sce-
narios and observe minimal latency and power overheads or even speedups compared to their
counterparts in the Bluetooth standard.

Next, we summarize the technical content of each Chapter. In Chapter 1 we present a se-
curity evaluation of pervasive and proprietary wireless communication protocols used by Xiaomi
for its e-scooters (T5.1). We focus on Xiaomi because is the market leading with millions of e-
scooters sold and used every day worldwide. We uncover that Xiaomi protocols fail to provide
even basic S&P guarantees as they rely on security through obscurity or ad-hoc but vulnerable
mechanismes, including obfuscation and unauthenticated key agreement.

In Chapter 2 we discuss forward and future secrecy guarantees of Bluetooth, a pervasive
protocol used by loT devices, including OSH ones (T5.2). We find two new vulnerabilities in
the Bluetooth specification related to improper session key derivation. We develop six attacks
exploiting these vulnerabilities to impersonate and machine-in-the-middle (MitM) any Bluetooth
device, regardless of its hardware and software details. We fix the attacks with an enhanced
session key derivation protocol.

In Chapter 3 we analyze FIDO2 (Fast IDentity Online v2), a popular authentication protocol
for single-factor and multi-factor authentication. FIDO2 involves constrained loT devices, like USB
dongles used to authenticate. We check if FIDO2 provides the essential and beyond-essential
security properties promised in it specification (T5.1, T5.2), including authenticity, and availability.
We uncover two new classes of attacks for FIDO2 we call client impersonation (Cl) and API
confusion (AC). The attacks focus on CTAP (Client to Authenticator Protocol) protocol used by a
FIDO2 authenticator and client. We isolate the attack root causes affecting the design of CTAP
and develop a toolkit to test the attacks. We successfully evaluate the attacks on six popular
FIDO2 authenticators including ones from Yubico, Feitian, Solokey, and Google.

In Chapter 4 we propose three new protocols for inter-device communication providing es-
sential and beyond-essential security and privacy guarantees (T5.1, T5.2). We design, imple-
ment, and evaluate them for Bluetooth, to showcase that they can be deployed on a pervasive
loT technology used by billions of devices, including constrained and OSH ones. The protocols
guarantees confidentiality, integrity, and authenticity using state-of-the-art cryptographic protocols
and primitives. Moreover, they provide forward and future secrecy within and across Bluetooth
session and hybrid post-quantum key agreement.

In Chapter 5, we summarize the results of D5.1 and its contributions.

Extensions and changes compared to iD5.1

» Rewritten and extended the Executive Summary

+ Rewritten and extended the Introduction

Added Chapter 3 (CTRAPS)

Rewrote Chapter 4 (It was called BLESS, now it is called BlueBrothers)

» Rewritten and extended the Conclusion, including a list of our 9 research contributions

« Grammar pass of the whole document

ORSHIN D5.1 PU Page 5 of 121



D5.1 - Report about Essential and Beyond Essential S&P Guarantees for *
Inter-device Communication in Restricted Environments ORSHIN

» Updated list of abbreviations

» Extended the bibliography
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Chapter 1

E-Spoofer: Attacking and Defending
Xiaomi Electric Scooter Ecosystem

1.1 Abstract

Xiaomi is the market leader in the electric scooter (e-scooter) segment, with millions of active
users. It provides several e-scooter models and Mi Home, a mobile application for Android and
iOS to manage and control an e-scooter. Mi Home and the e-scooter interact via Bluetooth
Low Energy (BLE). No prior research evaluated the security of this communication channel, as
it employs security protocols proprietary to Xiaomi. Exploiting these protocols results in severe
security, privacy, and safety issues, e.g., an attacker could steal an e-scooter or prevent the owner
from controlling it. In this work, we fill this research gap by performing the first security evalua-
tion on all proprietary wireless protocols deployed to Xiaomi e-scooters from 2016 to 2021. We
identify and reverse-engineer four of them, each having ad-hoc Pairing and Session phases. We
develop six attacks exploiting these protocols at the architectural level, and we call them Mali-
cious Pairing (MP) and Session Downgrade (SD). Both attacks can be performed from proximity,
if the attacker’s machine is within BLE range of the target e-scooter, or remotely, via a malicious
application co-located with Mi Home.

An adversary can utilize MP and SD to steal a password-protected and software-locked e-
scooter, or to prevent a victim from accessing it via Mi Home. We isolate six attack root causes,
including the lack of authentication while pairing, and the improper enforcement of the e-scooter
password. We open-source the E-Spoofer toolkit. Our toolkit automates the MP and SD at-
tacks, and includes a reverse-engineering module for future research. We empirically confirm the
effectiveness of our attacks by exploiting eighteen e-scooters (i.e., M365, Essential, and Mi 3),
embedding seventeen BLE subsystem boards and eight BLE firmware versions that support all
four Xiaomi protocols. We design and evaluate two practical countermeasures that address our
impactful attacks and their root causes, and we release them as part of BLUFFS. We responsibly
disclosed our findings to Xiaomi.

1.2 Introduction

Xiaomi is leading the electric scooter (e-scooter) market [110]. Its ecosystem includes seven
e-scooters released in the last seven years (i.e., M365, Pro 1, Pro 2, 1S, Essential, Mi 3, and
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Mi 4) and the Mi Home mobile application for Android [24] and iOS [25]. Mi Home enables a
user to manage his e-scooter, e.g., wirelessly locking and unlocking it or setting a password. Mi
Home and the e-scooter communicate via proprietary application-layer protocols developed by
Xiaomi. These protocols are undocumented, not peer-reviewed, and built on top of a Bluetooth
Low Energy (BLE) link-layer.

Despite their associated security, privacy, and safety risks, no research work evaluated the
security protocols used by Xiaomi to secure the interaction between its e-scooters and Mi Home.
Instead, recent work focused on the privacy implications of e-scooter rental apps (including Xi-
aomi) [195] and on the security of Xiaomi’s fitness tracking ecosystem [51]. In our work, we find
that Xiaomi protocols can be exploited to (remotely) unlock and steal an e-scooter or permanently
prevent its owner to manage it from Mi Home.

This work presents the first security evaluation of the communication channel between Xi-
aomi’s e-scooters and Mi Home. In particular, we uncover and reverse-engineer all four e-scooter
protocols used from 2016 to 2021. We label them as P1, P2, P3, and P4, and we dissect their
custom Pairing (i.e., key agreement) and Session phases. We find that P1, P2, and P3 offer
no security guarantees but security through obscurity. Instead, P4 provides some security prop-
erties (e.g., ECDH key agreement and AES-CCM authenticated encryption) but is vulnerable to
downgrade attacks. Moreover, we find that Xiaomi decided not to use standard BLE link-layer
security mechanisms (e.g., BLE pairing), despite their devices support them.

We present four novel attacks targeting the Xiaomi protocols’ specifications. Two attacks
enable a proximity-based or remote attacker to pair maliciously with an e-scooter and get autho-
rized access to it without spoofing the victim’s identity (i.e., MP). The other two attacks allow a
proximity-based or remote attacker to downgrade the connection with an e-scooter to an inse-
cure version and send arbitrary commands (i.e., SD). The proximity-based adversary must be in
BLE range of the target e-scooter. Instead, the remote adversary must have installed a malicious
app on the victim’s smartphone. Our attacks achieve impactful goals, such as unlocking and
stealing an e-scooter, or preventing a victim from regaining control of the e-scooter via Mi Home.
We isolate the six attacks’ root causes, including the improper authentication and authorization
mechanisms, and the unprotected but privileged vendor-specific features of Xiaomi protocols.

We release E-Spoofer, a toolkit capable of performing our four attacks by reimplementing
and abusing the four reversed Xiaomi protocols. The toolkit includes three extensible modules.
Two dedicated modules implement the Malicious Pairing and Session Downgrade attacks. The
reverse-engineering (RE) module offers protocol dissectors to decode and build custom Xiaomi
packets (e.g., P1, P2, P3, and P4). and useful Frida hooks for Mi Home to dynamically intercept
and modify the proprietary Xiaomi payloads.

We successfully evaluate the attacks in eight different attack scenarios covering P1, P2, P3,
and P4. Our setup allows testing multiple e-scooter configurations by using three modded e-
scooters (e.g., M365, Essential, and Mi 3) with five BLE subsystems and eight BLE firmware.
Our results are alarming. In all attack scenarios, we managed to unlock an e-scooter and steal it,
or to lock it and to change its password, preventing its legitimate owner from accessing it via Mi
Home. These results lead to millions [89] of exploitable devices.

To fix the four attacks and their six root causes, we developed and tested two usable and low-
cost countermeasures and include them in our toolkit. First, we propose a backward-compatible
pairing protocol with proper authentication and authorization mechanisms. Second, we provide a
script to patch the session downgrade command from an e-scooter BLE firmware. We success-
fully test our patch on the M65 and Pro 1 e-scooters, whose BLE firmware is no longer updated
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by Xiaomi.
We summarize our contributions as follows:

» We present the first security evaluation of the proprietary security mechanisms employed
by Xiaomi’'s e-scooters and Mi Home application. We isolate four custom application-layer
security protocols on top of an insecure BLE link-layer. After reversing their Pairing and
Session phases, we uncover six severe vulnerabilities in their design, including vendor-
specific and unauthenticated protocol commands.

» We develop four attacks that steal an e-scooter or prevent its owner from accessing it from
the Mi Home app previously paired with that e-scooter. The attacks are effective on P1, P2,
P3, and P4, and can be deployed by an attacker in BLE range of a target e-scooter (i.e.,
proximity-based attacker) or via a malicious application on the victim’s smartphone (i.e.,
remote attacker).

» We open-source E-Spoofer, an automated and low-cost toolkit that implements our attacks
and tampers with the four Xiaomi protocols. Our toolkit includes the MP and SD attack
modules, and a reverse-engineering module with protocol dissectors, firmware analysis
tools, and Mi Home Frida hooks.

» We confirm that our four attacks are effective in eight attack scenarios covering five e-
scooter BLE subsystems and eight BLE firmware. Our evaluation samples include P1, P2,
P3, and P4. Our experimental setup allows to reproduce multiple attack scenarios using
three partially disassembled e-scooters and different BLE subsystems. We also release
two effective countermeasures that fix our attacks. The first addresses the MP attacks
by implementing a more secure pairing protocol. The second prevents the SD attacks by
patching the BLE firmware of an e-scooter.

Responsible disclosure and ethics We responsibly disclosed our findings multiple times with
Xiaomi via their bug bounty program [211]. In October 2022, we reported a Ul password bypass
issue with Mi Home, Xiaomi acknowledged it and provided a bug bounty. In November 2022, we
shared a technical report and the code to reproduce our findings. In December 2022, we provided
them with a video of the attacks on actual devices. Xiaomi did not follow up. We conducted our
experiments in a controlled environment without involving third-party users and services. We
provide our open-source E-Spoofer toolkit at https://github.com/Skiti/ESpoofer.

1.3 Xiaomi E-Scooter Ecosystem

Xiaomi is the electric scooter (e-scooter) market leader, sporting the highest number of active
users and shipped devices [110]. Currently, it features seven e-scooters, i.e., M365 (2016), Pro
1 (2019), Pro 2 (2020), 1S (2020), Essential (2020), Mi 3 (2021), and Mi 4 (2022). Xiaomi
also maintains Mi Home, a smartphone application for Android [24] and iOS [25] that manages
Xiaomi’s smart home devices, including any e-scooter. Xiaomi’s cloud-based backend service
manages the e-scooters and their active Mi Home users.

Figure 1.1 shows a high-level representation of the Xiaomi e-scooter ecosystem. This work
focuses on the BLE communication channel between the e-scooter and Mi Home. The e-scooter
acts as a BLE peripheral (connection responder), while Mi Home is the BLE central (connection
initiator). The e-scooter periodically broadcasts BLE advertisement packets to be discovered.
These packets contain the e-scooter name, model, security level, and pairing mode activation.
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Figure 1.1: Xiaomi e-scooter ecosystem. Xiaomi e-scooter (left), the user smartphone running
the Mi Home app (middle), and the Xiaomi backend (right). The e-scooter and the app are paired
and connected over BLE. The app associates the e-scooter with the Xiaomi backend over Wi-Fi.
We focus on the BLE traffic between the app and the e-scooter.

Mi Home scans the BLE spectrum and lists all connectable Xiaomi e-scooters nearby. Once con-
nected, the devices exchange data using BLE’s Generic Attribute Profile (GATT). The e-scooter
exposes a GATT server, which includes the Nordic UART Service and a custom Xiaomi service.
On the other hand, Mi Home acts as a GATT client, sending read, write, and subscribe requests
to the e-scooter’s GATT server. To communicate, Mi Home and the e-scooter establish a BLE
link-layer connection. Then, they use proprietary application-layer protocols and mechanisms
that cannot be scrutinized with multi-purpose static and dynamic analysis tools.

Mi Home requires the user to register a Xiaomi account to pair, connect, and manage one or
more Xiaomi e-scooters. The pairing process is a one-time procedure that requires user interac-
tion and an Internet connection. The user starts pairing via the app Ul, scans for nearby Xiaomi
e-scooters, selects the correct e-scooter from a list, presses the headlight button to activate pair-
ing mode, and waits. Once the pairing is complete, Xiaomi backend links the user account to the
paired e-scooter, and Mi Home remembers the device for future connections. Optionally, the user
can set a 6-digit alphanumeric PIN to protect the e-scooter from unauthorized access to Mi Home
(e.g., from attackers that have stolen the user’s smartphone and want to unlock the e-scooter via
Mi Home).

A Xiaomi e-scooter is a high-end embedded device composed of several proprietary and
undocumented subsystems: radio (BLE), battery management (BMS), and electric motor (DRV).
Each subsystem has a dedicated system-on-chip (SoC) and firmware. The connection between
the subsystems is not standardized and might involve a proprietary bus. The radio subsystem
provides BLE connectivity, enabling communication between the e-scooter and Mi Home. It also
acts as a gateway to distribute firmware updates to the DRV and BMS. The BMS monitors and
manages the e-scooter’s battery. The DRV takes care of the electric motor that, when the DRV
is not up-to-date, can be patched to change the motor's maximum speed. At the time of writing,
all Xiaomi e-scooters are manufactured by Ninebot, a Chinese company financed by Xiaomi that
acquired Segway (its main competitor in the US) in 2015 [158].

1.4 Threat Model

Now we present our system model and our proximity-based and remote attacker models. Please
refer to Section 1.3 for their related background material.
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Figure 1.2: Proximity-based (left) and remote (right) attacker models investigated in this work. In
the proximity-based threat model, the attacker is within BLE range of a target e-scooter. In the
remote threat model, the adversary first installs a malicious Android app on the victim’s smart-
phone. Then, she uses the malicious app (in red) to remotely target an e-scooter within BLE
range of the victim’s smartphone.

1.4.1 System Model

We consider a victim who owns a Xiaomi e-scooter and a smartphone equipped with the Mi Home
app for Android or iOS, as shown in Figure 1.1. We assume that the Mi Home version number is
the /atest available at the time of submission (e.g., Android v7.11.704 and iOS v7.12.204). We
do not set a target Android or iOS version as we want to explore Xiaomi-compliant attacks that
work regardless of the smartphone OS version.

The victim securely paired the app, and the e-scooter accepted the required permissions and
completed the default firmware update. The update process involves the BLE, battery manage-
ment, and electric motor subsystems (e.g., DRV017, BLE157, BMS141), and the BLE compo-
nent acts as a gateway. To consider the most secure scenario, we assume that the password-
protection is enabled to prevent unauthorized access to the e-scooter. Hence, according to com-
mon sense, the victim locks and unlocks the e-scooter from the app. Moreover, the victim uses
the e-scooter features, such as pressing the power button to activate or deactivate the headlight.

The e-scooter and Mi Home communicate using Xiaomi proprietary application-layer proto-
cols. These protocols run on top of a link-layer connection established using BLE. Only Xiaomi
knows the application-layer protocols’ details and their security guarantees (e.g., confidentiality,
integrity, and authenticity).

1.4.2 Attacker Models

Password protection and secure communication at the application-layer and link-layer should pro-
tect victims against impactful attacks, including threats effective from BLE proximity or remotely
via a malicious app on the victim’s smartphone. For example, it should not be possible to (re-
motely) unlock and steal an e-scooter or (remotely) reset a password to deny the victim access
to the e-scooter. Based on this reasoning, and as shown in Figure 1.2, we focus on two relevant
threat actors:

Proximity-based attacker The proximity-based attacker targets the e-scooter with BLE signals.
Hence, she requires being within BLE range of the target device. The proximity attacker has
the following goals: (i) unlock and steal a (password-protected) e-scooter, and (ii) prevent the
legitimate owner from accessing and controlling the e-scooter via Mi Home.
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The proximity adversary has the capabilities of a real-world and low-cost BLE attacker. She
can craft custom BLE packets, sniff the traffic over-the-air to get public information (e.g., BLE
addresses and advertisements), and replicate the Android and iOS Mi Home apps with her attack
equipment. The attacker does not observe the e-scooter while it pairs with Mi Home and does
not install malicious software on the victim’s devices. Moreover, she does not physically tamper
with the e-scooter and the smartphone (e.g., no physical fault injection and side-channel attack).

Remote attacker The remote adversary attacks the e-scooter using a malicious application
installed on the victim’s smartphone. Thus, she requires the victim’s smartphone to be within
BLE range of the e-scooter, but she can remotely activate the app. For example, the adversary
can attack the e-scooter while the victim is parking the e-scooter and walking away from the
parking lot. This model differs from a proximity-based attack as the latter involves a BLE attacking
machine (e.g., a laptop) in the BLE range of the victim, while the former involves a malicious
smartphone app. The remote attacker has the same goals as the proximity-based attacker.

Capability-wise, we consider a low-cost and real-world remote threat actor targeting the An-
droid ecosystem (as opposed to iOS, which is more closed). We assume a malicious Android app
that was installed using known (yet practical) social engineering and phishing techniques. The
app does not require root privileges but needs basic permissions to interact with the e-scooter,
such as Bluetooth and Internet permissions. The attacker develops the app using standard An-
droid tools (e.g., Android Studio) and APIs (e.g., BLE advertisement, scanning, and GATT APIs).
The remote attacker has the same limitations as the proximity one, except for installing an app on
the victim’s smartphone.

Physical access requirements Regardless of the attacker model, we assume that the adver-
sary needs minimal (but mandatory) physical access to steal and carry away an e-scooter. For
example, in a proximity-based scenario, the attacker can approach the e-scooter when the victim
is not present and perform some short interactions with its dashboard (e.g., pressing the headlight
and the power buttons). Alternatively, in a remote threat scenario, two adversaries can collude.
For example, an adversary unlocks the e-scooter by launching a remote attack via the malicious
app. At the same time, the other adversary can press any button (if necessary) and steal the
e-scooter.

1.5 Reversed Xiaomi Security Protocols

We describe the four proprietary Xiaomi protocols that we reverse-engineered (RE). Please see
the Appendix for an explanation of our RE methodology. We discover that Mi Home and the
e-scooter establish an insecure link-layer BLE connection, despite both devices supporting BLE
security mechanisms (e.g., BLE Pairing). Instead, Xiaomi uses proprietary application-layer pro-
focols to secure their whole e-scooter ecosystem.

Table 1.1 summarizes the details we reversed from the protocols. We label the protocols
as P1, P2, P3, and P4, and also assign a descriptive name to each one. P1 is named "No
security” because it does not utilize any security mechanism. P2 is named "XOR obfuscation”
because it employs an obfuscation strategy exclusively based on XOR. P3 is named "AES-ECB
and XOR obfuscation” because it XORs Xiaomi packets with the output of an AES-ECB cipher.
P4 is named "ECDH and AES-CCM” because it employs ECDH for Pairing and AES-CCM during
Session. Then, we isolate the protocols’ phases: Pairing (e.g., key agreement), and Session
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Table 1.1: The four Xiaomi application-layer security protocols analyzed in this work. The first
and second columns show the protocol ID and name. Each protocol has a Pairing and Session
phase. P4 has two Session versions, where v2 is equal to v1 but adds downgrade protection.
Unil means unilateral.

ID Name Pairing Session

P1 No security None None

P2 XOR obfusca- Public XOR XOR mask obfuscation,
tion mask, no auth no auth, no integrity

P3 AES-ECB Weak AES- XOR obfuscation, implicit
and XOR obf ECB key agr, auth, no integrity
no auth
v1: HKDF, HMAC, AES-CCM, mutual auth

P4 ECDH and ECDH, AES- . .
AES-CCM CCM unil auth v2: v1 with downgrade protection

(e.g., authenticated encryption). For instance, P2 Pairing is based on a public XOR mask and is
unauthenticated. lts Session reuses the XOR mask to obfuscate payloads, is not authenticated,
and provides no integrity protection. Our experiments reveal that all Xiaomi e-scooters (more
specifically, their BLE subsystems) and all Mi Home versions (from 2016 to 2021) have employed
these protocols. Now we describe each protocol in detail.

1.5.1 No Security (P1)

P1 provides no security guarantees as it lacks Pairing and Session capabilities. The devices
establish a BLE connection and then exchange the application-layer payloads in cleartext without
integrity protection. The only roadblock for the attacker to eavesdrop and inject packets into the
connection is the knowledge of the application-layer packet format. P1 is the prototypical example
of security through obscurity (STO).

1.5.2 XOR Obfuscation (P2)

P2 offers no security guarantees, but relies on a XOR-based obfuscation strategy. During Pair-
ing, Mi Home reads a twelve-byte XOR mask from the e-scooter Hardcopy Data Channel GATT
characteristic, different at every reboot of the device. The mask can be read without requiring
authorization before pairing. Then, during Session, the devices obfuscate the application-layer
payloads by XORing them with the XOR mask. If the payload is longer than the XOR mask, the
app asks the e-scooter for the extended version of the same XOR mask and uses that one instead
in the XOR operation. Since the attacker can trivially recover the mask (e.g., eavesdropping or
reading it from the e-scooter), P2 is insecure and falls into the STO category.

1.5.3 AES-ECB and XOR Obfuscation (P3)

P3 uses a weak key establishment protocol based on AES-ECB and XOR obfuscation. Pairing
generates a sixteen-byte pairing key (pk) by computing pk=AES-ECB(key=constant,input=e
scooter_name), where constant is hardcoded both in the Mi Home app and in the e-scooter
BLE firmware, and escooter_name is publicly advertised by the device. Then, during Session,
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the devices obfuscate the application-layer payloads by XORing them with pk. If the payload is
longer than the pairing key, the payload is XORed with an extended pairing key, which is just pk
repeated as many times as necessary. P3 provides no security guarantees but only STO. An
attacker can compute pk by extracting constant from the reversed code of any Mi Home APK
and trivially acquire escooter_name. Once pk is known, the attacker can de-obfuscate and inject
valid P3 packets.

1.5.4 ECDH and AES-CCM (P4)

During Pairing, P4 employs Elliptic Curve Diffie-Hellman (ECDH) for key agreement and unilat-
eral pairing key authentication. In particular, the e-scooter sends chal, a sixteen-byte random
challenge. The devices exchange their public keys, using the SECP256R1 curve, and derive ss,
an ECDH shared secret. Then, they compute a pairing key (pk) and a one-time key (otk) using
HKDF as follows: pk| | otk=HKDF (key=ss, input="mible-setup-info",salt=""). The app
responds to the e-scooter challenge with resp=AES-CCM(key=otk, input=chal). The e-scooter
verifies the challenge and if the verification is successful pairing is completed.

During Session, P4 uses HKDF, to derive the directional session keys, and HMAC-based
mutual authentication. The devices exchange rand_esc and rand_app, two sixteen-byte random
numbers. The devices derive two directional session keys (sk_esc and sk_app) and AES-CCM
nonces (n_esc and n_app) as follows: sk_esc| |sk_app| In_esc| |n_app=HKDF (key=pk, input="
mible-login-info",salt=rand appl |rand esc).

Then, the e-scooter sends resp_esc=HMAC(key=sk_esc,input=rand_esc||rand_app) to
authenticate its session key. Similarly, the app authenticates its directional key by sending resp
_app=HMAC (key=sk_app, input=rand_esc| | rand_app). After mutual authentication of both ses-
sion keys, each device employs AES-CCM to encrypt and integrity protect the application-layer
payloads. AES-CCM is keyed with the directional session key and initialized with the directional
nonce concatenated with a packet counter.

P4 provides security guarantees (unlike P1, P2, and P3) but can be downgraded. Replay
attacks are ineffective against P4 Pairing and Session because the former utilizes a random
challenge during pairing key authentication, and the latter utilizes random values and nonces
during the HMAC-based authentication. Moreover, the mutual authentication during P4 Session
prevents impersonation attacks on Mi Home or the e-scooter. The usage of session keys limits
the impact of a compromised key to the current session only, and the usage of a packet counter
in the encryption of regular BLE communication protects against nonce reuse attacks.

P4 protocol comes in two versions (i.e., P4v1 and P4v2), depending on the supported version
of the Session phase.

1.6 Attacks

We present four novel attacks targeting the four Xiaomi custom protocols discussed in Section 1.5
that enable stealing a (password-protected) e-scooter or denying a victim from using it via Mi
Home. Our attacker can either be proximity-based or remote, as stated in Section 1.4. The
attacks achieve their goals by using one of two spoofing strategies: (i) the attacker pairs with
the target e-scooter while impersonating any user, i.e., Malicious Pairing (MP) (ii) the adversary
connects to the target e-scooter and downgrades the session to an insecure version, i.e., Session
Downgrade (SD).
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Figure 1.3: Malicious Pairing (MP) attack strategy. The user presses the headlight button. The
e-scooter goes into pairable mode for seventeen seconds and advertises it via BLE. The attacker
detects the Pairing phase supported by the e-scooter. Then, she establishes a BLE connection
without impersonating the victim’s smartphone and completes Xiaomi Pairing. As a final result,
she is authorized to send any Xiaomi-compliant command to the e-scooter, including lock, unlock,
and set or change a password.

The attacks are critical to the Xiaomi ecosystem as they exploit the four Xiaomi application-
layer security protocols at the architectural level. Hence, they are effective regardless of the
e-scooter's hardware and software details, including its model, and only depend on the BLE
firmware being run. Moreover, they defeat the most secure setup, i.e., a password-protected and
software-locked e-scooter already paired with a registered Xiaomi user. We even completed the
attacks while the e-scooter was in motion (in a controlled environment). We now describe the MP
and SD strategies, and we isolate their root causes.

1.6.1 Malicious Pairing (MP)

Figure 1.3 shows the MP attack strategy that can be used to lock an e-scooter away from its user,
or to steal it. The attacker waits until the victim presses the e-scooter headlight button to switch
on or off the front light (or presses the button if the e-scooter is unattended). As a side effect, the
button press activates pairing mode for the e-scooter for seventeen seconds without notifying the
user. The adversary detects that the e-scooter is pairable from its BLE advertisement packets
and detects which Xiaomi protocol it supports (i.e., P1, P2, P3, or P4). Then, she establishes
a BLE link-layer connection without spoofing the victim’'s smartphone BLE address. Hence, the
adversary can target an e-scooter without knowing any information about its owner (e.g., any
e-scooter in a parking lot).

Finally, the attacker sends a Xiaomi-compliant pairing request and completes Pairing, regard-
less of the supported Xiaomi protocol of the e-scooter. Once paired, she can perform any action
requiring authentication. For example, she can lock it and set a new e-scooter password to pre-
vent the victim from accessing it from Mi Home. The takeover is effective, as we discovered that
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Figure 1.4: Session Downgrade (SD) attack strategy. The app detects a nearby e-scooter vul-
nerable to SD (i.e., running P4v1 or P2). The attacker skips Pairing and sends the session
downgrade command to the e-scooter. The Session is downgraded from P4v1 to P3, or from P2
to P1.

Mi Home does not allow resetting the e-scooter password, even with a factory reset. Alternatively,
the attacker can use the MP strategy to unlock and steal the e-scooter.

The MP attack strategy is effective for a proximity-based attacker inside the BLE range of the
e-scooter, and for a remote attacker controlling a malicious app while the victim’s smartphone
is within BLE range of the e-scooter. Moreover, the strategy works regardless of the Pairing
phase version and the e-scooter password because, while pairing, the attacker does not have to
authenticate its identity and provide the password.

1.6.2 Session Downgrade (SD)

Figure 1.4 shows the SD attack strategy that allows an adversary to lock an e-scooter away from
its user, or to steal it. The attacker detects the Session protocol supported by the e-scooter. Then,
she looks at the BLE advertisement packets of the e-scooter, and she detects if the target runs
P4v1 or P2, being the two Session protocols that expose a session downgrade command. She
establishes a BLE link-layer connection without spoofing anything from the victim. Hence, the
adversary can target an e-scooter running P4v1 or P2 without knowing any information about its
owner. Then, the attacker sends a Xiaomi-compliant session downgrade command, downgrading
the Session from P4v1 to P3 or from P2 to P1. The attacker exploits the insecure P3 and P1 to
perform dangerous actions on the e-scooter. Similarly to MP, she can lock the e-scooter and
prevent access to it from Mi Home by setting a new e-scooter password. She can also use the
SD strategy to unlock and steal the e-scooter. The SD strategy can be applied to our proximity-
based and remote threat models. The strategy entirely skips Pairing and starts an insecure
downgraded Session, removing any authentication requirement from the attacker. Moreover, the
strategy is particularly effective on e-scooters running P4v1, as they offer security guarantees
that are nullified by downgrading the Session phase to the insecure P3.

1.6.3 Root Causes

The four attacks presented above are enabled by the following six root causes (i.e., vulnerabilities)
that we isolated in the Xiaomi protocols’ specification:
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V1: Unauthenticated Pairing None of the Pairing phases require device authentication (e.qg.,
via a certificate signed by Xiaomi). Hence, an attacker can pair with an e-scooter while spoofing
an arbitrary Mi Home app without authenticating, regardless of the application-layer protocol used
by the e-scooter (i.e., P1, P2, P3, or P4).

V2: Unintentional Pairing mode Pressing the e-scooter's headlight button activates pairing
mode for seventeen seconds without notifying the user. Hence, whenever the victim presses the
headlight button, an attacker in the BLE range of the e-scooter can detect that the e-scooter is
pairable from its BLE advertisements and pair. Alternatively, given physical access, the attacker
can trigger pairing mode while the victim is away, by simply pressing the headlight button (even if
the e-scooter is software-locked).

V3: Improper e-scooter password enforcement The e-scooter does not enforce the pass-
word set by the user via Mi Home. Only Mi Home checks it to prevent unauthorized access to
the e-scooter from the victim’s smartphone. Therefore, an attacker can tamper with a password-
protected e-scooter without knowing the password. Moreover, Mi Home does not provide a way
to deactivate the password, and the password does not change across factory resets. If the ad-
versary changes the e-scooter password, she prevents the victim from controlling the e-scooter
via Mi Home.

V4: Unprotected sensitive memory Xiaomi custom protocols include an unauthenticated
command to read and write sensitive memory regions. For example, the attacker can read and
overwrite the victim’s password from the e-scooter DRV subsystem memory. Moreover, she can
tamper with the BLE subsystem memory to lock, unlock, reboot, and shut down the e-scooter.

V5: Downgradable and insecure Session Xiaomi custom protocols include unauthenticated
commands to downgrade the Session phase. For instance, the attacker can downgrade a P4v1
Session to a P3 Session and a P2 Session to a P1 Session. At the same time, P1, P2, and P3
Session phases are insecure and provide no confidentiality, authenticity, or integrity guarantees.
P1 uses no key, P2 employs XOR-based obfuscation with a constant XOR mask, and P3 uses a
slightly more complex, yet predictable, obfuscation based on AES-ECB and XOR operations.

V6: No BLE security despite device support Xiaomi does not employ BLE security at the
link-layer despite device support but relies solely on its custom security mechanisms at the
application-layer. So, there is no defense in depth, and the application-layer is a single point
of failure.

Table 1.2 in the Appendix maps the six root causes of the four attacks described earlier. MP
attacks exploit V1, V2, V3, and V4. V1 and V3 lower the attack requirements. V2 allows attacks
from proximity without requiring physical access to activate pairing mode. V4 enables dangerous
operations on the e-scooter by unauthorized attackers. SD attacks exploit V3, V4, V5, and V6.
V3 and V6 lower the attack requirements. V4 enables dangerous operations on the e-scooter. V5
makes SD possible.
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Table 1.2: Mapping between the vulnerabilities (rows) and the presented attacks (columns). We
put a v if an attack exploits a vulnerability. Otherwise, we put an X. We split our two attacks,
Malicious Pairing (MP) and Session Downgrade (SD), depending on their threat model, either
proximity-based or remote.

Proxim. Remote
Vulnerability MP SD MP SD
Ve

V1: Unauthenticated Pairing v
V2: Unintentional Pairing mode v
V3: Improper e-scooter passw. enfor. v
V4: Unprotected sensitive memory v
V5: Downgradable and insec. Session X
V6: No BLE sec. despite device support X

NENENENE
x % N\ N
NENE NN

1.7 Implementation

Here, we present E-Spoofer, a new toolkit to carry out the four attacks presented in Section 1.6,
facilitate further reverse-engineering of Xiaomi protocols and help in future security evaluations
in the Xiaomi e-scooter ecosystem.

1.7.1 Proximity Attack Module

The E-Spoofer proximity attack module performs proximity-based MP and SD over-the-air, using
BLE. We use Noble [140], a NodedS module, to create a BLE central that spoofs the Mi Home
app and speaks Xiaomi protocols. We replicate P4 Pairing and P4v1 Session, as these protocols
are available on all (up-to-date) Xiaomi e-scooters.

Our module reimplements P4 Pairing, including ECDH and pairing key authentication. We
perform ECDH and obtain a shared secret. We receive a challenge from the e-scooter. We derive
a pairing key and a one-time key from the shared secret by running HKDF-SHA256. We utilize
the one-time key and the challenge for the sophisticated pairing key authentication by running
AES-CCM-128. Finally, we send the solution to the e-scooter and complete P4 Pairing.

Our module reimplements P4v1 Session, including the HMAC-based mutual authentication
and AES-CCM encryption. We send a challenge to the e-scooter, and receive a challenge back.
We retrieve the pairing key generated during Pairing. We derive the directional session keys
and Vs from the pairing key and the two challenges by running HKDF-SHA256. Then, we use
the directional session keys and IVs to calculate the solution of the e-scooter challenge by run-
ning HMAC-SHA256. Finally, we encrypt with AES-CCM-128 the BLE commands (e.g., session
downgrade, lock or unlock the e-scooter, setting or changing the password) using the session
keys and IVs, and the packet count. The above-mentioned cryptographic operations also require
other input values found in the decompiled Mi Home code, identical for all e-scooter models.

1.7.2 Remote Attack Module

The E-Spoofer remote attack module performs the attacks using a malicious Android app. The
app acts as a BLE central, spoofing Mi Home and speaking Xiaomi protocols. It detects a vulner-
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able e-scooter via its BLE advertisement, by analyzing the info included in the advertisement itself
(i.e., e-scooter name, model, security level, and pairing mode activation). When an e-scooter is
found in pairing mode, the app will pair and perform MP or SD. We develop the app using the
RxAndroidBle library [178], built on RxJava.

Our malicious app requires no root privileges but Bluetooth and location-related permissions.
On Android 9 or lower, these permissions are BLUETOOTH, BLUETOOTH_ADMIN, and ACC
ESS_COARSE_LOCATION. Android 10 and 11 require ACCESS_FINE_LOCATION instead of
coarse locatio. On Android 12 or higher, the app requires the BLUETOOTH_CONNECT and BL
UETOOTH_SCAN permissions.

1.7.3 Reverse-Engineering Module

The E-Spoofer reverse-engineering module contains the protocol dissectors, Ghidra utilities,
and Frida hooks that we developed while statically and dynamically RE the Xiaomi e-scooter
ecosystem. The research community can use these modules to perform other experiments on the
Xiaomi ecosystem or adapt them to test similar ecosystems. We now describe each submodule.

Protocol Dissectors We develop Pyshark dissectors that automatically parse BLE captures
and detect custom Xiaomi payloads and advertisement packets. They identify the Xiaomi protocol
version from the packet header and dissect the packet accordingly. We also develop Scapy scripts
to complement the Pyshark dissectors and offer a more advanced analysis.

We develop an advertisement packet analyzer for Xiaomi e-scooters. Our script extracts the
name of the scooter (e.g., MIScooter1234), the scooter model (i.e., 0x20 for M365), the security
level (i.e., 0x00 for P1, 0x01 for P2, and 0x02 for P3 and P4) and pairing mode activation (i.e.,
0x01 means not active, 0x02 means active).

Ghidra Utilities We utilize Ghidra[146] to statically RE portions of the e-scooter’s BLE firmware.
We used the open-source mijia library [138] to identify some compiled functions in the firmware,
related to BLE advertisement and cryptographic mechanisms (e.g., AES, HKDF). We manually
name the functions related to Pairing and Session and release six YARA [196] rules with their
signatures to identify them automatically. We also release our Ghidra project files to reproduce
our setup, as part of E-Spoofer.

We discover how the session downgrade command is implemented in the BLE firmware,
and why P4v2 does not support it. A static memory flag decides whether P3 packets (including
the downgrade command) are accepted or discarded. Firmware running P4v1 enables this flag,
thus becoming vulnerable to SD. Firmware running P4v2 disables this flag, thus discarding the
downgrade command and becoming immune to SD. We did not find any way to exploit this flag,
unreachable by the unprotected sensitive memory (V4) root cause presented in Section 1.6.3.

Frida Hooks First, we decompile the Mi Home APK. We navigate the decompiled code to
find the classes and functions involved in Xiaomi security mechanisms and we write down their
signature. Then, we develop Frida [157] hooks to intercept these calls. We print the input and
output values, and we modify them if needed. In particular, we cast the key to their proper classes,
before printing or altering them. Our hooks are written in Javascript and can be run by invoking
the Frida client from the console, while connected to a rooted smartphone running a Frida server.
Operating with Mi Home, will print logs on the console.
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1.8 Evaluation

In this section, we evaluate the four attacks presented in Section 1.6 against eight attack scenar-
ios. We cover P1, P2, P3, and P4 — the proprietary Xiaomi application-layer protocols reversed in
Section 1.5, three popular Xiaomi e-scooters models (i.e., M365, Essential, and Mi 3), five Xiaomi
BLE subsystems (i.e., M365, Pro 1, Pro 2, Essential, and Mi 3), eight e-scooters’ BLE firmware,
and the Mi Home app for Android and iOS. We now describe our setup and results.

1.8.1 Setup

Our evaluation setup enables experimenting with multiple e-scooters and BLE configurations by
using three e-scooters (M365, Essential, and Mi 3) configured to host different BLE subsystems
and firmware. We bought the three e-scooters from Amazon for around 1.000 USD. We get
access to their BLE subsystem board by unscrewing the dashboard and removing the display.
This way, we broaden our evaluation while limiting the evaluation costs. For example, by installing
the Pro 1 and Pro 2 BLE subsystems and firmware on the M365 e-scooter, we can test the Pro 1
and Pro 2 subsystems without spending hundreds of USD to buy the actual e-scooter.

We test five BLE subsystem boards with eight BLE firmware. Three boards are original parts
of M365, Essential, and Mi 3 e-scooters. Two are clone boards for Pro 1 and Pro 2. The M365 and
Pro 1 subsystems include an nRF51822 SoC [174] of the QFAA variant (16 KB of RAM). Instead,
the other subsystems use the QFAC variant with 32 KB of RAM. We obtain the BLE firmware from
the ScooterHacking repositories [166] or the Mi Home app. We identify each firmware’s relative
proprietary protocol (i.e., BLE072 runs P1, BLE081 runs P2, BLEO90 runs P3, BLE122, BLE129,
BLE152, and BLE153 run P4v1, BLE157 runs P4v2).

To debug and manage the BLE subsystems, we use the ST-Link V2 debugger [76], which is
compatible with the nRF51 SoC family. Attaching the debugger to a subsystem board requires
manual effort, such as soldering the data (SWDIO), clock (SWCLK), and power wires. We also
remove discrete components to unlock hardware-based debugging (i.e., C16 and R1 on the M365
BLE board, C2 on the Pro 1 BLE board). Once debugging was unlocked, we could run a GDB
server for runtime debugging and operate on the SoC RAM with tools such as OPENOCD [148],
PySWD [159], MiDu Flasher [90], and nRFSec [42]. Runtime access to the subsystem boards
was essential to produce the presented results. For example, via GDB, we discovered that the
e-scooters store the cleartext password in RAM, and via firmware flashing, we restored a BLE
subsystem in an unbricked state after tampering with it.

On the app side, we test Mi Home for Android and iOS on three smartphones. We evaluate
a rooted Pixel 2 running Mi Home v7.11.704 and Android 11, a rooted Oneplus 3 with Android 9
and a Realme GT with Android 12, both running Mi Home v7.6.704, and an iPhone 7 running Mi
Home 7.12.204 and iOS v15.7. Our attacks do not require rooting a smartphone; we only need
root privileges when dynamically instrumenting Mi Home with Frida.

We run E-Spoofer, the novel toolkit we present in Section 1.7, from two attacking devices.
We deploy our proximity-based MP and SD attacks from a laptop (i.e., Dell Inspiron 15 3000).
We select the desired attack from the command line, the victim e-scooter from a list of nearby
targets, and the script automatically performs MP or SD, displaying visual feedback. We deploy
our remote MP and SD attacks from a smartphone (e.g., Pixel 2). Through the Ul of our malicious
app, we scan for nearby targets, connect to a victim e-scooter, and perform MP or SD.
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1.8.2 Results

Table 1.3 shows our evaluation results. The first two columns indicate the BLE firmware version
and the protocol they run. The third column represents the e-scooter model, which hosts the BLE
subsystem shown in the fourth column. We specify the SoC variant of the BLE subsystem board
in column five. The remaining columns highlight whether a BLE firmware version is vulnerable to
MP and SD in their proximity-based and remote variant.

In our attack scenarios, we exploit eight unique BLE firmware, including the latest firmware
available on the M365, Essential, and Mi 3. We test the four Xiaomi proprietary protocols we
identified, including the two variants of P4 Session (i.e., P4v1l and P4v2), and flash them on
five BLE subsystems from different e-scooter models. We confirm that BLE subsystems using
the nRF51822 QFAA SoC are incompatible with newer e-scooters models (i.e., Essential, Mi 3),
as the latter requires BLE subsystem boards with the nRF51822 QFAC SoC. Similarly, newer
boards cannot be installed on the M365. We demonstrate that all evaluated BLE subsystems,
regardless of their application-layer protocol, are vulnerable to the MP attacks. This happens due
to authorization and authentication issues in all four Xiaomi protocols that we discuss and fix in
Section 1.9. We also demonstrate that all evaluated BLE subsystems running P4v1 or P2 are
vulnerable to SD to P3 or P1. We highlight that P1, P2, and P3 have no security guarantees
compared to the more secure P4. This fact makes SD from P4v1 to P3 particularly threatening.
We confirm that P4v2 is immune from the SD attacks, as discussed in Section 1.7.

Our E-Spoofer toolkit proved to be effective on all evaluated Xiaomi e-scooters. Unfortu-
nately, we could not evaluate the Xiaomi Mi 4 e-scooter due to its release time (end of 2022).
E-Spoofer can be easily extended to support any e-scooter ecosystem that protects their com-
munications with a proprietary application-layer protocol on top of BLE, including the Xiaomi Mi
4 e-scooter. To attain this goal, future researchers will have to reverse-engineer the proprietary
application-layer protocols run by that specific e-scooter ecosystem. In the Appendix, we present
our reverse-engineering methodology, which is generalizable to any BLE e-scooter and utilizes
state-of-the-art tools and techniques. We also confirm that our toolkit can change the unknown
e-scooter password set by an adversary, restoring the user capability of accessing and managing
the e-scooter from Mi Home, as a post-attack defence.

During our experiments, we even identified and disclosed a severe Ul authentication bug in
Mi Home for Android and iOS. From Mi Home v7.6.704 onwards, the user can lock or unlock
a password-protected e-scooter without entering the password. The cause is a 1 second Ul
delay between the app wake-up and the password prompt. We confirmed this bug using the
same smartphones we describe in Section 1.8.1. Since the password is only checked by Mi
Home, due to the improper e-scooter password enforcement (V3) root cause we discuss in
Section 1.6.3, the attacker can bypass app-based password protection, unlock the e-scooter, and
steal it. As described in the responsible disclosure paragraph, Xiaomi acknowledged this bug,
rewarding us with a bounty, but gave no information about a fix.

1.9 Countermeasures

To address the four impactful attacks described in Section 1.6, we design and evaluate two us-
able, backward-compliant, and low-cost countermeasures. The first countermeasure stops the
MP attacks by providing a stronger pairing mechanism that is appropriately authorized and au-
thenticated. The second countermeasure fixes the SD attacks by patching away the hidden
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Table 1.3: Evaluation results. The first and second columns represent the BLE firmware version
and the Xiaomi protocol version. The third column states the e-scooter model, which hosts the
BLE subsystem board, specified in the fourth column, indicating if the BLE board is original from
Xiaomi or a clone. The fifth column specifies the System-on-Chip present on the BLE subsystem.
The last four columns highlight if the evaluated combination is vulnerable to our proximity-based
and remote Malicious Pairing (MP) and Session Downgrade (SD) attacks. A hyphen (-) means
the attack does not apply to that target.

Proximity Remote
Firmware Prot E-Sco BLE Board SoC MP SD MP SD

BLEO072 P1 M365 M365 (Orig) nRF51822 QFAA v - v -
BLEO081 P2 M365 M365 (Orig) nRF51822 QFAA v v /
BLE090 P3 M365 Pro 1 (Clone) nRF51822 QFAA v X X
BLE122 P4v1i M365 M365 (Orig) nRF51822 QFAA v v /
BLE129 P4v1i M365 Pro 2 (Clone) nRF51822 QFAC v v o/
BLE152 P4v1 Ess. Essential (Orig) nRF51822 QFAC v v /
BLE153 P4avli Mi3 Mi 3 (Orig) nRF51822 QFAC v v /
BLE157 P4v2 Mi3 Mi 3 (Orig) nRF51822 QFAC v X X

downgrade command from the vulnerable e-scooter BLE firmware. We now describe them in
detail and release them as part of E-Spoofer.

1.9.1 Authorized and Authenticated Pairing

The MP attacks presented in Section 1.6.1 are enabled by authorization and authentication is-
sues affecting P1, P2, P3, and P4 Pairing phases. We develop a better pairing phase addressing
both issues in a backward-compatible way. This countermeasure addresses the unauthenticated
pairing (V1), unintentional pairing mode (V2), and improper e-scooter password enforcement
(V3) root causes from Section 1.6.3. We now describe how we provide authorization and authen-
tication during pairing.

Authorized Pairing Mode We require the Xiaomi Pairing phase to implement a dedicated pair-
ing activation command that also notifies the user. In particular, to enter pairing mode, the user
must press the headlight button while holding down the left brake. Then, the e-scooter’s tail light
should blink until the completion of Pairing. This fix prevents unexpected and unnotified pairing
sessions such as the ones exploited in the MP attacks by waiting until the victim presses the
headlight button. The fix is trivial to implement for Xiaomi as it requires minimal modifications
to the BLE firmware. On our side is challenging to test as we do not have access to the BLE
firmware source code and build tools.

Password-Protected Authenticated Pairing We require a password protected pairing proto-
col to prevent an unauthenticated attacker from pairing with a victim e-scooter. This fix prevents
the MP attacks even if the adversary manages to put the e-scooter in pairing mode. This coun-
termeasure is easy to implement by extending the Mi Home password protection functionality.
In particular, while pairing an e-scooter with Mi Home for the first time (including after a fac-
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tory reset), the user should set a password via Mi Home. Then, the password should be stored
on Mi Home and the e-scooter and enforced in case of re-pairing. Hence, an attacker cannot
maliciously pair with the e-scooter as she cannot provide the password to the e-scooter. We
successfully evaluated this fix using our toolkit to replicate P4 Pairing between an e-scooter and
Mi Home.

1.9.2 Anti-Downgrade BLE Firmware Patching

The SD attacks presented in Section 1.6.2 are enabled by a vendor-specific command, which
downgrades Xiaomi Session P4v1 to P3, and P2 to P1. We focus on patching P4v1 because
e-scooter running the insecure P2 should update their BLE firmware to the latest version. Re-
gardless, the downgrade command is present even in recent BLE firmware versions, including
the latest M365 and Pro 1 BLE firmware. We release a script capable of finding and removing
the downgrade command from a vulnerable BLE firmware to fix this issue. Our script addresses
the downgradable and insecure Session (V5) root cause presented in Section 1.6.3.

The script looks for a specific conditional statement and patches it to allow only P4 Session.
Hence, the patch introduces no overheads (e.g., memory, computation). Our scripts opens the
binary firmware, finds the function responsible for BLE packet analysis, and alters the conditional
statement that accepts either P3 and P4 packets, causing it to only accept P4 packets. More
specifically, it replaces the cmp instruction 5a2f with 652f. As a result, the attacker can neither
downgrade P4v1 to P3, nor send any other insecure P3 command.

Developing the script required a one-time manual overhead to understand how to remove the
downgrade command. Then we automated our binary-patching process. We reuse the BotoX
M365 patcher tool [39] to encrypt the patched firmware with the Tiny Encryption Algorithm (TEA).
We reuse the third-party M365DownG app [47] to flash the zipped and newly encrypted BLE
firmware.

We successfully evaluated our fix on the M365 and Pro 1 e-scooters. We flashed a patched
BLE122 firmware on the e-scooters and deployed the proximity-based and remote SD attacks.
Both attacks failed, as downgrading the protocol from P4v1 to P3 was impossible with our fix.

1.10 Related Work

E-Scooters Security and Privacy Issues Academic research on e-scooter security and pri-
vacy is scarce, especially on personal e-scooters. Zimperium, a mobile security company, ex-
ploits the locking system to stop a running e-scooter [221]. The hacker Lanrat evaluated M365
authentication, discovering that it is not enforced by the e-scooter [88]. Both attacks were publicly
disclosed in 2019 and only targeted the Xiaomi M365 model. In our work, we target all Xiaomi
e-scooter models from 2016 to 2021.

Security researchers focused on e-scooter rental ecosystems instead of private e-scooters.
In [8], the authors identify some vulnerabilities in the APls exposed by the Bird e-scooter sharing
platform, which utilizes M356 e-scooters [26]. Public e-scooters from the Lime sharing company
are weak to a man-in-the-middle attack that allows for arbitrarily swapping audio files [144]. N.
Vinayaga-Sureshkanth et al. [195] provide an extended evaluation of Android e-scooter rental
applications. In particular, they investigate the user-related data collected and shared with third
parties, which could monitor the users’ schedules and visited locations. In our work, we perform
a security assessment. Therefore, we consider out-of-scope any privacy study on user data.
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E-Scooters Hacking Communities ScooterHacking [169] is the largest e-scooter hacking com-
munity with around 20.000 members. ScooterHacking releases hacking tools [166] and offers a
third-party companion app [168] for Xiaomi e-scooters. Expert users can download custom DRV
and BLE firmware to alter the e-scooter performances (e.g., maximum speed). Alternatively,
users can build their DRV firmware with the ScooterHacking Custom Firmware Toolkit [165] and
the BotoX Xiaomi M365 Firmware Patcher [39]. These tools offer limited customizability as they
can only binary patch hardcoded and unsigned portions of the firmware.

Third-party researchers provided non-peer-reviewed blog posts about the BLE traffic ex-
changed by some Xiaomi e-scooters [46, 69, 142, 167]. These resources helped in the initial
stage of our work but failed short on the technical details and e-scooter coverage. For example,
some report confuses encryption with obfuscation, giving a false sense of security. Or none of
the reports cover the session downgrade command, and the flag responsible for it. This work
instead provides the first comprehensive and sound description and security evaluation of these
protocols.

Security Analysis of Xiaomi Ecosystems Xiaomi manages multiple ecosystems, including
e-scooters, smartphones, smart home devices, and fithess trackers. In [67], the authors root
a Xiaomi vacuum cleaning robot, inspect its internals, assess data privacy, and flash the robot
with custom firmware. Another previous work [190] also finds several security issues with Xiaomi
vacuum cleaners.

Several researchers [51, 200, 82, 103] highlight the limitations of the Xiaomi application-layer
protocols run over BLE by the Mi Band fitness trackers. These devices were found vulnerable
to eavesdropping, man-in-the-middle, and impersonation. Using a fuzzing approach, X. Du et
al. [73] find 95 vulnerabilities in the R1D Xiaomi router. Other Xiaomi loT devices evaluated in the
academic literature are Xiaomi smart speakers [128] and Xiaomi security cameras [194, 187].

BLE Misuse in Android Researchers identified multiple flaws in Android BLE APIs. For ex-
ample, Android saves Bluetooth keys in data structures shared among different apps [143, 182],
allowing malicious apps to communicate illegitimately with paired devices. In [186], V. Toubiana
et al. present a vulnerability, available from Android 6 to Android 11, that allows an Android app to
perform a BLE scan without requiring location permission. Android applications may also misuse
the BLE link-layer, allowing attackers to bypass encryption and authentication procedures [220].
In this paper, we focus on application-layer protocols instead and only utilize Android BLE APIs
in our remote threat model.

Attacks on BLE Pairing Several attacks over the years have targeted BLE link-layer pairing. In
2013, Crackle [162] broke the Just Works and Passkey modes of BLE Legacy pairing by brute-
forcing their temporary key. In 2019, the KNOB [17] attack minimized the entropy of the encryption
key in BLE Legacy pairing and Secure Connections, allowing for brute-force attacks on that key. In
2021, Method Confusion [197] performed a man-in-the-middle attack on BLE Secure Connections
by separately pairing two devices in two different pairing modes. Xiaomi e-scooters do not utilize
BLE link-layer pairing. Instead, we reverse-engineer and attack the proprietary Xiaomi Pairing
phase (and Session) at the application-layer.
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1.11 Conclusion

We present the first security evaluation of the proprietary security protocols employed by Xiaomi
to protect its e-scooter ecosystem since 2016. We uncover and reverse-engineer four protocols
using ad-hoc Pairing and Session mechanisms at the application-layer on top of an insecure BLE
link-layer. We describe their (lack of) security properties.

We show four novel attacks to exploit protocols at the specification level, requiring realistic
and low-cost attacker models (i.e., a proximity-based adversary with a laptop or remote attacker
who installed a malicious app on the victim’s smartphone). These attacks enable stealing a
software-locked and password-protected e-scooter from its owner or preventing the owner from
using the e-scooter via Mi Home. The threats pivot on MP and SD attack strategies and are
enabled by six severe root causes that we also uncover.

We open-source E-Spoofer, a toolkit implementing our attacks and offering RE utilities for
the Xiaomi e-scooter ecosystem (e.g., protocol dissectors, Ghidra scripts, and Frida hooks). We
successfully evaluate our attacks in eight relevant scenarios covering five e-scooter BLE subsys-
tems and eight BLE firmware. We empirically demonstrate that our attacks have a critical impact
on the Xiaomi ecosystem (e.g., all reversed protocols are affected by at least two of our four
attacks), amounting to millions of exploitable devices.

We propose two practical, low-cost, and backward-compliant countermeasures to stop our
attacks and release them in our toolkit. We propose Authorized Pairing Mode and Password-
Protected Authenticated Pairing to fix the MP attacks and a script to stop the SD attacks by
automatically patch the vulnerable e-scooter BLE firmware.

RE Methodology

We present the RE methodology that we employed to reconstruct the protocols described In
Section 1.5. This methodology can be reused by other researchers to tackle similar RE efforts
(e.g., reversing a proprietary and unknown application-layer protocol implemented on top of an
insecure BLE link-layer). Specifically, we explain how we analyzed the Xiaomi and BLE traffic,
the Mi Home app, and the scooter’s BLE firmware.

Xiaomi and BLE Traffic

The BLE e-scooter exposes a GATT server with unknown characteristics used to exchange the
proprietary P1, P2, P3, P4 payloads. We enumerate these characteristics with a GATT client
program (e.g., gatttool). The e-scooter utilizes a Xiaomi custom GATT service (0xFE95), and
its UPNP (0x0010) and AVDTP (0x0019) characteristics for Pairing and Session, and the Nordic
UART service for the encrypted communication during Session. Then, we run multiple Pairing
and Session phases using different combinations of e-scooter models, BLE subsystems, and
firmware. We capture the generated BLE traffic (HClI-layer, including GATT) in dedicated pcap
files. The pcap files are produced by our Android smartphone running Mi Home with Developer
Options, and HCI Snooplog turned on. We open the pcaps in Wireshark with custom display
filters to focus only on the proprietary application-layer payloads. We use Pyshark and Scapy to
reverse the Xiaomi payloads and develop custom dissection classes capable of decoding and re-
encoding the packets. For example, we developed the PairChal and SessRand classes to dissect
P4 Pairing and Session security mechanisms. Table tab:appendix-opcodes lists BLe packets from
P3 and P4 Pairing and Session phases.
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Table 1.4: BLE packets for the Xiaomi protocol P3 and P4. The first and second columns indicate
the name we assigned to the packet and the protocol which uses them. The third and fourth
columns specify who sends the packet and its content. The value "00X0” stands for an increasing
counter (i.e., 0010, 0020, 0030, 0040) placed in a fragmented packet.

Packet P From Content

SessReq P3 App 5AA5 OE 3D21 5D00 Serial
SessReqOk P3 Esc 5AA5 OE 213D 5D00 Serial
Comms P3 App, Esc 5AA5 Len From To Cmd Pay
PairReq P4  App A2000000

PairReqOk P4 Esc 000000000200

PairChal1 P4 Esc 0010 01000000 Chal2Part
PairChal2 P4 Esc 0020 Chal2Part

PairECStart P4 App, Esc 000000030400
PairPubKey P4 App, Esc 00X0 PubKey4Part

PairECEnd P4 App 000000000200
PairSol P4 App 00X0 PairSol2Part
PairSolAck P4 Esc 00000100

PairOk P4  App 13000000
PairOkAck P4 Esc 11000000
SessReq1 P4 App 24000000
SessReq2 P4 App 0000000B0100
SessRand P4 App, Esc 0100 AuthChal
SessAskRand P4 Esc 0000000C0200
SessSol P4 App, Esc 00X0 AuthSol2Part
SessOk P4 Esc 21000000

Comms P4 App, Esc 55AB Len Count Encr Cksm

Mi Home for Android

For Mi Home, we focused on its Android version because it is much easier to inspect and reverse
than its iOS counterpart. We locate the Mi Home APK with adbshellpmpathcom.xiaomi.sma
rthome. We pulled It with adb pull and extracted its content, including the decompiled Smali
and Java code, with apktool and jadx. We perform static analysis of the decompiled Java code,
looking for API calls to cryptographic primitives and Android’s BLE framework. In parallel, we
use Frida and Objection for dynamic binary instrumentation of Mi Home. Frida requires a rooted
phone and a Frida server application running on the phone. With our dynamic tests, we can list all
the Classes involved with Mi Home, isolate the ones related to P1, P2, P3, and P4, hook them to
observe their runtime execution, and reimplement some of their behaviors. For example, we found
that Mi Home, during Pairing, calls m_j.fyp.00000000 to perform ECDH, and, during Session,
calls m_j.fys.00000000 to perform the HMAC-based authentication and _m_j . fy1.00000000 to
encrypt communications.
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E-Scooter BLE Firmware

Reversing the e-scooter BLE firmware is challenging, as is a stripped binary with no debugging
symbols. We obtain multiple firmware samples from different sources, i.e., ScooterHacking repos-
itories, the Mi Home app storage, the Xiaomi backend, and by reading the BLE SoC memory at
runtime via the ST-Link debugger. We statically analyze the firmware using Ghidra configured for
ARM Cortex MO little-endian. We also configure the Ghidra memory layout using the nRF51822
Product Specification 3.4 [173] from Nordic Semiconductors. In particular, we consult the instruc-
tion table to retrieve the memory addresses for instantiating the peripherals such as the FICR_-
UICR, POWER, CLOCK, and GPIO. We also use the ST-Link debugger to inspect the firmware
at runtime using gdb, dumping its memory and flashing it with different BLE firmware versions.
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Chapter 2

BLUFFS: Bluetooth Forward and Future
Secrecy Attacks and Defenses

2.1 Abstract

Bluetooth is a pervasive technology for wireless communication. Billions of devices use it in
sensitive applications and to exchange private data. The security of Bluetooth depends on the
Bluetooth standard and its two security mechanisms: pairing and session establishment. No
prior work, including the standard itself, analyzed the future and forward secrecy guarantees of
these mechanisms, e.g., if Bluetooth pairing and session establishment defend past and future
sessions when the adversary compromises the current. To address this gap, we present six
novel attacks, defined as the BLUFFS attacks, breaking Bluetooth sessions’ forward and future
secrecy. Our attacks enable device impersonation and machine-in-the-middle across sessions
by only compromising one session key. The attacks exploit two novel vulnerabilities that we
uncover in the Bluetooth standard related to unilateral and repeatable session key derivation. As
the attacks affect Bluetooth at the architectural level, they are effective regardless of the victim’s
hardware and software details (e.g., chip, stack, version, and security mode).

We also release BLUFFS, a low-cost toolkit to perform and automatically check the effec-
tiveness of our attacks. The toolkit employs seven original patches to manipulate and monitor
Bluetooth session key derivation by dynamically patching a closed-source Bluetooth firmware
that we reverse-engineered. We show that our attacks have a critical and large-scale impact on
the Bluetooth ecosystem, by evaluating them on seventeen diverse Bluetooth chips (eighteen de-
vices) from popular hardware and software vendors and supporting the most popular Bluetooth
versions. Motivated by our empirical findings, we develop and successfully test an enhanced key
derivation function for Bluetooth that stops by-design our six attacks and their four root causes.
We show how to effectively integrate our fix into the Bluetooth standard and discuss alternative
implementation-level mitigations. We responsibly disclosed our contributions to the Bluetooth
SIG.

2.2 Introduction

Bluetooth is a pervasive technology for low-power wireless communication [35, 34, 32]. It pro-
vides two transports: Bluetooth Classic for high throughput and connection-oriented use cases
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and Bluetooth Low Energy (BLE) for connectionless and low throughput scenarios. This paper
focuses on Bluetooth Classic, from now indicated as Bluetooth. As billions of devices, such
as smartphones, laptops, speakers, headsets, and tablets, daily employ Bluetooth to exchange
sensitive data and commands, Bluetooth must provide strong security and privacy guarantees,
including confidentiality, integrity and authenticity.

Bluetooth’s security and privacy depend on pairing and session establishment, two mech-
anisms specified in the Bluetooth standard (v5.3) [33]. Devices use pairing to agree upon a
long-term secret called the pairing key. Pairing involves user interaction, such as pressing a
button or confirming a numeric value on the screen. Paired devices use session establishment
to create encrypted and integrity-protected connections, each protected by a fresh session key
derived from the (static) pairing key and runtime parameters (key diversifiers). Session estab-
lishment, unlike pairing, does not require user interaction. These two mechanisms have two
security modes: (i) Legacy Secure Connections (LSC) using legacy cryptographic primitives and
procedures, (ii) Secure Connections (SC) employing FIPS-compliant ones, such as ECDH, AES-
CCM. Pairing and session establishment are critical attack surfaces as if they are vulnerable,
an adversary can exploit such vulnerability on any (standard-compliant) Bluetooth device. This
critical risk motivated extensive research on pairing [16, 198, 28, 184, 98, 129, 107] and session
establishment [18, 14] (see Section 2.10 for more works).

But, no prior work has investigated Bluetooth’s forward and future secrecy guarantees and
their relation with pairing and session establishment. Forward and future secrecy, which enable
to defend past and future messages from key compromise attacks, are not even discussed by the
Bluetooth standard. We extrapolated these properties via a careful analysis of the standard. We
inferred that Bluetooth should provide forward and future secrecy among sessions if the pairing
key stays secret. Hence, an attacker compromising the current session key should not be able to
decrypt data from past (i.e., forward secrecy) and future sessions (i.e., future secrecy). Then we
questioned this assumption and uncovered that, instead, sessions’ forward and future secrecy
can be broken by stealthily attacking session key derivation at the protocol level, without knowing
the pairing key or triggering a new (suspicious) pairing event.

Specifically, we present the BLUFFS attacks, six novel attacks breaking Bluetooth’s forward
and future secrecy by targeting session establishment. The attacks exploit an attack strategy
forcing LSC session establishment and manipulating in novel ways its key derivation to reuse a
key known to the attacker across sessions. The attacker first installs a weak session key, then
spends some time brute-forcing it, and reuses it to impersonate or machine-in-the-middle (MitM)
a victim in subsequent sessions (breaking future secrecy) and decrypt data from past sessions
(breaking forward secrecy). We decline the attack strategy in six attack scenarios related to the
victim’s connection role (i.e., initiator or responder) and Bluetooth security mode (i.e., LSC or SC).
Moreover, we detail the four attacks’ root causes, two of which uncover that the standard allows
to unilaterally derive session keys without relying on nonces.

We develop the BLUFFS toolkit to perform and detect the BLUFFS attacks automatically and
with low effort. The toolkit provides an attack device module requiring open-source software, a
Linux laptop, and a Cypress/Infineon CYW20819 board [108]. We provide seven new patches
for the board’s closed-source firmware enabling monitoring and tampering with Bluetooth session
key derivation. Moreover, our attack checker module cleverly parses and analyzes session estab-
lishment messages, aka Link Manager Protocol (LMP) packets from a pcap file to automatically
compute session keys and detect our attacks.

We demonstrate that the BLUFFS attacks are effective on a large scale by evaluating eigh-
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teen devices embedding seventeen unique Bluetooth chips. We successfully exploited a broad
set of devices (e.g., laptops, smartphones, headsets, and speakers), operating systems (e.g.,
iOS, Android, Linux, Windows, and proprietary OSes), Bluetooth stacks (e.g., BlueZ, Gabel-
dorsche, Bluedroid, and proprietary ones), vendors (e.g., Intel, Broadcom, Cypress, Cambridge
Silicon Radio, Infineon, Bestechnic, Apple, Murata, Universal Scientific Industrial, Samsung, Dell,
Google, Bose, Logitech, Xiaomi, Lenovo, Jaybird, and Qualcomm), and Bluetooth versions (e.g.,
5.2,5.1,5.0,4.2, and 4.1).

Motivated by our evaluation results, we propose an enhanced Bluetooth session key deriva-
tion function that stops by-design our attacks and their root causes. Our countermeasure is
backward compatible with the Bluetooth standard and adds minimal overheads. Specifically, it
reuses standard-compliant crypto primitives (i.e., e; and e3) and link-layer functions (i.e., LMP
commands). It requires forty-eight (48) extra bytes over the air and three extra function calls. We
successfully test the fix against the BLUFFS attacks at the protocol level and release the fix in
our toolkit. We also discuss implementation-specific mitigations that vendors can use to mitigate
some BLUFFS attacks.

We summarize our contributions as follows:

» We study Bluetooth’s forward and future secrecy guarantees, two essential properties cur-
rently not discussed by prior work and the Bluetooth standard. We show six novel attacks,
named BLUFFS attacks, breaking these properties by exploiting Bluetooth’s session key
derivation. The threats enable device impersonation and MitM across sessions by only
compromising one session key. They do not require user interaction or compromise Blue-
tooth pairing (keys). The attacks are specification-compliant as they target protocol-level
weaknesses in the Bluetooth standard. We discuss the four attacks’ root causes, two of
which are novel for Bluetooth and affect session key derivation. We also explain how the
attacks extend the state-of-the-art, including the KNOB and BIAS attacks [18, 14].

» We release BLUFFS, a low-cost and reproducible toolkit to perform and automatically check
our attacks. The toolkit’s attack device enables manipulation and monitoring of Bluetooth
session key derivation. The toolkit’s aftack checker uses a novel LMP parsing and analysis
strategy to detect our attacks from a pcap file automatically. Our toolkit complements and
extends the state of the art of Bluetooth security testing, such as [171, 63, 62].

+ We tested the six BLUFFS attacks on eighteen devices embedding seventeen different
Bluetooth chips from popular hardware and software vendors. The attacks are successful
against all six LSC chips with one exception and against all eleven SC chips when the
impersonated victim is an LSC device. If both victims support SC, the attacks are effective
on two out of eleven victims. From our empirical result we conclude that the BLUFFS
attacks are practical and a critical risk for the Bluetooth ecosystem, and should be fixed
with high priority.

» We design a backward-compliant Bluetooth session key derivation function based on fresh,
authenticated, and mutual key derivation. Our function stops the six BLUFFS attacks and
addresses their four root causes at the protocol level. We show how to integrate our coun-
termeasure into the Bluetooth standard with minimal overhead (e.g., three LMP packets
and three function calls). We also present our successful evaluation of the fix against our
attacks at the protocol level and release it as part of our BLUFFS toolkit.
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Responsible disclosure We responsibly disclosed our findings and toolkit to the Bluetooth
Special Interest Group (SIG) [36] in October 2022. The Bluetooth SIG acknowledged our find-
ings, coordinated the disclosure with the affected vendors, and reserved CVE-2023-24023 for our
report. We also reached out to Google, Intel, Apple, Qualcomm, and Logitech. Google scored
our report with high severity, awarded us a bounty, and is working on a fix. Intel did the same
but scored the report with medium severity. Apple and Logitech acknowledged the report and are
working on fixes. Qualcomm has not replied yet.

Availability The toolkit to test the BLUFFS attack is available at https://github.com/franc
ozappa/bluffs.

2.3 Preliminaries

We present the required Bluetooth preliminaries and our extrapolation of Bluetooth’s forward and
future secrecy guarantees from the Bluetooth standard.

2.3.1 Bluetooth

Bluetooth is the de-facto standard technology for low-power and reliable wireless communication
and has an open specification (v 5.3) [33]. It was born as a cable-replacement wireless protocol
for the unlicensed 2.4 GHz ISM (Industrial, Scientific and Medical) band, and evolved to address
various use cases requiring high-throughput and persistent connections. For example, it sup-
ports wireless audio streaming, file transfer, hands-free services, peer-to-peer connections, and
Internet bridging. Bluetooth packets should be protected against relevant attacks, such as device
spoofing and MitM, as it transports sensitive data and commands.

The Bluetooth stack loosely follows the Open Systems Interconnection (OSI) model. At the
physical layer, it employs synchronized frequency hopping and time division multiple access. The
link layer uses a star topology managed by the link manager protocol (LMP). The link layer con-
nection initiator is known as Central, while the responder is called Peripheral. These two roles
can be switched dynamically during connection establishment or while a connection is ongoing.
Bluetooth uses a six-byte, unique, and static address to identify a device at the link layer. A Blue-
tooth address does not contain secret information and is obtained with an inquiry procedure. At
the application layer, Bluetooth provides several profiles, such as the advanced audio distribution
(A2DP) profile. The Bluetooth Controller manages the physical and link layers, while the Blue-
tooth Host takes care of the upper layers. The Host and the Controller communicate via the Host
Controller Interface (HCI), a protocol based on commands and events.

The Bluetooth standard specifies link-layer security mechanisms, providing confidentiality,
integrity, and authenticity to upper layers, including all Bluetooth profiles. Pairing allows devices to
establish a long-term pairing key (P K). The standard defines such a procedure as Secure Simple
Pairing (SSP) [33, p. 268]. Session establishment enables paired devices to establish a secure
session using a fresh session key (SK). SK is derived from PK and constant and variable
inputs. The standard includes two security modes affecting pairing and session establishment:
LSC, which employs legacy security mechanisms for backward-compliance reasons (e.g., Ey and
SAFER+), and SC that uses FIPS-compliant ones (e.g., ECDH, AES-CCM, and HMAC).
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Figure 2.1: Bluetooth LSC session establishment. The values in blue are used to compute a
fresh SK. PK and BApg are constant, while AC's, SE 4, and SD 4 are variable. In this example,
Alice (i.e., the Central) controls SK derivation as she provides all the variable SK derivation
inputs.

2.3.2 Bluetooth Forward and Future Secrecy

Despite their critical associated risks, Bluetooth’s forward and future (i.e., backward) secrecy
guarantees are unexplored. By compromising forward (future) secrecy, the attacker could break
the confidentiality of past (future) sessions. However, we do not know if these attacks and vulner-
abilities exist as the Bluetooth standard neither covers nor define forward and future secrecy, and
no prior research investigated them. In this work, we address this crucial gap.

We examined pairing and session establishment from the standard and extracted their for-
ward and future secrecy guarantees. Bluetooth should provide forward and future secrecy across
sessions until PK or the SK key derivation function (KDF) are not compromised. Specifically,
an attacker compromising the current S K cannot target past and future sessions because each
session employs a fresh (i.e., different) SK derived from PK and variable key diversifiers. So it
is crucial that PK stays secret and that S K is properly derived. Nevertheless, no prior work eval-
uated the strength of SK derivation and the existence of related (practical and impactful) attack
scenarios.

Now we describe LSC session establishment, including its key derivation phase, as is the
target of our work. We assume that Alice (Central with address BA4) and Bob (Peripheral with
address BApg) are paired and share PK. As shown in Figure 2.1, LSC session establishment
starts with two messages where Alice and Bob identify themselves and negotiate LSC. Then,
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Alice asks Bob to authenticate PK by sending a challenge AC,. Bob sends back C'Rp, a
response computed from PK and AC'4, and Alice checks that C'Rg equals the response she
computed locally. Then, Alice sends SFE 4, an SK entropy proposal between 16 and 7 bytes, and
Bob can accept it (as in Figure 2.1) or propose a lower value to be accepted by Alice. Once SK
entropy negotiation is completed, Alice sends to Bob SD,, a session key diversifier, and Bob
acknowledges it. Finally, the devices use K D F s to derive SK from variable (AC 4, SE 4, SD 4)
and constant inputs (PK, BAg).

KDFpsc is the LSC key derivation function specified in the standard and is defined as a
system of three equations [33, p. 267]:

COF = e;(PK, AC, BAp) (2.1a)
ISK = e3(PK,SD4,COF) (2.1b)
SK = e,(ISK,SE) (2.1c)

Using Equation 1a, the devices compute a ciphering offset number (COF’) from the pairing key,
Alice’s authentication challenge and Bob’s Bluetooth address. The computation uses the e, au-
thentication function [33, p. 975], which is based on the SAFER+ block cipher [136]. Then, an in-
termediate session key (/.5 K) is computed via Equation 1b, using the pairing key, Alice’s session
key diversifier, and COF. The second computation employs the e; key generation function [33,
p. 981]. Finally, Alice and Bob derive SK by reducing the entropy of 1.5 K according to SFE4 with
the e, function as shown in Equation 1c. The reduction function relies on on modular arithmetic
over polynomials in the finite Galois field [27].

2.4 Threat Model

Here we present the paper’s system and attacker models and our notation.

2.4.1 System Model

Our system model considers a scenario where Alice and Bob (i.e., the victims) want to communi-
cate securely using Bluetooth. Alice and Bob represent arbitrary devices (e.g., laptops, headsets,
and smartphones) and can employ any Bluetooth profile (e.g., audio, hands-free, and Internet
bridge). We assume the victims have already paired using their strongest security capabilities
(e.g., SSP and SC).

The paired victims establish secure connections using Bluetooth’s session establishment.
Alice is the Central (initiator) and Bob the Peripheral (responder), unless stated otherwise. As
discussed in Section 2.3.2, if an attacker compromises the current S K, she should be unable to
compromise past and future sessions (i.e., break forward and future session secrecy), as each
session employs a fresh (i.e., different) SK.

2.4.2 Attacker Model

Our attacker model considers Charlie, a proximity-based attacker in Bluetooth range with the
victim(s). The attacker can capture Bluetooth packets in plaintext (e.g., authentication challenges,
key diversifiers, and negotiated entropy values) and ciphertext (e.g., encrypted audio, files, or
internet traffic). Charlie knows the victim’s Bluetooth address, can craft (standard-compliant)
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Bluetooth packets, and negotiate arbitrary capabilities. Charlie cannot compromise PK, does
not observe the victims while they are pairing, and does not trigger new pairing events. She
cannot tamper with the victims’ devices, including their hardware and software components. The
attacker can downgrade the entropy of SK to the lowest value supported by a victim (e.g., 1 byte
for devices not patched against the KNOB attack or 7 bytes) and brute force SK. We do not
assume a specific brute-force effort to cover attackers with different capabilities and resources
(e.g., motivated and average attackers).

Charlie wants to break the forward and future secrecy of Alice and Bob’ sessions. For ex-
ample, she would like to impersonate Alice to Bob, Bob to Alice, or MitM them across sessions
to decrypt past messages (i.e., breaking forward secrecy) and decrypt or inject future ones (i.e.,
compromising future secrecy). These goals are novel as the state-of-the-art assumes an adver-
sary targeting the current session (e.g., KNOB [18] and BIAS [14]). Moreover, the attacker would
like to exploit any Bluetooth device, regardless of its Bluetooth capabilities (e.g., chip, version,
software stack, security mode, and supported profiles).

2.4.3 Notation

In the paper, we use the following notation. We indicate a Bluetooth address as B A, an authenti-
cation challenge as AC' (AU_RAND in the standard), a challenge-response as C'R (SRES in the
standard), a session key as SK (K¢’ in the standard), a pairing key as PK (LK in the standard),
a session key entropy proposal as SE and a session key diversifier as SD (EN_RAND in the
standard). We abbreviate a key derivation function with K DF. We use A, B, and C subscripts to
indicate Alice, Bob, (the victims) and Charlie (the attacker).

2.5 BLUFFS Attacks

In this section, we describe the BLUFFS attacks, six new threats breaking Bluetooth’s forward and
future secrecy and enabling impersonation and MitM attacks across sessions. We also present
the four attacks’ root causes related to SK derivation during session establishment and explain
why our attacks extend the state of the art (e.g., KNOB [18] and BIAS [14]). Please refer to
Section 2.3 for the attacks’ preliminary and Section 2.4 for their threat model.

2.5.1 Attack Description

Strategy The BLUFFS attacks take advantage of a novel attack strategy, enabling Charlie to
reuse a weak session key (S/¢) across sessions to spoof or MitM arbitrary victims (e.g., LSC
and SC Centrals and Peripherals). We now describe such a strategy in an impersonation attack
setup with the help of Figure 2.2. Charlie presents to Bob using Alice’s Bluetooth address (B A 4)
obtained using Bluetooth inquiry procedures or de-anonymization attacks such as [60]. She
negotiates LSC mode (LSC) to force LSC session establishment (and key derivation), whether
Bob supports LSC or SC. If Charlie is a Peripheral, she switches to the Central role to lead
session establishment, including S K derivation. As a consequence, Charlie can target Bob as a
Central (initiator) or a Peripheral (responder).

Next, Charlie forces a fixed and weak session key (S K ) by cleverly negotiating her session
key derivation parameters. Specifically, she sends a constant authentication challenge (AC()
and ignores Bob’s response (C'R¢). She proposes the lowest session key entropy value (S E¢) to
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Figure 2.2: BLUFFS attacks strategy. Charlie approaches Alice as Bob negotiates LSC regard-
less of the security mode supported by Bob, and, if she is a Peripheral, switches to the Central
role. Then, during LSC key derivation, she proposes constant values (AC¢, SEq, SD¢) to force
the derivation of a fixed session key (S /K ). Charlie employs this strategy while impersonating
(or MitMing) Alice and Bob to reuse S K across sessions.

(re)establish a weak key and a constant session key diversifier SD.. As a result, Bob (re)derives
S K¢ by using K D Fpgc with constant inputs, i.e., PK, BAg, ACo, SE-,and SD¢. For example,
Charlie can set AC~ and SDq equal to zero, and SFE- equal to one (SK~ has one byte of
entropy).

We employ our attack strategy in six attacks covering all combinations of impersonation and
MitM attacks across sessions (i.e., targeting SC and LSC Centrals and Peripherals). As shown
in the following enumeration, the attacker can spoof a LSC Central or Peripheral to a LSC or SC
victim (i.e., A1, A2), impersonate a SC Central or Peripheral to a LSC or SC victim (i.e., A4, A5),
or MitM a session where one victim supports LSC or both victims support SC (i.e., A3, A6).

A1: Spoofing a LSC Central to a victim Peripheral
A2: Spoofing a LSC Peripheral to a victim Central
A3: MitM session where one victim supports LSC
A4: Spoofing a SC Central to a victim Peripheral
A5: Spoofing a SC Peripheral to a victim Central
A6: MitM session where the victims support SC

The BLUFFS attacks break Bluetooth’s session forward and future without compromising
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Figure 2.3: BLUFFS attacks timeline. The attacker forces S K at time ¢; via a MitM attack (A3 or
A6) and sniffs the messages exchanged by the victims. She compromises (brute forces) S K. at
time ¢, and breaks forward secrecy by decrypting past traffic since ¢;. She reuses S K at time t3
to impersonate or MitM a victim (A1, A2, A3, A4, A5, or A6) and compromises future secrecy.

prior (strong) SK's negotiated by the victims. We consider forward (future) secrecy broken if
Charlie compromises past (future) sessions once S /K is brute-forced (i.e., compromised). As
shown by the timeline in Figure 2.3, the attacker at time ¢; mounts a MitM attack forcing S /< (A3
or AB), captures the traffic on the current and subsequent sessions, and starts brute forcing S /K.
At t, > t; she brute forces (compromises) S K~ and decrypts all past messages exchanged since
t, violating forward secrecy. At t3 > t, she reuses S K to impersonate or MitM Alice and Bob
across the next sessions (A1-A6). Hence, she breaks future secrecy by violating the sessions’
confidentiality, integrity, and authenticity from ¢, onwards.

Brute force setup and effort Charlie brute forces SK - employing an offline and paralleliz-
able setup similar to [18]. She tests offline multiple session keys against one or more sniffed
ciphertexts using known Bluetooth packet fields as oracles (e.g., L2ZCAP and RFCOMM head-
ers decrypting to known constants). The attacker’s brute force effort is proportional to SE (i.e.,
SK’s entropy). However, it does not depend on the number of targeted sessions as it should
with proper forward and future secrecy mechanisms. If S E¢ is one, the brute force effort is neg-
ligible, i.e., 128 trials on average within a key space of 256 elements. Otherwise, if it is seven,
the attacker requires 2°° trials on average within a key space of 2°¢ elements. Based on prior
work breaking symmetric cryptosystems with seven bytes of entropy, such as the data encryption
standard (DES) [75, 122], we estimate a moderate effort for a low-cost attacker using commer-
cial equipment (e.g., one to several weeks) and a low effort for a decently funded attacker using
distributed computing or optimized hardware (e.g., one to several days).

Impact The BLUFFS attacks have a severe impact on Bluetooth’s security and privacy. They
allow decrypting (sensitive) traffic and injecting authorized messages across sessions by re-using
a single session key. Prior attacks require leaking PK or brute-forcing one S K per target session
to achieve a similar impact. Our attacks can target any Bluetooth device, regardless of its role,
security mode, and supported Bluetooth profiles, as they rely on flaws in the standard (detailed
next in Section 2.5.2). Moreover, the attacks are stealthy since they exploit the Bluetooth firmware
(Controller) without requiring user interaction and triggering notifications to the user. Finally, the
attacks do not require specialized and expensive equipment, as demonstrated by our imple-
mentation in Section 2.6, and have a widespread impact, as empirically shown in Section 2.7.
Motivated by the impact of the attacks, in Section 2.8, we present a practical design-level fix that
we recommend integrating into the Bluetooth standard and discuss other implementation-level
mitigations.
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2.5.2 Attacks Root Causes

The BLUFFS attacks’ root causes are four architectural vulnerabilities in the specification of Blue-
tooth session establishment (i.e., RC1, RC2, RC3, and RC4) [33]. RC1 and RC2 are novel as
they are the first targeting SK derivation and allowing to derive the same SK across sessions
(breaking their forward and future secrecy). While RC3 and RC4 have been exploited to attack
other session establishment phases. For instance, the BIAS attacks [14] employ RC3 and RC4
to bypass P K authentication, while the KNOB attacks [18] take advantage of them to downgrade
the entropy of SK.

RC1: LSC SK diversification is unilateral (new) The LSC SKDF introduced in Section 2.3
and depicted in Figure 2.1 derives a SK using static inputs (i.e., PK, BA) and variable ones
(i.e., AC', SE, SD). The variable inputs diversify SK's across sessions. One would expect that
both the Central and the Peripheral would contribute to S K diversification. However, the standard
allows the Central to set all the SK diversification values. Hence, an attacker impersonating a
Central (or role switching to a Central when impersonating a Peripheral) can unilaterally drive S K
diversification (across sessions). We note that the Peripheral’s Bluetooth address is unusable as
a variable input because Bluetooth (Classic) does not support randomized link-layer addresses.

RC2: LSC SK diversification does not use nonces (new) SK is diversified using random
numbers (AC'[33, p. 625] and S D [33, p. 637]) and a positive integer (SE in [33, p. 962]). As none
of them is a nonce, they can be reused in past, present, and future sessions without violating the
standard. Hence, an attacker who knows a triplet (AC, SE¢, SD¢) and the corresponding S K¢,
can force the victims to derive the same attacker-controlled session key across sessions.

RC3: LSC SK diversifiers are not integrity protected The variable inputs exchanged during
SK derivation are sent without integrity protection. As a result, an attacker who is spoofing a
device or performing MitM on a session can manipulate AC, SE, and S D, without being detected.

RC4: Downgrading SC to LSC does not require authentication The negotiation of SC or
LSC is not integrity protected. Hence, an attacker can always downgrade a session to LSC, re-
gardless of SC support from the victim, and trigger LSC key negotiation and K D F; s (presented
in Figure 2.1).

Root causes and attacks Table 2.1 shows how the six BLUFFS attack presented in Sec-
tion 2.5.1 map to RC1, RC2, RC3, and RC4. All attacks take advantage of RC1, RC2, and RC3
as they unilaterally derive a constant session key without using a nonce and manipulating the
integrity of the session key diversifiers. RC4 is exploited by the three BLUFFS attacks targeting
SC to downgrade a session to LSC. We also note that no prior research (and attack) discovered
RC1 and RC2.

2.5.3 Comparison with KNOB and BIAS

The KNOB+BIAS attack chain is considered the most effective way to impersonate Bluetooth de-
vices during session establishment. The attacker employs BIAS to bypass P K’s authentication,

ORSHIN D5.1 PU Page 37 of 121



D5.1 - Report about Essential and Beyond Essential S&P Guarantees for * N
Inter-device Communication in Restricted Environments

Table 2.1: Mapping the six BLUFFS attacks to their four root causes. Cl and PI stands for Central
Impersonation and Peripheral Impersonation.

BLUFFS attack RC1 RC2 RC3 RC4

A1: Spoofing a LSC Central
A2: Spoofing a LSC Peripheral
A3: MitM LSC victims

A4: Spoofing a SC Central

A5: Spoofing a SC Peripheral
A6: MitM SC victims

NN NN RN
NN N RN
NN NN RN
AN X X X

then KNOB to downgrade the entropy of SK. The BLUFFS attacks share the same goals but em-
ploy different steps (e.g., attacking S K derivation) that are chainable with the BIAS and KNOB
ones.

However, unlike the BLUFFS attacks, the KNOB+BIAS chain does not compromise forward
and future secrecy as it is effective within the current session. More generally, no prior re-
search investigated the existence of vulnerabilities and attacks on session establishment per-
sisting across sessions (i.e., no research on Bluetooth sessions’ forward and future secrecy).
Our work fills this research gap by presenting the first key-reuse attacks for Bluetooth.

The BLUFFS attacks are successful even if we fix the role-switching and SC session down-
grade vulnerabilities discussed in the BIAS paper. The attacker can reuse S/ against any LSC
device while impersonating an LSC Central (A1). In particular, the attacker legitimately negoti-
ates LSC, ACq, SEq, SD¢ and is not required to authenticate P K. Moreover, devices patched
against the KNOB attacks are still vulnerable to the BLUFFS attacks, as they accept S £ equal
to seven.

We enable attack scenarios, which are too costly for KNOB+BIAS. For instance, if we target
N, sessions, our attacks’ cost does not increase with N, as we brute force one session key. While
the KNOB+BIAS cost is significantly higher as it linearly increases with N,. The cost difference
is even more compelling if a victim supports entropy values (SFE) higher than seven bytes. To
give an intuition about the cost difference, if we assume that brute forcing a S K with seven bytes
of entropy takes one week (keyspace is 2°%), and a SK with sixteen bytes of entropy takes one
thousand years (keyspace is 2'2%); then our attacks cost one week against seven bytes of entropy
and one thousand years against sixteen bytes of entropy, while KNOB+BIAS costs N, weeks and
N, thousand years.

As a result of our investigation, we formulate and empirically answer new and valuable re-
search questions not addressed by KNOB and BIAS (and any other prior work). For example, we
reveal the forward and future secrecy guarantees provided by the Bluetooth standard, their archi-
tectural vulnerabilities, how to exploit these vulnerabilities with practical and low-cost attacks, the
attacks’ effectiveness on actual devices from different hardware and software providers, and how
to fix or mitigate the attacks (and their root causes).
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2.6 Implementation

We now describe the implementation of our BLUFFS toolkit to perform and check the BLUFFS
attacks presented in Section 2.5. The toolkit has two modules: an attack device and an attack
checker and extends state-of-the-art tools for Bluetooth security research, such as internal-
blue [171] and the BIAS and KNOB toolkits [63, 62], with novel and useful features. For example,
we unlock the possibility to dynamically manipulate Bluetooth’s key derivation parameters and
monitor SK across sessions, and automatically detect our attacks from a pcap file.

Our toolkit is low-cost as it uses open-source software (e.g., Python and Wireshark) and
cheap hardware (e.g., a Linux laptop and a Cypress CYW20819 development board). lts tech-
nical details are relevant for reproducing, checking, and extending our experimental setup and
results (shown in Section 2.7).

2.6.1 Attack device module

Architecture Our attack device consists of a Linux laptop connected via USB to a CYW20819
board from Cypress/Infineon. Its initialization setup is the same as the one described in the BIAS
repository [63]. In summary, to access link-layer traffic from the laptop’s HCI interface, we activate
LMP redirection from the board with a vendor-specific command and patch the laptop’s Linux ker-
nel to parse the LMP packets. Moreover, we patch the board’s firmware using a proprietary binary
instrumentation feature from Cypress. Patching the firmware (Bluetooth Controller) is essential
to manipulate Bluetooth key derivation. The board’s patching is facilitated by Internalblue [135],
which provides high-level Python APls to patch the board (i.e., patchRom) and read and write its
RAM (i.e., readMem and writeMem).

The CYW20819’s vendor-specific patching mechanism is quite complex but clever. First, the
unpatched firmware, stored in read-only memory (ROM), receives the Download Minidriver
command from our laptop (Bluetooth Host) and stops its execution. Then, the laptop sends a
Write RAM command to write in RAM the addresses to be modified in ROM. Finally, the laptop
runs the Launch RAM command to register the patches in RAM and resume execution. Hence,
anytime the firmware CPU fetches an address in ROM that should be patched, the control flow is
redirected to the patch in RAM. For more information about this mechanism, refer to [113].

Firmware patches We developed seven new patches for the attack device Bluetooth firmware.
The patches, summarized in Table 2.2, allow performing the six BLUFFS attacks presented in
Section 2.5. The table’s first and second columns indicate the patch name and description, while
the last two show the patched firmware function and its ROM address.

Our patches unlock useful security testing capabilities for Bluetooth. The three man_* patches
manipulate AC, CR, and SD, and enable negotiating constant SK diversifiers as in Figure 2.2,
and failing session establishment when the attacker has to authenticate a PK. The three rea_*
patches monitor SK'’s value which is otherwise hidden to the HCI and LMP layers. The rs_nop
patch allows to successfully attack devices asking to role switch to Central regardless of the
attacker’s role switch strategy. This patch is valuable as it extends the effectiveness of our attacks
(and the BIAS+KNOB chain) to a new class of devices. We reuse the patches from the BIAS
toolkit [63] to negotiate SE = 7 for the KNOB attack and avoid P K authentication. We also coded
a high-level patching function to ease the development of new patches (see device/patch.pyin
our anonymized repository).
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Table 2.2: Seven novel patches for the CYW20819 Bluetooth firmware to perform the BLUFFS
attacks. The third and fourth columns indicate the patched firmware function and its address in
ROM.

Name Description Patched function Addr

man_ac  Manip. AC txAuRand AEB8C
man_cr  Manip. LSC CR  txSres AEDCS
man_sd  Manip. SD txStartEncryptReq AE4B4

rea_sk Read SK value  txStartEncryptReq AE5B4
rea_skec Read Central SE  txStartEncryptReq AE5B4
rea_skep Read Perip. SE  procStartEncryptReq AE70C
rs_nop No Perip. role sw. handleLmpSwitchReq  A643C

We developed the patches in Table 2.2 by reverse-engineering (RE) unknown portions of the
CYW20819 Bluetooth firmware. In particular, we used Ghidra [192] loaded with the firmware
symbols leaked from a Cypress SDK as described in [135]. As we wrote the patches in ARM
Thumb-2 assembly, they contain 2-byte and 4-byte instructions aligned to 4-byte boundaries, and
the code branches to odd addresses [20]. Currently, to comply with responsible disclosure, we
are releasing man _cr.s, rea_sk.s, and rs_nop.s.

Listing 2.1 shows our rs_nop patch to refuse Peripheral’s role switch requests. Whenever the
firmware program counter hits 0xA643C inside handleLmpSwitchReq in ROM, the firmware code
jumps to our patch in RAM. The patch passes a zero as isMssInstantPassed’s second param-
eter by zeroing r1. Then, it calls (i.e., branch and link) isMssInstantPassed and overwrites the
routine’s return value to True by setting r0 to one. As a side effect, the attack device firmware
thinks that the MSS (Minimum Subevent Space) interval has passed and rejects the correspon-
dent role switch request. Notably, such rejection is compliant with the standard. Finally, the patch
unconditionally jumps back to the next valid ROM instruction in Thumb-2 mode (i.e., branch to an
odd address). This patch enables exploitation of a new class of devices, such as victims trying to
(defensively) role switch to the Central role during session establishment. For example, we can
exploit iPhone 12 and 13 by rejecting their role switch requests during session establishment.

2.6.2 Attack checker module

Our attack checker enables new capabilities for Bluetooth static analysis. In particular, given a
pcap file containing LMP packets, it automatically isolates Bluetooth sessions, computes session
keys, and detects the BLUFFS attacks. We release it as part of our BLUFFS toolkit in the checker
folder. The checker is written in Python 3 and leverages capable and available tools, such as
wireshark/tshark [204] and pyshark [72]. It requires H4 and LMP dissectors for Wireshark
v3.6+ [172] or older versions [66]. We now describe the checker’'s parser, kdf, and analyzer
components.

Parser The parser uses pyshark to extract relevant LMP packets from a pcap file. It supports
nine LMP packet types as shown in Table 2.3. Specifically, it parses LMP_host_connection req
and LMP_detach packets, which indicate when a session starts and ends. It processes entropy
negotiation values (S E) from LMP_encryption_key_size_req and related LMP_accepted packets.
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Table 2.3: Nine LMP packets supported by our parser.

LMP packet Opcode Description
LMP_host_connection_req 51 Start a session
LMP_detach 7 Abort a session
LMP_encryption key_size req 16 Propose SE
LMP _accepted (SFE) 3(16) Confirm SE
LMP_au rand 11 Send AC
LMP_sres 12 Send CR
LMP_start_encryption_req 17 Send SD

LMP _accepted (SD) 3(17) Accept SD

LMP not_accepted (AC) 4 (11) Reject AC

The parser also manages authentication challenges (AC) and responses (C'R) from LMP_au_-
rand and LMP_sres packets and detects when AC' is not accepted by monitoring the relevant
LMP not_accepted packet. Moreover, it deals with session key diversifies (S D) by parsing LMP_-
start_encryption_req and consequent LMP_accepted packets.

The parser’s implementation is at device/parser.py and follows an object-oriented design.
An LmpBase parent class, shown in Listing 2.2, parses relevant fields shared by all LMP pack-
ets. For example, it stores the LMP packet number (number), transaction initiator (tinit), and
opcodes (op, op_ext). Specialized classes, extending LmpBase, manage specific LMP opcodes.
For instance, LmpAuRand, presented in Listing 2.3, deals with LMP_au_rand packets and extracts
AC' as an hexstring and a bytearray (aurand and aurand ba). We developed other eight special-
ized LMP classes, see parser.py for more details.

Kdf The kdf module implements the LSC key derivation function presented in Section 2.3 as
shown in Listing 2.4. This functionality is needed to compute and check SK's across sessions
automatically. In particular, kdf .py computes SK (as in Equation 2.1) by using el.py, e3.py
and es.py and their related cryptographic primitives (such as h.py). We provide the kdf code
in the toolkit’s device folder, and we note that it extends [63, 62] by providing the full LSC key
derivation chain. Our code is sound as is tested against the vectors in the Bluetooth standard [33,
p. 921] and actual values extracted during our experiments. The kdf test suite can be run with
make tests.

Analyzer The analyzer module is implemented in checker/analyzer.py and automatically de-
tects the BLUFFS attacks presented in Section 2.5. It builds on top of the parser and kdf modules
presented earlier. The analyzer employs the gen_analysis function, shown in Listing 2.5, that
takes as inputs a pcap file, a PK, and the Bluetooth address of the victim (Peripheral). Then
it calls gen_sessions to extract from the pcap a list of LMP sessions (sessions). Then, for
each session, it calls the gen_report function that computes SK from SE, SD, and AC and
stores the reports in a list (reports). Finally, for each report gen_analysis checks if SK¢ is
reused across sessions (assert report["sk"] == EXP_SK). This automation speeded up our
large-scale evaluation reported in Section 2.7.

To demonstrate that our module is practical, we provide the material to reproduce our anal-
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ysis of the Pixel Buds A-Series earbuds. In the toolkit’s pcap folder, there is a file prefixed with
1sc- with the LMP traffic generated while we performed the Pl and CI attacks while spoofing
an LSC device. Also, we provide a sc- prefixed file for the Cl and Pl attacks while imper-
sonating a SC device. analyzer.py contains two test functions with the needed PK, BA,
and target SK¢. By running the script, we observe that the attacker reuses S K across ses-
sions, regardless of her role (i.e., Central or Peripheral). In particular, in the LSC cases SK¢ is
c61da2f42fefab75bb15b7927af0a631, while in the SC scenarios is 3581f68eecc5d1£295894c6
bc9262812 and both S K have 7 byte of entropy. Under the hood, the script verifies S K¢ (EXP_-
SK) with an assert statement at line 175. The first session in each test contains an S K different
from SK¢, as that session is not under attack, but it is the first legitimate session after pairing
completion.

2.7 Evaluation

We now present our evaluation setup and results.

2.7.1 Setup

Our evaluation setup tests the six BLUFFS attacks presented in Section 2.5 (i.e., A1, A2, A3, A4,
A5, and A6) on a target LSC or SC device. Testing a device requires less than 15 minutes. Our
setup relies on the attack device and checker modules introduced in Section 2.6 to automate its
repetitive parts (e.g., compute and check the session keys from a pcap file). The setup has six
steps:

1. First, we test A4, A5, and A6 which involve spoofing and MitM of SC victims. We pair the
attack device (also acting as a spoofed victim) with the target victim, and we disconnect
them. While pairing, the attack device declares SC support.

2. We patch the attack device’s firmware (using the patches presented in Table 2.2) to im-
plement the strategy discussed in Section 2.5.1. The patched attack device declares LSC
support, monitors SK's across sessions, and sets ACo = SD¢e = 0, and SE = 7 1o
renegotiate a constant and weak session key (i.e., SK¢). Also, the attack device tries to
role switch to Central before session key derivation when it is a Peripheral and refuses
role switch requests when acting as a Central. We also force the attack device to send a
wrong C R to detect a failure in (rare) attack scenarios where the victim asks the Central
to authenticate PK (e.g., Pl against the BOOM 3 Bluetooth speaker).

3. We test A4 by establishing multiple sessions from the attack device (Central) and capturing
the HCI and LMP packets in a pcap file. We also monitor SK from RAM in each session,
but this manual step is optional. Then, we employ our attack checker to automatically
recompute and compare the SK's from the pcap file. If the computed keys are the same,
the attack is successful, as the adversary is impersonating a SC device while reusing SK¢
across sessions.

4. We test A5 by establishing multiple connections from the victim to the attack device (Pe-
ripheral). We employ the same strategy described in the previous steps, and the attack is
effective if we reuse S K across sessions.

5. If either the Cl or the Pl attack is successful, then the victim is also vulnerable to A6, as the
adversary can combine Cl and Pl in a MitM attack against SC victims.
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6. We unpair the attack device and the victim and pair them again, but this time the attack
device declares LSC support. Then, we repeat steps two, three, four, and five to test A1,
A2, and A3.

Our setup uses, without loss of generality, the attack device both as a victim and the attacker
to speed up the experiments. However, as stated in Section 2.4, we stress that the attacker does
require neither to pair with the victim devices nor observe them while they are pairing nor trigger
a new pairing session. To prove such a claim, we tested scenarios where before attacking the
victim, we unpaired the attack device from the victim by overwriting its PK with a wrong value
(via a firmware patch), and we were still able to force S K across sessions.

2.7.2 Results

Table 2.4 presents our evaluation results obtained by testing the six BLUFFS attacks on eighteen
heterogeneous and popular devices (second column) embedding seventeen unique Bluetooth
chips (first column) and employing the most popular Bluetooth versions (third column). We com-
piled the table following the six steps in Section 2.7.1. The last six columns contain a v* if a device
is vulnerable to an attack; otherwise, a x. The fourth, fifth, and sixth columns show ClI, PI, and
MitM attacks when the spoofed victim supports LSC (i.e., A1, A2, and A3). While the last three
columns report ClI, Pl, and MitM attacks while impersonating a SC device (i.e., A4, A5, and A6).

LSC Victims As shown by the first six rows in Table 2.4, all tested LSC chips and devices are
vulnerable to the six attacks, with one exception. The Logitech BOOM 3 speaker is not vulnerable
to the PI attacks (A2, A5), as it requires the Central to authenticate PK, thus preventing the
attacker from completing session establishment (despite eventually being able to reuse SK¢).
The Bose SoundLink speaker also asks the Central to authenticate but is still vulnerable to A2
and A5 as it does not check the challenge response. The Google Pixel Buds A-Series (2021) are
still vulnerable to the KNOB downgrade resulting in S K with 1 byte of entropy; we reported this
worrisome finding to Google and got a “will not fix” response.

SC Victims The last eleven rows in Table 2.4 shows our findings about chips and devices
supporting SC. If the spoofed victim supports LSC, all chips/devices are vulnerable to the ClI, P,
and MitM attacks (A1, A2, A3). Hence, an attacker can impersonate any chip/device from the LSC
block of rows to any chip/device in the SC set. If we impersonate a SC device, the CYW20819 and
CYW40707 chips are vulnerable to A4, A5, and A6, demonstrating that the attacks are effective
against SC. Instead, the other eight chips/devices we tested are not vulnerable to A4, A5, and
A6, as the chips enforce SC between pairing and session establishment, preventing the attacker
from downgrading the session to LSC. But, they are still vulnerable to A1, A2, and A3 because of
the vulnerabilities we uncover with LSC.

Evaluation impact Driven by our empirical results shown in Table 2.4, we are convinced that
the BLUFFS attacks are practical and have a large-scale impact on the Bluetooth ecosystem.
In particular, they can target SC and LSC devices (e.g., laptops, smartphones, headsets, and
speakers) supporting a wide range of operating systems (e.g., iOS, Android, Linux, Windows,
and proprietary OS), Bluetooth stacks (e.g., BlueZ, Gabeldorsche, Bluedroid, and proprietary
ones), vendors (e.g., Intel, Broadcom, Cypress, Cambridge Silicon Radio, Infineon, Bestechnic,
Apple, Murata, Universal Scientific Industrial, Samsung, Dell, Google, Bose, Logitech, Xiaomi,
Lenovo, Jaybird, and Qualcomm), and Bluetooth versions (e.g., 5.2, 5.1, 5.0, 4.2, and 4.1).
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Table 2.4: BLUFFS attacks evaluation results. We run the six BLUFFS attacks against
eighteen devices with seventeen unique Bluetooth chips. All the six tested LSC victims
are vulnerable to all the attacks, with one exception. When we impersonate an LSC de-
vice to an SC device, all tested eleven SC targets are vulnerable. Comparatively, when
we spoof an SC device to another SC device, the attacks are only effective on two out of
eleven tested chips (i.e., CYW20819 and CYW40707). Our results empirically demonstrate
that the attacks are practical and have a widespread impact on the Bluetooth ecosystem.
Notes: 'lask to authenticate as a Central, 2does not check authenti-
cation response (CR), 3vulnerable SK downgrade with 1 Dbyte of en-
tropy, ‘does not allow LSC session establishment if paired with SC.
Acronyms: USI stands for Universal Scientific Industrial, CYW for Cypress, BCM for Broadcom,
and CSR for Cambridge Silicon Radio. A n/a in the Chip column indicates that the chip SoC
model is unavailable from public sources.

Chip Device(s) BTv A1 A2 A3 A4 A5 A6
LSC Victims

Bestechnic BES2300 Pixel Buds A-Series® 52 v v v v v V
Apple H1 AirPods Pro 50 v v Vv v v V
Cypress CYW20721 Jaybird Vista 50 v v Vv v Vv VY
CSR/Qualcomm BC57H687C Bose SoundLink!? 42 v v v v v Y
Intel Wireless 7265 (rev 59) Thinkpad X1 3rd gen 42 v v v v v VY
CSR n/a Logitech BOOM 3! 42 v x Vv vV x Y
SC Victims

Infineon CYW20819 CYW920819EVB-02 50 v v v Vv v VY
Cypress CYW40707 Logitech MEGABLAST 42 v v v Vv Vv V
Qualcomm Snapdragon 865  Mi 10T* 52 v Vv Vv X x X
Apple/USI 339500761 iPhones 124, 134 52 v VvV Vv x x X
Intel AX201 Portege X30-C* 52 v Vv Vv x x X
Broadcom BCM4389 Pixel 6 52 v Vv VvV x x X
Intel 9460/9560 Latitude 5400* 50 v Vv Vv x X X
Qualcomm Snapdragon 835  Pixel 2* 50 v Vv Vv x x X
Murata 339500199 iPhone 74 42 v Vv Vv x x X
Qualcomm Snapdragon 821  Pixel XL* 42 v Vv Vv x x X
Qualcomm Snapdragon 410  Galaxy J5* 41 v Vv Vv X x X

Moreover, Table 2.4’s list of vulnerable chips and devices represents a lower bound. We
cannot test all Bluetooth devices in the market. However, we are confident that most of them are
flawed, as the BLUFFS attacks exploit architectural issues of Bluetooth session key derivation.
We can confidently infer that all untested devices employing an exploitable chip from Table 2.4
are vulnerable. For instance, since the Apple H1 chip is in our list; we can predict that the other
devices embedding H1 are also affected, e.g., AirPods gen. 2 and 3, AirPods Max, Beats Solo
Pro, Powerbeats (2000), Powerbeats Pro, and Beats Fit Pro [203]. Hence, there is a need for a
usable countermeasure to fix the BLUFFS attacks by-design, and we address this challenge in
Section 2.8.
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2.8 Enhanced LSC KDF

Motivated by the impact of our attacks (e.qg., results from Section 2.7.2), we present an enhanced
LSC KDF addressing the six BLUFFS attacks and their four root causes at the architectural level.
Our KDF uses authenticated and mutual key derivation and is backward compliant with K D Fy s¢
(Section 2.8.1). We show how to integrate our countermeasure in the Bluetooth standard while
entailing minimal computation, throughput, and latency overheads (Section 2.8.2). The fix also
aligns with best practices for symmetric key derivation, such as NIST SP 800-56C-rev2 [23].
We report how we successfully tested our fix at the protocol level. Based on our results, we
recommend its introduction in the Bluetooth specification (e.g., via an amendment). We also
discuss low-cost implementation-level mitigations that vendors can employ until the standard is
updated (Section 2.8.4).

2.8.1 Design

Figure 2.4 shows the message sequence chart of our enhanced KDF which extends K DFs¢,
described in Figure 2.1, in four ways:

1. Adds /K D, a feature flag to negotiate our KDF, as shown by the first two messages in Fig-
ure 2.4. This flag provides backward compatibility as it accommodates devices supporting
and not supporting our protocol. It can also enforce the usage of our protocol across ses-
sions, avoiding (malicious) KDF downgrades. The Bluetooth standard employed the same
approach when it introduced SC.

2. Defines SD not as a random number but as a nonce, (i,e., number usable once). This
definition is valuable as it mandates by design to deny SD’s re-usage, regardless of the
attacker’s strategy.

3. Employs the mutually authenticated key diversification scheme presented in Figure 2.4,
rather than the unilateral and unauthenticated one from the standard. In particular, Alice
sends Bob SD, (i.e., Central SD nonce) and Bob answers with M ac(SD 4, PK), a mes-
sage authentication code (MAC) computed from the diversifier and PK to acknowledge
and authenticate it. Alice aborts the session if the MAC check fails while Charlie cannot
produce such MAC since she does not know PK. Then, the protocol enforces a similar
exchange of messages from Bob to Alice involving S D (i.e., Peripheral SD nonce) and
Mac(SDg, PK). After exchanging these messages, Alice and Bob mutually set and au-
thenticate the session key diversifiers.

4. Uses the M K DF; s mutual key derivation function to compute mutually diversified SK,
unlike K D F5¢ that allows a single (malicious) party to diversify SK. In particular, M K D F; s
binds SK to SD 4 and SD g, the authenticated nonces sent by Alice and Bob.

Our enhanced KDF fixes the four attack root causes presented in Section 2.5.2. RC1: The
key diversification is mutual as S K depends on contributions from the Central and the Peripheral
(i.e., SD 4 and SDg). RC2: The diversifiers are defined as nonces rather than random numbers.
RCS3: The negotiation of the diversifiers is integrity protected using message authentication codes
keyed with PK. RC4: We tolerate (malicious) LSC to SC downgrades by providing a stronger
LSC key derivation protocol.

Our scheme stops the six BLUFFS attacks regardless of the attacker’s role (Cl, PI, or MitM)
and target security mode (LSC or SC). In particular, the attack strategy presented in Figure 2.2
becomes ineffective, as the victim asks the other party to authenticate SD with PK and aborts
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Figure 2.4: Enhanced LSC session key derivation. Alice and Bob negotiate the enhanced
KDF via EFK D to maintain backward compatibility with K DF;sc. They mutually exchange,
authenticate, and check session key diversification nonces (i.e., SD 4, SDp, Mac(SD 4, PK),
Mac(SDpg, PK)). Then, use the diversifiers in a mutual key derivation function (i.e., M K D Fs¢)
to compute fresh and non-reusable keys across sessions. Our enhanced KDF fixes the BLUFFS
attacks and their four root causes by design.

session establishment if authentication fails. Furthermore, the fix prevents the attacks even if
the attacker successfully authenticates (e.g., by stealing PK), as the attacker cannot control the
victim’s SD to force a known SK.

Despite being designed to address the BLUFFS vulnerabilities, our KDF mitigates the KNOB
attacks and stops the BIAS attacks. The KDF increases the S K brute force effort exponentially
with the negotiated entropy and linearly with the number of target sessions as the attacker must
brute force a new SK for each session, other than a single SK regardless of the number of
target sessions. Hence, our KDF is effective even if the attacker can brute force SK . as her
effort to target n sessions increases from 2°¢ to n x 2°6. Moreover, it blocks the BIAS attacks as
an adversary who managed to skip PK authentication (e.g., by attacking a victim not patched
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against BIAS) cannot bypass our mutually authenticated key derivation protocol without knowing
PK.

2.8.2 Integration in the Bluetooth Specification

Our fix requires backward-compliant modifications to the Bluetooth standard (e.g., LSC session
establishment) and produces minimal overhead (e.g., one extra negotiation bit, three extra LMP
packets carrying in total 48 bytes of extra data to authenticate the diversifiers, three extra function
calls to compute the MACs and SK). We now describe these modifications in detail.

EK D requires adding a new LMP feature that should be stored in the firmware and option-
ally in the OS. For instance, the standard could introduce an EKD flag usable to negotiate our
enhanced KDF during LMP feature exchange (as in Figure 2.4). Moreover, a device can enforce
EKD usage among sessions and refuse to connect with a device not supporting it.

Mandating nonces rather than random looking S Ds requires straightforward textual modifi-
cation to the standard. For example, instead of defining SD as EN_RAND [33, p. 637], the
standard should define it as EN_NONC'E. Or when talking about SDs, the document should
classify them as “nonces” other than “random numbers”.

Authenticating SD is also easy to implement as during session establishment Alice and Bob
already share PK. In particular, we recommend computing the MACs reusing the e¢; authentica-
tion function from the standard [33, p. 975] as follows:

Mac(SD4, PK) = e1(PK,SDa, BAg) (2.2a)
Mac(SDp, PK) = e1(PK,SDp, BA,) (2.2b)

MK DFysc is abackward compatible extension of K D F; s presented in Equation 2.1. COF
and ISK are computed as in K DFs¢ (i.e., Equations 3a and 3b). Then, we add Equation 3c
to bind the session key to SDpg by computing a second intermediate session key I SK’, reusing
the e3 key generation function [33, p. 981]. In Equation 3d, we reuse e, to reduce the session key
entropy as usual and produce SK. In summary, M K DF}sc is described by the following four
equations:

COF = 61(PK, ACA, BAB) ( )

ISK = e3(PK,SD,COF) (2.3b)

ISK' = e3(ISK,SDg,COF) ( )

SK = e, (ISK',SE,) (2.3d)

Lastly, we propose two extensions of the LMP protocol to mutually generate and authenticate
SD. First, the LMP_start_encryption req command (opcode 17) which now is used to send
SD from the Central [33, p. 638], should be usable also by the Peripheral to send its diversifier
nonce. Second, we require a new LMP command, defined as LMP_start_encryption_res, to

send a 16 Byte MAC authenticating an SD. Indeed, if Alice is the Central and Bob the Peripheral,
we expect the following four LMP messages:

1. Alice: LMP _start_encryption_req(SD 4)
2. Bob: LMP_start_encryption_res(Mac(SD 4, PK))
3. Bob: LMP_start_encryption_req(SDp)
4. Alice: LMP_start_encryption_res(Mac(SDg, PK))
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2.8.3 Protocol Level Evaluation

The BLUFFS toolkit includes a Python implementation of our enhanced LSC session key derivation
(see checker/mkdf.py). We used our implementation to empirically confirm at the protocol-
level that the BLUFFS attacks are not effective by testing the same attack scenarios exploited in
Section 2.5 using the attack strategy in Figure 2.2. Hence, the presented KDF stops the attacks
and their root causes (i.e., exploited vulnerabilities) by design.

As shown in checker/mkdf tests.py, the attacker controls AC- (AU_RAND C), SD¢ (EN_-
NONCE_C), S E¢ (ENTROPY_C). However, she cannot authenticate the victim’s session key diversifier
(MAC_V) as she does not know PK (LK). Even if the adversary manages to bypass S D mutual
authentication, she cannot force a known SK¢ as she does not control SDy (EN_NONCE_V). As
a result, the attacker cannot conduct the BLUFFS attacks, regardless of her role (Central or
Peripheral) and the type of spoofed victim (LSC or SC).

2.8.4 Implementation Level Mitigations

SC-to-SC enforcement Enforcing SC mode between pairing and session establishment stops
the attacks when both victims support SC. One can implement this enforcement in the OS (i.e.,
Bluetooth Host) by storing a SC flag for each paired device and checking that flag during ses-
sion establishment. As a result, if the attacker impersonates a SC device, the victim can check
whether or not the impersonated device supports SC and abort the session when the attacker
negotiates LSC. From Table 2.4 — Note 4, we see that ten SC devices already implement this
fix. Unfortunately, this mitigation only covers SC-to-SC attack scenarios that currently are less
prevalent than LSC-to-SC and LSC-to-LSC ones.

LSC SD cache A device can stop the presented attacks by maintaining a cache of seen SD
(i.e., LSC session key diversifiers) and refusing a connection with a (malicious) device proposing
a SD in the cache. One can implement this cache in the Bluetooth firmware (i.e., Bluetooth
Controller), as SD is not visible by the OS. Unfortunately, this mitigation could be brittle as the
cache is unauthenticated. For instance, an adversary can poison the cache with dumb S Ds and
then negotiate the target S D, which is no more in the cache.

LSC Central authentication A device can stop the Pl attacks by requiring an attacker in the
Central role to authenticate PK. One can implement this check in the Bluetooth firmware by
updating the session establishment code in a backward compliant way. As a result, the attacker
cannot complete LSC session establishment, as she cannot authenticate PK. This mitigation is
implemented by the Logitech BOOM 3 speaker, as shown in Table 2.4 and detailed in Note 1.
Notably, Central authentication only protects against the two Pl attacks.

2.9 Listings

Here we present the Listings referenced in the paper.

Listing 2.1: Patch to refuse Peripheral’s role switch requests.

@ Jumped from 0xA643C (handleLmpSwitchReq)
@ Load second parameter for isMssInstantPassed
ldr r1, [r6, #0x0]
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@ Call isMssInstantPassed

bl #0XA63FE

@ Set return value to True

mov rO, #0x1

@ Jump to ROM at 0xA643C+7 in Thumb-2 mode
b #0xA6443

Listing 2.2: Parser’s LmpBase Class

class LmpBase(object):
"""Base Class for LMP Parsing"""
def __init__(self, pkt):
self .number = int (pkt.number)
_tinit = int (pkt.h4bcm.btbrlmp_tid)
self.tinit = LMP_TRANS_INIT[_tinit]
self.op = int(pkt.hd4bcm.btbrlmp_op)
if self.op == 127:
_op_ext = int (pkt.h4bcm.btbrlmp_eop)
self.op_ext _op_ext
self .op_str LMP_QOP_EXT[self.op_ext]
else:
self .op_str

LMP_0OP [self.op]

Listing 2.3: Parser’s LmpAuRand Class

class LmpAuRand (LmpBase):
"""Parse LMP_au_rand"""
def __init__(self, packet):
super () .__init__(packet)
self.aurand = packet.h4bcm.btbrlmp_rand
self.aurand_ba = bytearray.fromhex(

self .aurand.replace(":", ""))

Listing 2.4: Excerpt of Kdf's kdf function

def kdf (LK, AU_RAND, EN_RAND, BTADDR, ENTROPY):
"""Generate KcPrime"""
BTADDR.reverse ()
_, COF = el1(LK, AU_RAND, BTADDR)
log.debug("COF: {}".format (repr (COF)))
# NOTE: redo reverse as @t 1s passed by reference
BTADDR.reverse ()
Kc = e3(LK, EN_RAND, COF)
log.debug("Kc: {}".format (repr (Kc)))
Kc.reverse ()
KcPrime = Kc_to_Kc_prime(Kc, ENTROPY)
KcPrime.reverse ()
return KcPrime
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Listing 2.5: Analyzer’s gen_analysis function

def gen_analysis (PCAP, LK, EXP_SK, BTADD_P):
"""Generate list of sessions and reports
sessions = gen_sessions (PCAP)
reports = []
for session in sessions:
report = gen_report(session, LK, BTADD_P)
reports.append (report)
i=1

for report in reports:
print (f"## Begin session: {il}")
if "keysize" in report:
print (f"keys: {report[’keysize’]}")
if "enrand" in report:
print (f"enr: {report[’enrand’].hex()}")
if "aurand" in report:
print (f"aur: {report[’aurand’].hex()}")
if "sk" in report:
print (f"sk ses: {report[’sk’].hex()}")
# NOTE: check constant SK
if report["aurand"] == BA_16_ZEROS
and report["enrand"] == BA_16_ZEROS:
print (£"sk exp: {EXP_SK.hex()}")
assert report["sk"] == EXP_SK
print (f"## End session: {i}\n")
i +=1

2.10 Related Work

Attacks on Bluetooth session establishment Our work is the first presenting attacks breaking
Bluetooth’s forward and future secrecy and persisting across sessions. Other attacks on session
establishment showed that session entropy negotiation is vulnerable to downgrade attacks re-
ducing the strength of SK to 1 byte [18]. The standard now mandates a minimum entropy value
of 7 bytes, but recent work showed that some devices classes still accept 1 byte of entropy [13].
Other work uncovered how to bypass session authentication [126, 14]. Recent work analyzed
how to employ KNOB+BIAS to exploit different Bluetooth profiles within the same session [1] and
the vehicular ecosystem [13].

Attacks on Bluetooth pairing Several works targeted Bluetooth pairing (i.e., the SSP proto-
col), while in this work, we assume that it is not under attack. In particular, there are SSP’s
probabilistic invalid curve attacks [28], MitM attacks [184, 98], and cross-transport key derivation
attacks [16]. Moreover, related work targeted SSP association [107, 198] and the legacy pairing
protocol [129, 179, 111]. We note that attacks on pairing are more challenging to perform and
less stealthy than ones on session establishment as pairing is a one-time procedure involving
user interaction.

Bluetooth tracking attacks The fact that Bluetooth addresses are not randomizable not only
helps to perform the BLUFFS attacks but also enables device tracking threat where an adversary
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violates the victim’s privacy by tracking his movements using the Bluetooth address as a per-
manent identifier [205, 101, 105, 60]. Researchers proposed similar attacks for BLE, despite its
usage of allowlists and address randomization [219].

Bluetooth firmware research Bluetooth firmware are essential for security research as they
implement pairing and session establishment. However, they are proprietary and closed-source,
requiring significant reverse-engineering effort to be analyzed and patched. Luckily, researchers
have developed tools to inspect and patch popular Bluetooth firmware. For example, Internal-
blue [135] provides a Python API to interact and patch popular Broadcom and Cypress firmware.
Other work focused on Bluetooth firmware’s automated extraction of security-related parame-
ters [183], detection of link-layer vulnerabilities [201] and weaknesses in random number gener-
ation [185].

Bluetooth fuzzing and implementation bugs We discovered the protocol-level BLUFFS at-
tacks and their root causes by inference from the Bluetooth specification. Then, we automated
the repetitive tasks by developing a toolkit. Other research work used directed fuzzing to find
crashes, denial of service (DoS), and remote code execution (RCE) implementation-level bugs
in popular Bluetooth stacks [161, 92, 151]. Other recent work employs differential testing to
catch protocol compliance implementation bugs [115] automatically. There are works uncovering
implementation-level vulnerabilities resulting in RCE using semi-automated techniques. Notable
examples are: BlueBorne [175] impacting Amazon Echo and Google Home, BlueFrag [77] against
Android 9, Bleedingbit [176] on Texas Instrument BLE chips, and BleedingTooth [145] targeting
BlueZ and the Linux kernel. Unlike the exploits described in this paragraph, the BLUFFS attacks
can target a device regardless of its implementation details (and bugs).

Forward/future secrecy Forward and future secrecy were extensively studied for Transport
Layer Security (TLS) and Instant Messengers (IM). TLS’s forward secrecy was evaluated in the
wild [106] and TLS 1.3 mandates it using non-static cipher suites, such as ephemeral Diffie-
Hellman (DH) key exchange [109]. The double ratchet algorithm [154], used by the most popular
IMs (e.g., Signal, and WhatsApp), provides future secrecy with the DH ratchet and forward se-
crecy with the symmetric ratchets and was analyzed by security researchers [58]. No prior work
evaluated Bluetooth’s forward and future secrecy properties (not even the Bluetooth standard).

Survey on Bluetooth security There are not so recent survey papers about Bluetooth se-
curity [131, 150, 139, 74]. They are an excellent way to get introduced to Bluetooth’s security
architecture and related threats. However, none of them discusses Bluetooth’s forward and future
secrecy guarantees.

2.11 Conclusion

This paper presents the first security evaluation of Bluetooth forward and future secrecy guaran-
tees. It uncovers two new vulnerabilities in Bluetooth’s session establishment, enabling to reuse
of a weak session key across sessions. We show how to exploit these flaws in six attack sce-
narios to impersonate and MitM arbitrary devices across sessions. Our attacks break Bluetooth’s
forward and future secrecy as they compromise past and future encrypted messages with novel
key reuse attacks. Our findings result from experiments with Bluetooth session establishment on
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actual devices and inference from the standard. We focused on SK as, unlike PK, it can be
targeted without user interaction, and its entropy can be lowered without violating the standard.

We provide BLUFFS, a low-cost and reproducible toolkit to implement, detect, and fix the at-
tacks. The toolkit includes seven original patches to manipulate session key derivation and mon-
itor SK's by patching the attack device’s Bluetooth firmware. It also ships parsing and analysis
scripts to detect the attacks from a pcap file. We use our toolkit to evaluate the BLUFFS attacks
on a large scale. We exploit eighteen devices embedding seventeen Bluetooth chips from leading
hardware and software vendors and estimate the attacks’ impact. For example, our threats are
effective in all scenarios where at least one of the victims supports LSC and even in scenarios
where the victims support SC. These results translate into millions of exploitable devices.

To address the attacks’ critical impact, we develop and test a protocol-level countermeasure
preventing by-design the BLUFFS attacks and their root causes. We design an enhanced KDF
for LSC employing fresh, mutual, and authenticated session key derivation. We show how to
update the LMP protocol and K D Fy s¢ to integrate our fix in a backward compliant way and with
minimal overheads. Specifically, we require one extra LMP command, 48 extra bytes sent over
the air, 3 specification-compliant function calls, and minimal textual modifications to the standard.
We successfully tested our KDF at the protocol level and released it as part of our BLUFFS toolkit.
We hope our fix will soon be added to the standard and implemented by the vendors. Moreover,
we recommend to vendors implementation-level mitigations that can be adopted while waiting for
an update to the standard.

From this work, we learned three key lessons that we want to share: (i) we should pay more
attention to session establishment vulnerabilities, attacks, and fixes effective across sessions,
(i) we should agree on the definitions of Bluetooth’s forward and future secrecy and update
the standard to discuss these definitions and related risks, (iii) we need open-source Bluetooth
firmware (Controllers) and better tooling around them to improve the effectiveness, coverage, and
speed of our offensive and defensive evaluations.
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Chapter 3

CTRAPS: CTAP Impersonation and API
Confusion on FIDO2

3.1 Abstract

FIDO2 is a popular technology for single-factor and second-factor authentication. It is specified
in an open standard including the WebAuthn and CTAP application layer protocols. We focus on
CTAP which allows the communication between FIDO2 clients and authenticators. No prior work
explored the CTAP Authenticator API which is a critical protocol-level attack surface as it deals
with credential creation, deletion, and management. We address this gap by presenting the first
security and privacy evaluation of the CTAP Authenticator APIl. We uncover two classes of CTAP
protocol-level attacks we call CTRAPS.

The client impersonation (Cl) attacks exploit the lack of client authentication to tamper with
FIDO2 authenticators. They include zero-click attacks capable of deleting FIDO2 credentials,
including passkeys, without user interaction. The API confusion (AC) attacks abuse the lack of
protocol API enforcements and confound FIDO2 authenticators, clients, and users into calling
unwanted CTAP APIs while thinking they are calling legitimate ones. For example, a victim thinks
is authenticating to a website, when they are deleting their credentials. The CTRAPS attacks
are conducted either in proximity or remotely and are effective regardless of the underlying CTAP
transport (USB, NFC, or BLE).

We detail the eight vulnerabilities in the CTAP specification enabling the CTRAPS attacks.
Seven of them are novel and include unauthenticated CTAP clients and trackable FIDO2 cre-
dentials. We release CTRAPS, an original toolkit to analyze CTAP and conduct the CTRAPS
attacks. We confirm the attacks’ feasibility by exploiting six popular authenticators, including a
FIPS-certified one, from Yubico, Feitian, SoloKeys, and Google, and ten widely used relying par-
ties, such as Microsoft, Apple, GitHub, and Facebook. We discuss eight backward-compliant
countermeasures to fix the attacks and their root causes. We responsibly disclosed our findings
to the FIDO alliance and the affected vendors.

3.2 Introduction

Fast IDentity Online v2 (FIDOZ2) is the de-facto standard for single-factor (passwordless) and
second-factor (2FA) authentication. Google, Dropbox, and GitHub [124] designed FIDO to offer
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a practical and scalable solution for authentication. FIDO has been widely adopted by industries
and organizations including Apple, Microsoft, and the US government [83]. Market forecasts
predict the FIDO market to rapidly grow from USD 230.6 million in 2022 to USD 598.6 million
in 2031 [188]. Yubico, a FIDO authenticator market leader, sold more than 22 million YubiKey
authenticators [213]. This growth will continue because of the recent industry-wide push towards
single-factor passkey-based authentication [84, 61, 163].

FIDO2 involves three entities: an authenticator that generates and asserts possession of au-
thentication credentials (e.g., public-private key pairs), a relying party that authenticates the user
(e.g., challenge-response protocol based on credentials), and a client who wants to authenticate
to the relying party and manages the communication between the authenticator and the relying
party. Typically, the authenticator is a dongle, the relying party is a web server, and the client is a
web browser or a mobile app.

The authenticator and the client communicate using the Client to Authenticator Protocol
(CTAP). CTAP works at the application-layer and is transported over Universal Serial Bus (USB),
Near Field Communication (NFC), or Bluetooth Low Energy (BLE). It exposes the client to the
CTAP Authenticator API, usable to interact with the authenticator, e.g., credential creation, man-
agement, and deletion. These API calls might require User Verification (UV) and User Presence
(UP) authorization.

This work focuses on the CTAP protocol and its security and privacy guarantees. There
are only a few research studies about CTAP. The authors of [21] performed a provable security
analysis on CTAP, highlighting unauthenticated DH key exchange. In a follow-up work [22], they
proposed an impersonation attack exploiting CTAP to register an authenticator with an arbitrary
relying party. The authors in [96] present a Machine-in-the-Middle (MitM) attack on CTAP result-
ing in a privacy leak. Other works target the authenticator with fault injection and side channel
attacks [123, 160].

No prior work investigated the FIDO2 CTAP Authenticator API. This APl is a critical protocol-
level attack surface as it enables the creation, management, and deletion of credentials and
the administration of authenticators. FIDO2 credentials are security and privacy critical as they
authorize access to popular online services, including, social media, banking, data sharing, and
e-commerce. A protocol-level attack on the CTAP Authenticator APl would enable access to
and manipulation of any credential stored on any authenticator, regardless of the authenticator’s
hardware and software details. Hence, it is crucial to assess the API's expected security and
privacy properties and if they hold in practice.

We fill this gap by presenting the first security and privacy assessment of the CTAP Authen-
ticator APls. We uncover two attack classes and eleven related attacks on CTAP that we call
CTRAPS. The client impersonation (Cl) attacks exploit the lack of client authentication to tamper
with an authenticator. Among others, they allow factory resetting an authenticator without user
interaction. The API confusion (AC) attacks abuse the lack of protocol API enforcements and con-
found a FIDO2 authenticator, a client, and a user into calling unwanted CTAP Authenticator APls
while believing they are calling legitimate ones. For instance, a user thinks to be authenticating
to a website but they are instead deleting their authenticator credentials.

We consider two attacker models: a Cl attacker impersonating a CTAP client and an AC
attacker with a MitM position between the client and the authenticator. The adversaries perform
the attacks in proximity or remotely. They do not require physical access to the authenticator,
e.g., no side channel or fault injection. Moreover, they do not need to compromise the client or
the authenticator, e.g., no client or authenticator malware.
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The CTRAPS attacks have a critical and widespread impact on the FIDO2 ecosystem. They
are critical as they violate the security, privacy, and availability of FIDO2 devices. For example,
a Cl or an AC attacker can factory reset an authenticator deleting all FIDO2 credentials and
locking out the victim from the related service. Despite targeting CTAP, the attacks also impact
FIDO2 relying parties. For example, they invalidate the non-discoverable credentials stored by
the relying party. They are widespread as they exploit protocol-level vulnerabilities in the CTAP
application-layer protocol. Hence, they can be conducted against any FIDO2 device regardless
of whether CTAP is transported over USB, NFC, or BLE.

We isolate eight vulnerabilities in the CTAP specification enabling the CTRAPS attacks.
Seven of them are novel within FIDO2. They include unauthenticated CTAP clients, trackable
credentials, and weak authorization of (destructive) API calls. The vulnerabilities are severe as
they affect authenticators and clients implementing CTAP v2.0, v2.1, and v2.2. We also find
and disclose an implementation flaw on Yubico’s authenticator firmware, allowing an attacker to
leak sensitive data and track users. Yubico addressed the problem and assigned it CVE-2024-
35311 [216].

We present CTRAPS, a new toolkit to experiment with CTAP and conduct the CTRAPS attacks.
The toolkit has three modules: CTAP testbed, CTAP clients, and Wireshark dissectors. The
testbed provides virtual clients and relying parties, enabling local testing of the attacks without
the involvement of actual devices. The CTAP clients module performs the Cl and AC attacks. We
implemented them to work from proximity and remotely. Our CTAP clients allow the testing of the
attacks on real-world authenticators and clients. For example, we release an Android app and a
Proxmark3 script to test the Cl attacks over NFC. The dissectors module includes an enhanced
FIDO2 dissector for Wireshark praising new and useful packet information such as status codes
and support for credential management.

We evaluate popular FIDO2 authenticators, clients, and relying parties. We deploy them
from proximity and remotely, testing different CTAP transports (USB and NFC). We attack six au-
thenticators from Yubico, Feitian, SoloKeys, and Google. One authenticator from Yubico is FIPS-
compliant, meaning that it utilizes cryptographic algorithms guaranteeing strict security standards.
We also exploit ten relying parties offering passkeys and second-factor authentication, including
Microsoft, Apple, GitHub, and Facebook.

We discuss eight backward-compliant countermeasures that fix the CTRAPS attacks and
their root causes. The fixes include CTAP client authentication, stricter authorization require-
ments for destructive APls, introduce a dedicated PIN for destructive operations (e.g., credential
deletion), and rotate user identifiers and credentials to mitigate user tracking. The countermea-
sures are backward-compliant as they rely on mechanisms already available in the authenticator
(e.g., PIN and LED) and do not require extra hardware (e.g., adding a display).

We summarize our contributions as follows:

» We perform the first assessment of the CTAP Authenticator APl. We unveil two classes of
CTAP protocol-level attacks: Cl and AC. The attacks compromise the security, privacy, and
availability of the FIDO2 ecosystem. For instance, they (remotely) delete FIDO2 credentials,
track users via FIDO2 credentials, and DoS authenticators. They are enabled by eight CTAP
protocol level vulnerabilities, seven of which are new.

» We provide a toolkit to evaluate the CTAP Authenticator APl and test our attacks in a vir-
tual environment and on actual devices. We successfully conduct our attacks against six
authenticators, two transports, and ten relying parties.
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« We design eight backward-compliant countermeasures to fix our attacks and their root
causes. We also responsibly disclosed our findings to the FIDO2 Alliance and affected
vendors.

Responsible disclosure. We responsibly disclosed our findings to the FIDO Alliance in
November 2023 [7]. They acknowledged our report and shared it with their members. In May
2024, they provided feedback highlighting that the Cl and AC attacks deployed by a proximity-
based attacker are less scalable than remote ones. They argued on the effectiveness of CTRAPS
attacks against authenticators running on a TEE. They also discussed the possible addition of our
attacks to FIDO’s threat model.

In December 2023, we reported our findings to the affected authenticator manufacturers (i.e.,
Yubico, Feitian, SoloKeys, and Google). Google confirmed our findings, assigning them priority
P2 and severity S2. They responded that our attacks required a compromised FIDO client and
closed the issue without resolution. We argue that Google’s assessment is incorrect as our
attacks do not require a compromised FIDO client. Yubico confirmed the implementation bug
we found, pushed a fix in production, published a security advisory [217], and assigned it CVE-
2024-35311 [216]. The other manufacturers acknowledged the report without commenting on
it.

We also contacted Apple and Microsoft regarding their weak credential protection policy that
facilitates user tracking and profiling. They responded that our report has no security implications
for their products.

Ethics and availability. We conducted our experiments ethically. We evaluated our au-
thenticators and accounts. We did not collect personal data and involved third parties. To ad-
vance open science, we open source our contributions, including the CTRAPS toolkit, found at
https://github.com/Skiti/CTrAPs.

3.3 Background and System Model

We introduce FIDO2, CTAP, and our system model.

3.3.1 FIDO2

FIDO2 [5] is an open and pervasive standard for single-factor and multi-factor authentication. It is
managed by the FIDO Alliance. FIDO2 has four entities: an authenticator, a client, a user, and a
relying party. In a typical scenario, a user connects their authenticator to the client to access an
online service hosted by a relying party.

The FIDO2 specification includes the WebAuthn and CTAP application-layer protocols. We-
bAuthn provides a secure communication channel to a relying party and a client. Its latest ver-
sion is WebAuthnL2 [199]. CTAP, the focus of this work, enables a secure connection between
a FIDO2 authenticator and a client via the CTAP Authenticator API. For example, the MakeCred
APl registers a new credential while the GetAssertion APl authenticates a credential.

A FIDO2 credential is a key pair used to sign and verify authentication challenges to authen-
ticate a user. The digital signature is computed using standard techniques, like Elliptic Curve
Digital Signature Algorithm (ECDSA). Access to the credential private key is guarded by en-
cryption using a credential master key, which is unique to each authenticator and stored in the
authenticator.

ORSHIN D5.1 PU Page 56 of 121


https://github.com/Skiti/CTrAPs

D5.1 - Report about Essential and Beyond Essential S&P Guarantees for * N
Inter-device Communication in Restricted Environments

FIDO2 credentials can be discoverable or non-discoverable. Discoverable credentials, also
known as passkeys, are stored on the authenticator and used for passwordless authentication.
Non-discoverable credentials are stored by the relying party and used for multi-factor authentica-
tion.

FIDO2 credentials are associated with a credential identifier (Credld), a relying party identifier
(Rpld), and a user identifier (Userld). The Credld uniquely identifies a FIDO2 credential and is
derived from the credential master key stored in the authenticator. When FIDO2 clients authen-
ticate a credential, they must know its associated Credld. The Rpld indicates the relying party
with which the credential was registered. It is public as it corresponds to the base domain of the
relying party (e.g., login.microsoft.com).

The Userld represents the user’s online account within the relying party’s service. The relying
party assigns a random Userld to the user during account registration, and it is shared across
all FIDO credentials associated with that user. The optional FIDO2 CredBlob extension allows a
relying party to store additional metadata inside a credential.

3.3.2 CTAP

The Client-to-Authenticator Protocol (CTAP) is a core part of the FIDO2 standard, alongside We-
bAuthn. It is an application-layer protocol that defines the communication between a FIDO client
and an authenticator. CTAP has considerably evolved since its inception. CTAP1, also known as
FIDO U2F (Universal 2nd Factor), introduced a second-factor authentication mechanism to com-
bat phishing. CTAP2.0 maintains backward compatibility with CTAP1 while introducing password-
less (single-factor) authentication. CTAP2.1 [2] adds the credential protection policy, discoverable
credential management (i.e., the CredMgmt API), and biometric authentication. CTAP2.2 [4], the
latest CTAP version still considered a draft, supports hybrid authenticators and QR codes.

CTAP relies on two user authorization mechanisms to secure API calls from the client: (i)
User Verification (UV), which requires the user to enter a PIN or biometric data, and (ii) User
Presence (UP), which requires the user to press a button on the authenticator or to bring it into
the client’s NFC range.

Table 3.1 shows the seven CTAP Authenticator APIs studied in this paper and their UV and
UP requirements:

MC: MakeCred registers a new credential bound to an online account with a relying party.

GA: GetAssertion authenticates to a relying party by proving possession of a credential.

CM: CredMgmt enumerates, modifies, and deletes the authenticator’s discoverable credentials.
CP: ClientPin handles UV based on a user PIN to be submitted via the client’s Ul.

Re: Reset wipes all discoverable and non-discoverable credentials and generates a new master
key.
Se: Selection selects an authenticator to operate among the available ones.

GI: GetInfo returns the authenticator’s details, like manufacturer, transports, extensions, and
settings.

The GetAssertion, CredMgmt, and ClientPin APIs have APl subcommands. For example,
CredMgmt (GetCredsData) returns the number of stored discoverable credentials and CredMgm
t (DelCreds) deletes all discoverable credentials. Some APl subcommands, compared to their
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Table 3.1: CTAP Authenticator APls with their UV and UP authorization requirements, and sup-
port for subcommands. Yes!: depends on the client and relying party configuration, Yes?: de-
pends on APl subcommand.

CTAP API uv UP  Subcmd
MakeCred (MC) Yes Yes No
GetAssertion (GA) Yes! Yes! Yes
CredMgmt (CM) Yes No Yes
ClientPin (CP) Yes? No Yes
Reset (Re) No Yes No
Selection (Se) No Yes No
GetInfo (GI) No No No

original API, have more relaxed requirements. For instance, ClientPin(KeyAgreement) does
not require UV.

CTAP offers other optional security and privacy mechanisms. The authorization requirements
for GetAssertion depend on the client and relying party configuration. A client can specify the
option up=false to skip UP. At registration time, a relying party can enforce access control by
specifying a credential protection policy via the optional CredProtect extension. However, the
default policy skips UV, resulting in weak privacy protection.

3.3.3 System Model

We adopt the official FIDO2 system model [5]. Figure 3.1 shows the system model’s four entities:
authenticator, client, relying party, and user. The user connects the authenticator to the client to
authenticate on a service hosted by the relying party. The entities support up to CTAP2.2 and
WebAuthnL2 (i.e., the latest and supposedly most secure FIDO2 protocol versions). Next, we
describe each entity.

Authenticator. The authenticator is a FIDO2 authenticator: a user device that can be con-
nected to the client (e.g., a USB/NFC dongle). The authenticator runs a CTAP server that exposes
the CTAP Authenticator API. The APl is accessible over USB, NFC, and BLE. The authenticator
supports FIDO2’s UP and UV user authorization mechanisms. It stores discoverable credentials
and the credential master key.

Client. The client is a FIDO2 client handling the communication between the authenticator
and the relying party. It exposes a CTAP client to the authenticator and a WebAuthn client to the
relying party. The client could be a web browser, a mobile app for Android [79] or iOS [80], or a
command line tool like the Yubico CLI [215].

Relying party. The relying party is an online service that relies on FIDO2 passwordless
or multi-factor authentication. It runs a WebAuthn server that responds to FIDO2 registration
and authentication requests. The relying party stores non-discoverable credentials, and user and
credential identifiers. The relying party communicates with the client using TLS. Offline operations
on the authenticator, like deleting discoverable credentials, indirectly affect the relying party by
making the user unable to log into their online service.

User. The user owns an authenticator and a device that runs the FIDO2 client, e.g., a Yu-
biKey dongle and a laptop. They utilize their authenticator to register FIDO2 credentials and
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Figure 3.1: CTRAPS threat model. The user authenticates to the relying party using a client
(e.g., browser) and an authenticator (hardware dongle). The user when needed grants UP by
pressing a button on to the authenticator and UV by submitting a PIN to the client. We study two
attacker models: (i) a client impersonation attacker targeting the authenticator over CTAP (left),
(i) a MitM attacker in the CTAP channel between the authenticator and the client.

authenticate to the associated relying party. To do so, they connect their authenticator to the
client and provide UV and UP, if necessary. The user manages the authenticator via the client,
without connecting to a relying party. For example, they can check their discoverable credentials
and change the authenticator’s PIN.

3.4 CTRAPS Client Impersonation Attacks

The CTRAPS ClI attacks target an authenticator while spoofing a client to perform CTAP API calls
without user authorization. Cl attacks factory reset the authenticator via the Reset API, track the
user via GetAssertion, lock the authenticator via ClientPin, and profile the authenticator via G
etInfo. They exploit five protocol-level CTAP vulnerabilities we found. For instance, the absence
of CTAP client authentication facilitates impersonation, the use of NFC transport allows to bypass
UP, and the lack of UV when calling Reset enables unauthorized factory resets.

The attacks advance the state of the art in FIDO2’s security and privacy by introducing client
impersonation. This is a new class of attacks previously unseen in FIDO2. The CI attacks require
limited or no user interaction, depending on the CTAP transport. For example, by using NFC,
they bypass UP, leading to zero-click attacks. The Cl attacks also involve no client compromise,
being deployed from a client owned by the attacker. Next, we introduce the ClI attacker model and
describe the attacks.

3.4.1 CI Attacker Model

The CI attacker model assumes an attacker impersonating a CTAP client to the victim’s authen-
ticator, referenced as Cl Client in Figure 3.1. The attacker is in proximity of the victim’s authenti-
cator, or can remotely connect to it. They have no physical access to and do not tamper with the
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Figure 3.2: Cl; attack. Factory reset authenticator via Reset. While in NFC range, the attacker
calls the Reset API. Over NFC, the authenticator skips UP and instantly factory resets, deleting
all of its discoverable and non-discoverable credentials.

victim’s client and authenticator. They do not install malware on the victim’s device running the
FIDO2 client.

The CI attacker model maps to several relevant attack scenarios. For example, they can
approach a target authenticator over NFC while impersonating a client (e.g., via a smartphone
or a Proxmark), place a malicious NFC device in a place where a user might touch it with an
authenticator (e.g., under a table), They can also communicate with the victim’s authenticator
using a compromised hardware device, such as a USB hub that connects the user's machine and
the authenticator, or virtual USB peripheral, through a setup similar to [43].

3.4.2 CI Attacks Description
We describe the four Cl attacks, which we label Cl;, Cl,, Cl3, and Cl,.

Cl;: Factory reset authenticator. In Cly, the attacker abuses the Reset API to factory re-
set an authenticator, as shown in Figure 3.2. The attacker connects to the authenticator and,
without authenticating, issues a factory reset command (which requires UP). Over USB, the at-
tack requires one click (UP) and the authenticator having been plugged into the USB port within
the last ten seconds. Over NFC, the attacker achieves zero-click reset by exploiting a CTAP
quirk intended to enhance usability. That is, NFC communication inherently implies user pres-
ence, allowing UP to be bypassed. The execution of the factory reset wipes out all credentials,
even the non-discoverable ones stored by the relying party, as it erases the credential master
key necessary for decryption. It also deletes the authenticator’s settings, including the PIN, user
preferences, and stored data. Then, the authenticator confirms the successful reset.

Cl,: Track user from credentials. In Cl,, instead of using GetAssertion for authentication,
the attacker exploits it to leak identifying data and track the user, as shown in Figure 3.3. Cl,
requires a pre-determined list of Rpld for which the attacker aims to leak credentials. This is
straightforward, as this information is publicly accessible. Although the GetAssertion API re-
quires both UV and UP, the attacker can circumvent both authorizations, resulting in a zero-click
data leak and enabling user tracking. They bypass UP by issuing a GetAssertion command
containing the up=false option. They bypass UV by only targeting relying parties that register
credentials using the weak and default CredProtect=UVOptional policy, such as Microsoft and
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Figure 3.3: Cl, attack. Track user from credentials via GetAssertion. The attacker connects to
the authenticator and calls the GetAssertion API (GA in the figure). They skip UV by targeting
relying parties using the weak and default CredProtect default policy and skip UP by passing
up=false. The authenticator returns a list of credential and user identifiers, used by the attacker
to fingerprint the authenticator and track the user.

Apple. Executing GetAssertion returns a list of credential and user identifiers. These identifiers
can be used to fingerprint the user and to track them over multiple connections by performing
Cl, each time and looking for matching fingerprints. Cl; also works on credentials protected by
stronger policies (i.e., CredProtect=UVRequired and CredProtect=UVQOptionalWithCredIDList),
but requires UV or knowledge of the credential identifiers.

Cl;: Force authenticator lockout. In Cls, the attacker abuses the ClientPin API, protecting
the authenticator from PIN brute-forcing, to lock the authenticator or even force a factory reset.
They submit to the authenticator several wrong PIN guesses in a row via the ClientPin(GetP
inToken) subcommand. After three wrong guesses, the authenticator enters a soft lock mode
preventing actions until a reboot (i.e., leaving and re-entering a client’s NFC range, or detaching
and re-attaching to a USB port). After a maximum of failed PIN attempts (CTAP mandates eight),
the authenticator enters a hard lock mode only restorable through a factory reset, which wipes
out all credentials and can lead to account loss.

Cl,: Profile authenticator. In Cl,, the attacker calls GetInfo to leak the authenticator’s tech-
nical details. This attack can be used as a stepping stone to more advanced attacks, to profile
the user and track them in future connections, and to assess whether the authenticator is vulner-
able to an implementation-specific attack like [216]. The leaked details include the manufacturer,
model, and FIDO2 version, and the supported algorithms, transports, options, and extensions.
The authenticator also discloses user settings, such as FIDO2 being disabled over a specific
transport.

3.5 CTRAPS API Confusion Attacks

The CTRAPS AC attacks take advantage of a novel attack technique for FIDO, which we refer
to as API confusion. API confusion tricks a client, an authenticator, and their user into calling a
CTAP Authenticator API while they think they are calling a different one. The called API has the
same or lower UV and UP requirements of the intended API. For example, AC attacks can erase
FIDO2 credentials, including passkeys, lock the user out of their authenticator, and track them.
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Table 3.2: There are 49 ways to perform AC against 7 CTAP Authenticator APIls. The user
intends to call API A, instead is tricked into calling APT B. v/'!: proximity-based attacker, v'2: default
CredProtect=UVOptional if credential protection is enabled, n/a: not applicable.

CM Re GA MC CP BSe GI

CM na v' v /!
Re na nla Vv? nla
GA v v/ na V
MC v v v/ nla
CP v vt v /' na
Se na v V?> na v nla
GI na v v? v VvV V nla

Total 3 6 6 4 6 6 6

v
v
v
v
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AN N NN Y

AC is effective as it does not require social engineering [191] or other deception techniques [134]
to trick the user into calling an unwanted API. The user cannot detect an API confusion because
it requires expected UV or UP actions. The AC attacks exploit the eight protocol-level vulnerabil-
ities we outline later. For instance, the absence of authenticator feedback during API calls grants
stealthiness and the use of static credential and user identifiers enables user tracking.

No prior work considered the AC attack vector for FIDO2. Existing attacks on FIDO include
MitM on the Diffie-Hellman key exchange, CTAP traffic eavesdropping, U2F impersonation, phys-
ical access, and side channel attacks on the authenticator. Moreover, the AC attacks target the
entire CTAP Authenticator API surface, whereas previous research only focused on ClientPin
and MakeCred. Next, we will introduce the AC attacker model and attacks.

3.5.1 AC Attacker Model

The AC attacker model assumes a MitM attacker between the authenticator and the client, refer-
enced as AC MitM in Figure 3.1. The attacker is either in proximity to the authenticator and the
client (e.g., an NFC skimmer) or can contact them from remote (e.g., a remotely controllable USB
hub). They are unable to modify the authenticator’s firmware or compromise a legitimate FIDO2
client and relying party. They have no physical access to the authenticator.

An AC attacker model has several associated real-world attack scenarios. For example,
they can get a MitM position over NFC interposing an NFC skimmer between the client and the
authenticator. They can achieve a MitM position over USB with setups such as those discussed
in [193] and [120]. For instance, the attacker can remotely compromise a USB device connected
to the user’s device running the FIDO2 client, such as a USB hub that routes traffic between other
USB peripherals.

Alternatively, they can gain privileged access via techniques like UACMe [155] and then lever-
age USBPcap to USB MitM a victim’s Windows machine running the FIDO2 client. The attacker
can also install on the user's machine a malicious app exploiting libraries that provide access to
USB HID traffic.
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3.5.2 AC Technique and Combinations

The seven AC attacks rely on the API confusion attack technique. The attacker intercepts a call to
API A and changes (i.e., confounds) it to API B. This action only requires that API B has the same
or lower UV and UP authorization requirements than API A. The AC technique has six steps:

1. The user calls API A through the client. The API might require UV and/or UP.

2. If required by API A, the attacker obtains UV by executing the CTAP PIN/UV authentication
protocol v1 (via ClientPin). The user inputs the PIN on the client, which encrypts it
and submits it to the authenticator. The authenticator responds with an encrypted User
Verification Token (UVT), that will be attached to any API call requiring UV.

3. The attacker calls API B rather than API A based on the AC combinations in Table 3.2.

4. If required by APTI A, the attacker obtains UP from the user, unable to realize they are under
attack. The attacker can only obtain UP once, as multiple requests would alarm the user.
This step is bypassed whenever NFC proximity implies UP.

5. The authenticator executes API B and returns a success message.
6. The attacker informs the victim via the CTAP client that API A was successfully executed.

The AC strategy is effective on 7 CTAP Authenticator APIS and provides 49 ways to confound
the victim as shown in Table 3.2. Multiple (API A, API B) pairs achieve the same goal. The amount
of available pairs depends on their UV and UP requirements and, in the case of AC3, also on
the CredProtect policy. The first column lists seven APIs the user intends to call (API A), and
the remaining columns represent the API called by the attacker (API B). For instance, AC; is
available whenever the user calls MakeCred, GetAssertion, or ClientPin, confounding the call
to CredMgmt. Some combinations are only feasible by a proximity-based attacker or under the
default CredProtect policy. An APl cannot be confounded with itself or APIs with incompatible
authorization requirements.

3.5.3 AC Attacks Description

We describe seven AC attacks labeled AC,, AC,, AC3, AC4, ACs5, ACq, and AC,. AC, exploits all
possible ways to call CM, AC, does this with Re, and so on.

AC,: Delete discoverable credentials. In AC;, the attacker abuses the CredMgmt API
to delete all discoverable credentials stored on the authenticator, as shown in Figure 3.4. The
user intends to call API A, which requires UV but not necessarily UP, such as GetAssertio
n, ClientPin, or MakeCred. Instead, the attacker executes four separate CredMgmt subcom-
mands, none of which require UP. First, they check the existence of discoverable credentials to
erase (StoredCredsAmount) via CredVMgmt (GetCredsMetadata). Second, they retrieve the list
of relying parties stored on the authenticator (RpldList) via CredMgmt (EnumRps). Third, they use
RpldList to retrieve the list of stored credential identifiers (CredldList) via CredMgmt (EnumCreds
). Fourth, they use CredldList to delete all discoverable credentials via CredMgmt (DelCreds).
Finally, they falsely return API A OK to the user.

AC,: Factory reset authenticator. In AC,, the attacker exploits the Reset API to factory
reset the authenticator, similar to Cl;. Since Reset over USB requires UP, but not UV, an attacker
can confound MakeCred, GetAssertion, and Selection into a Reset call. An attacker over NFC,
able to bypass UP, can also confound CredMgmt, ClientPin, and GetInfo.
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Figure 3.4: AC, attack. Delete discoverable credentials attack with proximity. The user intends
to call API A, requiring UV but not necessarily UP. For example, GetAssertion, ClientPin,
or MakeCred. The attacker obtains UV from the unsuspecting user. Instead of API A, they call
CredMgmt (CM in the figure). They execute four CredMgmt subcommands which list and then
delete all discoverable credentials on the authenticator.

AC;: Track user from credentials. In AC;, the attacker misuses the GetAssertion API to
leak unique identifiers as fingerprints and track the user, similar to Cl,. They can confound Ma
keCred, CredMgmt, and ClientPin into a GetAssertion call, if they want to access credentials
protected by the CredProtect=UVRequired or CredProtect=UVQOptionalWithCredIDList policies.
Additionally, the attacker can also confound Reset, Selection, and GetInfo if they only wants
to access credentials protected by the weak CredProtect=UVOptional default policy.

AC,: Fill authenticator’s credential storage. In AC,, the attacker repeatedly calls MakeC
red to register new discoverable credentials, until the authenticator’s credential storage is full.
They exploit the rk=true option to enforce the generation of discoverable credentials over non-
discoverable ones. A filled storage compromises the authenticator’s availability as the user cannot
register new discoverable credentials.

AC;: Force authenticator lockout. In AC;, the attacker abuses the ClientPin API to
lock the authenticator and force a mandatory factory reset, similar to Cl;. Although ClientPin
requires UV, the attacker wants to fail multiple PIN attempts (i.e., they do not need UV). Conse-
quently, they can confound any API call into a ClientPin call, as they do not need authorization.

ACq: Authenticator DoS. In ACg, the attacker calls Selection to trigger an unwanted UP
check, keeping the authenticator busy and denying availability. Since the attacker can detect
when the busy state ends (e.g., the user pressed the authenticator’s button or 30 seconds have
passed), they can prolong the attack.

AC;: Profile authenticator. In AC-, the attacker invokes GetInfo to retrieve the authentica-
tor’'s details. Then, similar to Cly, they use this information as a stepping stone to other attacks,
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tracks the user, or checks whether the authenticator is vulnerable to implementation-specific at-
tacks [216]. Not requiring UV or UP, the attacker can confound any API call into a GetInfo
call.

3.6 Implementation

In this section, we present CTRAPS, a novel toolkit that implements the CTRAPS attacks and en-
ables experimentation with CTAP. The toolkit has three modules: a CTAP testbed (Section 3.6.1),
four customizable CTAP clients (Section 3.6.2), and an enhanced FIDO2 Wireshark dissector
(Section 3.6.3).

The CTAP testbed and the Electron app CTAP client need the user’s authorization to connect
and communicate with the authenticator. Linux requires adding extra udev rules, macOS asks
to accept a notification on the screen, and Windows needs admin privileges. This limitation is
expected, as it is also present in FIDO2 apps released by authenticator manufacturers, such
as the Yubico Authenticator App and the Feitian Authenticator Tool. Now, we will describe the
implementation of each module and highlight their novelties.

3.6.1 CTAP Testbed

Our CTAP testbed includes a virtual WebAuthn relying party and a virtual WebAuthn/CTAP client.
The testbed can test real authenticators without having to tamper with actual credentials and also
launch the CTRAPS attacks. Our relying party and client extend the Yubico open-source Python
library for FIDO2 called python-fido2 [214].

Virtual relying party. The virtual relying party is implemented as a customizable WebAuthn
server. It includes standard relying party templates and fast customization of the server’s param-
eters. For example, we implemented a template imitating a Microsoft relying party, including its
FIDO2 identifier (i.e., login.microsoft.com). The virtual relying party is useful to quickly test real
authenticators against Cl and AC attacks. For example, we can automatically register credentials
with different protection policies on the authenticator.

Virtual client. The virtual client offers a convenient CTAP API, offering low-level access to
any CTAP message. It can send CTAP commands in any order, or issue custom and malformed
payloads. It can be configured with different CTAP authorization requirements, authentication
challenges, and origins.

3.6.2 CTAP Clients

We developed four custom CTAP clients: an Android app performing proximity Cl over NFC, an
Android app performing remote Cl over NFC, a Proxmark3 script that executes proximity Cl over
NFC, and an Electron app simulating a MitM attacker to test remote AC over USB. We released in
the CTRAPS GitHub repository five video demonstrations, showing how to deploy the CTRAPS
attacks on real authenticators using our clients.

Android app for proximity Cl over NFC. We implemented the proximity Cl attacks using an
Android app which impersonates a FIDO2 client over NFC. The app runs on a device owned by
the attacker and targets any authenticator that comes within the NFC range. For example, it can
perform Cl, to leak identifiers and track the user.
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Android app for remote Cl over NFC. We utilized an Android app to implement the remote
Cl attacks over NFC. The app is installed on a device owned by the victim. It spoofs a legitimate
NFC app, enticing the user to scan their authenticator (e.g., by asking for FIDO2 authentication).
The attacker can connect to the app and manage the CTAP connection with the authenticator.
The app does not need root privileges and asks at runtime for the dangerous android.permissi
on.NFC, required to gain access to the android.nfc [68] APl. However, this is not a concern, as
the app is not trying to conceal its NFC capabilities. The app also needs the standard install-time
android.permission.INTERNET to exfiltrate the data collected through Cl; and Cl,.

Proxmark3 for proximity Cl over NFC. We implemented the proximity Cl attacks using the
Proxmark3 [156], an open-source and programmable development kit for NFC (RFID). We wrote
a Lua script using the Proxmark3 ISO14443 Type A module (i.e., read14a) to communicate to the
authenticator via CTAP-compliant APDUs. By equipping the Proxmark3 with a long-range high-
frequency antenna, we were able to extend its reach. The long-range antenna has an indicative
range of 100 to 120 millimeters, as opposed to the 40 to 85 millimeters of the built-in antenna.

Electron app to simulate AC over USB. We developed an Electron app that simulates a
MitM attacker. The app uses the node-hid module to access the USB HID traffic, gaining a MitM
position between a FIDO client and an authenticator communicating over USB. The app scans
for local HID devices and identifies the authenticators from their properties (e.g., the product and
manufacturer fields). Then, it connects and sends binary data over USB to the authenticator. The
Electron app is compatible with Windows, macOS, and Linux.

3.6.3 FIDO2 Wireshark Dissector

We extended an unofficial Wireshark FIDO2 dissector found in [218]. We add valuable features,
such as support for the CredMgmt API. We include parsers for WAITING and PROCESSING keepalive
status codes that identify when authenticators are unavailable. We parse the authenticator’s
capabilities in the CTAPHID_INIT message, which are useful for testing AC;. We provide an
improved way to display CTAP data when dissecting CTAPHID (USB) and ISO7816/1SO14443
(NFC). Finally, we add missing vendor and product identifiers to the dissector tables. The FIDO2
dissector is included in our toolkit as a Lua script (i.e., fido2-dissectors.lua).

3.7 Evaluation

We evaluated our eleven attacks against six popular and recent authenticators from Yubico,
Feitian, SoloKeys, and Google. We also tested ten widely used relying parties, including Mi-
crosoft, Apple, GitHub, and Facebook. Next, we will present our evaluation setup and results.

3.7.1 Setup

Authenticators. We evaluate six popular FIDO2 authenticators. Table 3.3 shows their technical
details. The YubiKey 5 NFC, YubiKey 5 NFC FIPS, and Feitian NFC K9 are closed-source and do
not support firmware updates. The Solo V1, Solo V2 Hacker, and Open Security Key (OpenSK)
have an open-source firmware (OSF), that we updated to their latest version. The authenticators
support USB and NFC, except for OpenSK which has an NFC module but supports only USB.
The Solo V1 requires a button press to activate NFC. Unfortunately, we could not find any FIDO2
authenticator supporting BLE.
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Table 3.3: Details about the six authenticators we attack. All authenticators support USB and
NFC, except OpenSK, which only supports USB. FVer: firmware version, OSF: open-source
firmware, DCr: discoverable credentials.

Authenticator Manuf Year FVer OSF DCr

YubiKey 5 Yubico 2018 5.2.7 No 25
YubiKey 5 FIPS  Yubico 2021  5.43 No 25
Feitian K9 Feitian 2016 3.3.01 No 50
Solo V1 SoloKeys 2018 4.1.5 Yes 50
Solo V2 Hacker SoloKeys 2021 2.964 Yes 50
OpenSK Google 2023 21  Yes 150

Table 3.4: Cl and AC attacks on six authenticators. The first column lists the authenticators’
names. The remaining columns report our four Cl and seven AC attacks on CTAP. v: attack is
effective on the authenticator, n/a: not applicable as the authenticator does not implement the
Selection API.

Authenticator CI; Cl;, Cls Cl; AC; AC, AC;3; AC; AC; ACs; AC,

YubiKey 5 v v v/ v v v v v n/a v
YubiKey 5FIPS v v VvV V/ v v v v v n/a v
Feitian K9 v v v / v v v v v n/a v
Solo V1 v v v / v v v v v n/a v
Solo V2 Hacker v v v v v v v v v v v
OpenSK v v v / v v v v v v v

Cly: Factory reset authenticator, Clo: Track user from credentials, Cls: Force authenticator lockout, Cly:
Profile authenticator, AC;: Delete discoverable credentials, AC,: Factory reset authenticator, AC3: Track
user from credentials, AC4: Fill authenticator’s credential storage, AC5: Force authenticator lockout, ACg:

Authenticator DoS, AC~: Profile authenticator.

The authenticators store a maximum of 25 (Yubico), 50 (Feitian and SoloKeys), or 150
(OpenSK) discoverable credentials. The YubiKey 5 FIPS is FIPS140-2 compliant, and, as such,
it should provide high security guarantees. We ran OpenSK on an NRF52840 dongle, but any
board supporting OpenSK would have worked.

Relying parties. Our list of relying parties covers pervasive and heterogeneous online ser-
vices, including software as a service, social, gaming, cryptographic signing, authentication, and
cloud storage. We registered our authenticators with ten FIDO2 relying parties: Adobe, Apple,
DocuSign, Facebook, GitHub, Hancock, Microsoft, NVidia, Synology, and Vault Vision. Some of
them offer Single Sign-On (SSO), enabling access to multiple services. For example, a single
set of FIDO2 credentials can log into Microsoft, OneDrive, Outlook, and Minecraft. As a conse-
quence, erasing a single credential has a widespread effect on multiple online services.

CTRAPS toolkit. We evaluated the Cl and AC attacks using the tools included in the
CTRAPS toolkit. We installed our two Android apps, found in the CTAP clients module, on a
Google Pixel 2 (OS: Android 11), a RealMe 11 Pro (OS: Android 14), and a Xiaomi Redmi Plus
5 (OS: Android 8.1). We used a Proxmark3 RDV4 with a long-range high-frequency antenna to
deploy the proximity Cl attack with an extended NFC range. We tested our Electron app on a Dell
Inspiron 15 3502 laptop (OSes: Ubuntu 22.04.3 LTS and Windows 11 Home) and on a MacBook
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Pro M1 (OS: macOS Ventura 13.4).

3.7.2 Authenticators Results

Table 3.4 shows the evaluation results for the Cl and AC attacks on six FIDO2 authenticators.
All six of them were vulnerable to the CTRAPS attacks, even the FIPS-compliant YubiKey. As
expected, since we attack CTAP at the protocol level, the attacks are effective regardless of the
CTAP transport (i.e., USB or NFC), or the authenticator’s software and hardware. However, AC
does not apply to the four authenticators which do not support the Selection API.

We also found a CredMgmt implementation vulnerability on the YubiKey 5 and YubiKey 5
FIPS, which improperly handles the authenticator’s state for CredMgmt. They allow the client to
call CredMgmt (EnumRpsGetNextRp) without invoking CredMgmt (EnumRpsBegin) first, which is an
illegal state. We exploit this flaw to achieve a zero-click leak of relying party names. Our attack
calls CredMgmt (EnumRpsGetNextRp) to reveal the names of all the relying parties, stored on the
authenticator, except one. This attack bypasses UV and works regardless of the CredProtect
policy. We reported it to Yubico, which assigned it CVE-2024-35311 and addressed it in their lat-
est firmware. However, since YubiKeys do not support firmware updates, this fix is only available
to newer authenticators, leaving older ones vulnerable.

The Cl and AC attacks over NFC have a maximum range of two centimeters on a smartphone.
The Proxmark3 built-in antenna also achieved the same range, which we could extend to six
and a half centimeters by attaching a long-range antenna. Prior work demonstrated that, with
specialized equipment, the NFC range can be extended up to 50 centimeters [119].

We also tested combinations of Cl and AC attacks, to develop more advanced variants. For
example, we found multiple ways to enhance our user tracking attacks (Cl, and AC3). The attacker
can refine the user’s fingerprint using AC; or register new credentials, with metadata of their
choice, on the authenticator using AC,.

3.7.3 Relying Parties Results

As shown in Table 3.5, we tested eight relying parties supporting discoverable credentials and
two employing non-discoverable credentials. Our evaluation includes relying parties because
our attacks affect them, even though we do not utilize WebAuthn. For example, AC, deletes
discoverable credentials, causing the user to lose access to their online account. Although relying
parties using non-discoverable credentials are not vulnerable to AC; and AC,, they remain open
to our factory reset, user tracking, and DoS attacks.

Cly, AC4, and AC, block web authentication to the relying party by deleting the user’s FIDO2
credentials. Cl, and ACj utilize the user identifiers generated by the relying party to track users.
Cls, AC,, ACs, and ACq prevent relying parties from communicating with the authenticator. Among
the relying parties supporting discoverable credentials, we found that only Microsoft and Apple
employ the weak CredProtect=UVOptional policy. This policy allows to bypass UV when access-
ing credentials. As a result, an attacker can deploy a zero-click variant of Cl, and AC; to track
users through their Microsoft and Apple credentials.
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Table 3.5: CTRAPS attacks on ten relying parties. The first and second columns list the relying
parties’ names and identifiers. The third column highlights whether they register discoverable
(Disc, DiscWeak) or non-discoverable (NonDisc) credentials. We indicate with DiscWeak a relying
party using the default and weak CredProtect=UVQOptional policy. Columns four, five, and six
specify the effect of each attack. n/a: the attack is not applicable because the relying party does
not support discoverable credentials.

Rp Rpld Cred Delete Creds Track User DoS Authenticator
Adobe adobe.com Disc Cly, ACy, AC>; Cls, AC3 Cls, AC4, ACs, ACq
Apple apple.com DiscWeak Cly, AC1, AC, Clsy, AC3 Cls, ACy4, ACs5, ACq
DocuSign account.docusign.com  NonDisc Cly, AC, n/a Cls, ACs5, ACq

Facebook facebook.com NonDisc Cly, AC, n/a Cls, ACs5, ACq

GitHub github.com Disc C|1, ACl, A02 C|2, ACg C|3, AC4, AC5, AC6
Hancock hancock.ink Disc Cly, AC1, ACy; Cly, AC3 Cls, ACy4, ACs5, ACq
Microsoft login.microsoft.com DiscWeak Cly, AC1, AC; Cly, AC3 Cls, ACy4, AC5, ACq
NVidia login.nvgs.nvidia.com Disc Cly, AC1, ACy Cly, AC3 Cls, ACy4, AC5, ACq
Synology account.synology.com  Disc Cly, AC1, ACy Cly, ACs Cls, ACy4, AC5, ACq
Vault Vision auth.vaultvision.com  Disc Cly, ACq, ACy, Cly, AC3 Cls3, ACy, ACs5, ACq

3.8 Discussion

We discuss the countermeasures to fix the CTRAPS attacks and the issues we found in the FIDO
reference threat model.

3.8.1 Countermeasures

We discuss eight backward-compliant countermeasures fixing the eleven CTRAPS attacks and
their associated eight vulnerabilities. Each countermeasure addresses a specific vulnerability
(e.g., C1 fixes V1) and helps reduce the CTAP attack surface. Although we have not implemented
these countermeasures, we designed them to be implementable as amendments to the FIDO2
standard or as FIDO2 extensions. Next, we will describe each countermeasure.

C1: Trusted CTAP clients. We address V1 by recommending that the FIDO Alliance pro-
vides a list of trusted CTAP clients. The FIDO ecosystem offers several certifications, including
the FIDO Functional Certification [6] which attests to the interoperability of clients, servers, and
authenticators. We suggest extending this certification to also cover the trustworthiness of CTAP
clients. For instance, FIDO could implement a Software Bill Of Materials (SBOM) solution to
monitor trusted CTAP clients and their vulnerabilities [210].

C2: Authenticator visual feedback. We address V2 by requiring the authenticator to provide
the user with visual feedback regarding the API that was called. For instance, the authenticator’s
LED could blink once for non-destructive API calls and twice for destructive ones. The CTAP wink
command, which blinks the LED, must be disabled during this visual feedback step.

C3: User interaction for UP over NFC. We address V3 by requiring user interaction during
UP checks over NFC. For example, the user could press a button on the authenticator to grant
UP over NFC, similar to UP checks over USB.

C4: Dedicated PIN for destructive APls. We address V4 by introducing a dedicated PIN to
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authorize destructive API calls (e.g., CredMgmt and Reset) and by repurposing the current PIN
to authorize non-destructive API calls (e.g., Selection and GetInfo). The new PIN should have
the same or stricter requirements as the non-destructive PIN (i.e., four to sixty-three Unicode
characters [2]).

C5: Dynamic and UV-protected Credld and Userld. We address V5 by implementing
dynamic Credld and Userld and mandating CredProtect=UVRequired. Credld and Userld should
rotate after a set amount of logins (e.g., every ten logins) or a time interval (e.g., once per month).
Hence, we raise the bar for user profiling and tracking attacks on authenticators. Currently, the
user can indirectly change a Credld by calling MakeCred to generate a new credential for their
account, replacing the old one. However, the user cannot change the Userld, which is determined
by the relying party and, based on our experience, remains fixed to the user account.

C6: Reset must require UV. We address V6 by requiring UV to call Reset. Hence, the user
must authorize a factory reset by entering a valid PIN.

C7: CredMgmt must require UP. We address V7 by requiring UP to call CredMgmt. Hence,
the user must authorize credential deletion one by one, to avoid deleting multiple credentials with
a single API call.

C8: Rate limiting Selection calls. We address V8 by enforcing temporal rate limiting on
Selection to a maximum of three calls within two minutes. We are not expecting issues with
our rate limiting, akin to the limiting already existing for ClientPin(GetPinToken), as a client
typically calls Selection once per session.

Usability of the countermeasures. The deployment of C1 and C8 does not affect usability.
C2 requires the user to notice the authenticator’s visual feedback. Implementing C3 introduces
an additional UP check each time the client connects to the authenticator over NFC, which is
costly. C4 forces the user to remember a second PIN. C5 introduces one UV and UP check
each time the credential and user identifiers are being rotated out, e.g., once per month. The
implementation of C6 would require PIN verification for every call to Reset. C7 would add a
button press each time the CredMgmt API is invoked.

Authenticator with a display. We do not consider adding a display to a roaming authen-
ticator in the list of countermeasures as is not backward-compliant and would require to recall
all vulnerable authenticators without a display. Moreover, for newer authenticators, it entails sig-
nificant hardware and software modifications, such as adding a secure display, a secure display
controller firmware, and a battery, that would introduce usability, performance, and cost issues.

3.8.2 FIDO Reference Threat Model Issues

The FIDO Alliance released a reference threat model [3] outlining security assumptions, goals,
and threats against clients, authenticators, and relying parties. Although non-normative, it is the
only official source detailing the FIDO threat model. After studying it and working on the CTRAPS
attacks, we identified three issues (IS1, 1S2, and IS3) with the FIDO reference threat model:

IS1: Unclear security boundaries. The threat model presents six broad security assump-
tions, but breaks them when discussing threats. For example, SA-4 states that the user device
and applications involved in a FIDO2 operation act as trustworthy agents of the user. This implies
that the client (e.g., browser or mobile app) must be inherently trusted. However, at the same
time, the threat model includes threats that violate SA-4, such as T-1.2.1: FIDO client corruption.
This leads to unclear security boundaries, making it difficult to differentiate trusted components

ORSHIN D5.1 PU Page 70 of 121



D5.1 - Report about Essential and Beyond Essential S&P Guarantees for * N
Inter-device Communication in Restricted Environments

Table 3.6: Comparing prior attacks on FIDO with the CTRAPS attacks. We assign each attack
a complexity and an impact. For example, the complexity for a MitM is Mid, whereas we con-
sider spoofing a client as Low complexity. Similarly, hijacking a session has a Mid impact, while
permanently destroying credentials carries a High impact.

Attack Class Protocol Transp  Surface Impl  Regs Complex Impact
CTAP MitM [96] DH MitM CTAP2.0 All ClientPin X MitM Mid Mid
Privacy leak [96] Eavesdropping  CTAP2.0 All MakeCred X n/a Low Low
Auth rebind [96] Auth rebind WebAuthn All Creds.create X n/a High High
Parallel session [96] Session hijack WebAuthn All Creds.get X n/a Mid Mid
ECDSA extract [123]  Side channel n/a n/a NXP A7005 X Phy access High High
Titan sign in [40] Relay U2F BLE Google acc v Proximity Mid Mid
Evil maid [130] Phy access n/a n/a Auth TEE X Phy access High High
Auth MitM [22] DH MitM CTAP2.0/2.1 usB ClientPin v Mal browser  Mid Mid
Web MitM [22] Session hijack ~ WebAuthn UsSB Creds.get v Mal browser  Mid Mid
Rogue key [22] Auth rebind WebAuthn usB Creds.create v Mal browser  Mid High
FIDOLA [134] Session hijack ~ WebAuthn uSB Creds.get v Malware High Mid
CTRAPS CI Impersonation CTAP2.0/2.1/2.2  All Auth API v Proximity Low High
CTRAPS AC API confusion CTAP2.0/2.1/2.2  All Auth API v MitM Mid High

from ones that could be compromised.

IS2: Missing proximity threats. Although FIDO supports proximity transports like NFC
and BLE, its threat model groups proximity-based threats together with physical access ones.
However, these threats differ in key aspects. For example, proximity threats have a range. Con-
sequently, our proximity Cl and AC attacks do not fit within this threat model.

IS3: Security goals are narrow. The security goals of the threat model are based on [54]
(2006) and [38] (2012). These two research papers outlined the security goals of an ideal au-
thentication scheme, focusing on password-based schemes and web authentication. As a result,
the security goals are too narrow to capture the complexities of the FIDO ecosystem. For exam-
ple, there are no security goals for the Authenticator API, that could address the AC attacks, or
discoverable credentials, that are relevant to AC;, Cl;, and AC,.

3.9 Related Work

We present related work on FIDO, covering existing attacks, formal analysis, FIDO extensions
and enhancements, usability studies, and surveys.

Attacks on FIDO(2). Researchers found attacks on older FIDO versions (UAF, U2F), such
as authenticator rebinding, parallel sessions, and multi-user attacks [104, 127], USB HID man-
in-the-middle attacks [41], BLE pairing [40], relying party public key substitution [170], bypassing
push-based 2FA [114], real-time phishing [191], and side channel attacks [160, 117]. FIDO2 was
also found vulnerable to deception [134], misbinding [212], physical [123, 130], and rogue key or
impersonation attacks [121, 22]. Moreover, researchers found issues on lower layers trusted by
FIDO2, including an IV reuse on the Samsung Keystore [180]. No prior attack investigated client
impersonation or API confusion on CTAP, including its /atest version.

Formal analysis. The formal analysis and verification community extensively researched
FIDO. The community formally verified FIDO’s Universal Authentication Framework (UAF) [152,
81], FIDO2 (including its privacy, revocation, attestation, and post-quantum crypto) [21, 29, 99,
30]. Yubico proposed a key recovery mechanism based on a backup authenticator that was
proven secure using the asynchronous remote key generation (ARKG) primitive [91]. Existing
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research on formal analysis is not covering our Cl and AC attacks.

Extensions. FIDO supports extensions to add optional features in a backward-compliant
way. For instance, FelDO [164] proposes an extension to recover a FIDO2 credential using an
electronic identifier. Extensions are not secure by default, and researchers proposed a fix to
protect them against MitM attacks [44]. We suggest to update the CTAP specification rather than
implementing our countermeasures as FIDO extensions that would be optional and insecure by
design.

Enhancements. Researchers proposed (cryptographic) enhancements to FIDO protocols.
In [94], the authors present a hybrid post-quantum signature scheme for FIDO2 and tested it
using OpenSK [95] (which we exploit in this work). In [100], the authors propose a global key
revocation procedure for WebAuthn that revokes credentials without communicating to each in-
dividual relying party WebAuthn server. True2F [65] presented a backdoor-resistant FIDO U2F
design, protecting the authenticator from a malicious browser by requiring the authenticator inter-
action during every authentication, and from fingerprinting by rate limiting credential registration.
Proposed enhancements are not addressing our attacks, which are effective regardless of the
FIDO2 cryptographic primitives.

Usability. Researchers performed extensive usability studies on FIDO U2F [59, 64, 55, 125],
FIDO2 roaming authenticators [78, 149], passkeys [118], and cross-site 2FA [132]. Our paper is
orthogonal to usability studies.

Surveys. There are several FIDO survey papers. In [9] the authors describe the evolution of
FIDO protocols, security requirements, and adoption factors. In [133], the authors surveyed the
adoption of passwordless authentication among a large user base, considering users’ percep-
tions, acceptance, and concern with single-factor authentication without passwords. Our paper is
orthogonal to surveys.

3.10 Conclusion

No prior work assessed the CTAP Authenticator API, a critical surface exposed by a client to an
authenticator to manage, create, and delete credentials. We address this gap by presenting the
first security and privacy evaluation of the CTAP Authenticator API. We uncover two classes of
protocol-level attacks that abuse it. The Cl attacks spoof a CTAP client to a target authenticator.
The AC attacks leverage a MitM position to change CTAP API calls made by the user to an API
desired by the attacker while stealing their authorizations. They utilize APl confusion, a novel
attack strategy within FIDO2.

We uncover eleven Cl and AC attacks, impacting millions of FIDO2 users. They can be
deployed by a proximity-based or a remote attacker. For example, they delete FIDO2 credentials
and master keys (security breach) and track users through their credentials (privacy breach).
Our attacks are effective on the entire FIDO2 ecosystem as they target eight vulnerabilities we
discovered in the CTAP specification. These flaws include the lack of CTAP client authentication
and improper API authorizations. The CTRAPS attacks are low-cost, as they do not require
specialized equipment, and stealthy, as they do not trigger unexpected user interactions.

We develop the BLUFFS toolkit to test our attacks with a cheap setup. It includes a CTAP
testbed with a virtual relying party and a virtual client, four CTAP clients that deploy our attacks
(e.g., Android apps and Proxmark3 scripts), and an enhanced Wireshark dissector for CTAP. We
successfully exploit six authenticators and ten relying parties from leading FIDO2 players such

ORSHIN D5.1 PU Page 72 of 121



D5.1 - Report about Essential and Beyond Essential S&P Guarantees for * ORe
Inter-device Communication in Restricted Environments ReHIR

as Yubico, Feitian, Google, Microsoft, and Apple. We design eight legacy-compliant countermea-
sures to fix our attacks and their root causes.

We share three lessons we learned about FIDO2 credential storage and passwordless-
ness, which are valuable for the current transition from single-factor authentication to 2FA and
passkeys [61, 163]: (i) Being stored on the authenticator, FIDO2 discoverable credentials are
protected from third-party data breaches. However, this introduces new attacks that work ex-
clusively on discoverable credentials (i.e., Cl,, AC;, AC3, and AC,). (ii) FIDO2 users cannot
prevent attacks targeting discoverable credentials, as they cannot choose the type of credentials
they register and their protection policies, decided by the relying party and the client instead.
(iii) The FIDO2 core message is to steer away from passwords because they are vulnerable to
phishing. However, digging deeper, we realized that FIDO2 still relies on phishable mechanisms,
even for passwordless authentication. For instance, a passwordless credential is protected by an
alphanumeric PIN (i.e., a phishable sequence the user must remember).

All experiments in this study were conducted ethically and solely on authenticators and ac-
counts under our control, with no involvement of third-party personal data. To support repro-
ducibility and advance open science, we are releasing our artifacts, including the CTRAPS toolkit.
Our toolkit is securely hosted in a repository at https://github.com/Skiti/CTrAPs. We al-
ready responsibly disclosed our findings to all affected parties, including the FIDO Alliance, and
we respected their timeline.
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Chapter 4

BlueBrothers: Three New Protocols to
Enhance Bluetooth Security

4.1 Abstract

The Bluetooth standard defines pairing and session establishment to secure the communications
of the Bluetooth ecosystem. Despite extensive research, these protocols still suffer from critical
design vulnerabilities, such as a lack of message integrity, leading to large-scale and impactful
attacks, including impersonation and machine-in-the-middle ones. Moreover, the protocols’ spec-
ifications are complex, scattered, and informal, making implementing them and verifying their
security properties challenging. These issues justify the need for new Bluetooth security proto-
cols that are unaffected by current design issues and have novel security guarantees, such as
forward and future secrecy. These protocols should also be simple, easy to update, formally
modeled, and verified to prove their security properties.

We present BlueBrothers, three novel Bluetooth security protocols, which are secure by de-
sign, simple, and open. BB-Pairing is a pairing and session establishment protocol replacing the
one in the standard based on a long-term symmetric key, with one using static and ephemeral
key pairs. BB-Session is a better alternative to symmetric session establishment in the standard
based on asymmetric key agreement. Unlike standard session establishment, it requires devices
to share static public keys exchanged via BB-Pairing and provides inter-session future secrecy.
BB-Rekey is a new session key refresh protocol providing intra-session forward and future se-
crecy, which is also lacking in the standard.

We implement BlueBrothers for Bluetooth Low Energy (BLE) by modifying NimBLE, a production-
grade and open-source BLE stack, and for Bluetooth Classic (BC) on top of the Linux BlueZ APIs.
We formally model and verify the three protocols using ProVerif. The formal verification proves
they benefit from integrity, confidentiality, authentication, and forward and future secrecy against
active and passive attackers. We evaluate their performance in worst-case conditions using con-
strained BLE devices (nRF52). Our results show that BB-Pairing and BB-Rekey have up to 55.6%
and 29.3% less latency compared to the standard Bluetooth protocols, while BB-Session intro-
duces some latency overhead. All the protocols have a negligible impact on real-world power
consumption, similar to or lower than their standard counterparts.
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4.2 Introduction

Bluetooth is a pervasive wireless communication technology defined in the Bluetooth Core Spec-
ification document v6.1 [37], maintained by the Bluetooth Special Interest Group (SIG). We re-
fer to the specification document as the standard. The standard defines two Bluetooth modes:
Bluetooth Classic (BC) for high-throughput applications and Bluetooth Low Energy (BLE) for low-
power scenarios, and this work covers both of them.

The security and privacy of Bluetooth rely on two protocols defined in the standard called
pairing and session establishment. Pairing is a key agreement protocol that derives a long-term
symmetric key called Pairing Key (PK) and supports user-assisted or out-of-band authentication.
Session establishment derives a fresh Session Key (SK) from the PK and random nonces, then
encrypts a session with it. These protocols protect the link layer (stack) and are employed by
billions of heterogeneous devices, including mobile, 10T, and wearable ones. Hence, a design
vulnerability on pairing or session establishment has critical and widespread consequences on
the security of Bluetooth.

We review the security of pairing and session establishment and find that they are still af-
fected by critical design vulnerabilities enabling seventeen attacks, including impersonation and
Machine-in-the-Middle (MitM) (see Table 4.1). We isolate four design vulnerabilities categories
enabling these attacks: no message integrity (C1) [15, 198, 56], no replay and reflection protec-
tion (C2) [57], weak or no forward and future secrecy (C3) [10], and weak or no entity authenti-
cation (C4) [18, 14, 208]. For example, an attacker can impersonate BC devices by chaining the
KNOB, BIAS, and BLUFFS attacks [18, 14, 10] or MitM BC and BLE pairing via method confusion
attacks [198].

Another critical issue with Bluetooth security stems from the complexity of its specification,
which is three-thousand-page-long. The details about pairing and session establishment are
scattered throughout multiple sections, and no reference implementation is publicly available.
This complexity makes the two security protocols challenging to understand, implement, update,
and formally model and analyze, as highlighted by previous research [209, 181, 112]. Moreover,
it results in critical implementation vulnerabilities adding to the design flaws discussed earlier and
leading to severe threats, like Denial of Service (DoS) and Remote Code Execution (RCE) [175,
93].

Motivated by current design and complexity issues with Bluetooth security protocols, we
unveil BlueBrothers, three new Bluetooth security protocols. They are called BB-Pairing, BB-
Session, and BB-Rekey and can replace pairing and session establishment at the link layer, or
vendors can use them at the application layer. The protocols require security by design, e.g., ad-
dress C1-C4 and the seventeen associated attacks from Table 4.1. Moreover, their specification
is open and straightforward to simplify formal modeling and verification.

BB-Pairing replaces pairing and its symmetric PK with a pairing and session establishment
protocol based on static-ephemeral key pairs. Unlike pairing, it provides message integrity across
all phases, strong associations, protection against replay and reflection attacks, and secure ses-
sion establishment. Moreover, it includes a novel hybrid post-quantum (PQ) key agreement to
provide a session with post-quantum security properties.

BB-Session takes over symmetric session establishment with an asymmetric protocol, relying
on static keys securely exchanged using BB-Pairing and ephemeral keys. Unlike session estab-
lishment, it is authenticated, integrity protected, resilient against replay and reflection attacks, and
provides a hybrid PQ key agreement. Moreover, it provides inter-session forward secrecy, two
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new Bluetooth security properties protecting past sessions against static private key compromise.

BB-Rekey is a new protocol to refresh SK within a session, unlike session establishment that
requires aborting a session to update SK. It leverages an encrypted and authenticated channel
to perform the rekey, which can be symmetric or asymmetric. The symmetric rekey is based on
fresh nonces and provides intra-session forward secrecy. The asymmetric rekey uses a Diffie-
Hellman (DH) key exchange and guarantees intra-session forward and future secrecy. These
two new Bluetooth security properties protect past and future messages within a session if SK is
compromised.

We formally verify the security of the BlueBrothers protocols using ProVerif, an automated
protocol verifier [31]. Specifically, we test BB-Pairing and BB-Session for secrecy, integrity, and
authentication, while BB-Rekey for future secrecy against short-term key compromise. We con-
firm these properties hold, showing the security of our protocols.

We implement the BlueBrothers protocols for BLE and BC. The BLE implementation is based
on NimBLE [19], an open-source BLE stack. It shows that link layer integration with existing
devices is possible. The BC implementation relies on Linux and BlueZ and demonstrates that
the protocols can also be used standalone at the application layer. Both implementations are
reproducible, using open-source software and low-cost and available hardware. They are Proof
of Concept (POC) and should not be used in production.

We evaluate the latency and power consumption performances of the BlueBrothers protocols
against their standard counterparts. Our setup consists of constrained BLE devices (nRF52
boards) running pairing, session establishment, and rekeys. Our experimental results show that
BB-Pairing and BB-Rekey reduce the average latency by up to 60% and power consumption by
up to 66%. While BB-Session introduces a 2x latency overhead due to asymmetric operations,
its power consumption is negligible.

We summarize our contribution as follows:

» We review pairing and session establishment from the standard and find that they are af-
fected by design and complexity issues leading to critical attacks, including impersonation
and MitM. We extract four vulnerability classes (C1-C4) and seventeen attacks effective on
billions of BC and BLE devices.

» We design BlueBrothers, three new Bluetooth security protocols to replace pairing and ses-
sion establishment. They provide stronger security guarantees and a simple and open de-
sign. The protocols address C1—-C4 and related attacks and provide new Bluetooth security
properties like hybrid post-quantum intra- and inter-session forward and future secrecy.

+ We formally model the protocols and verify their security properties using ProVerif. We
implement them for BLE at the link layer (NimBLE) and BC at the application layer (Linux
and BlueZ). We evaluate their latency and power consumption on constrained BLE devices
(nRF52 boards) and confirm that they introduce minimal overheads or even improve upon
their counterparts in the standard.

4.3 Bluetooth Preliminaries

Bluetooth (BT) is a pervasive wireless technology supporting many use cases, like audio stream-
ing, data transfer, and device control. It is specified in the Bluetooth standard, whose latest ver-
sion is v6.1 [37]. There are two BT transports: BC for high-throughput and connection-oriented
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Figure 4.1: BT pairing overview. A Central and a Peripheral negotiate pairing features, agree on
a DH shared secret (SS), run one of the four association protocols, and derive a long-term PK. |
indicates a concatenation.

wireless services and BLE for ultra-low-power and connection-less scenarios. In a BT connection,
the initiator is called Central, while the responder is called Peripheral.

BT has two logical components, the Host and the Controller, which communicate using the
Host Controller Interface (HCI). The Host implements high-level protocols and functionalities,
such as logical link setup via the Logical Link Control and Adaptation Protocol (L2CAP). The
Controller deals with low-level and time-critical operations, such as physical and link layer man-
agement. The HCI serves as the communication bridge between Host and Controller, allowing
them to exchange commands, events, and data.

The standard defines pairing and session establishment security protocols to protect Blue-
tooth communications. The specification of these protocols is complex and differs between BC
and BLE. Moreover, it involves (legacy) sub-protocols, modes, features, negotiations, and crypto-
graphic primitives.

Pairing and session establishment have two security modes called Legacy Secure Connec-
tions (LSC) and Secure Connections (SC). LSC employs legacy cryptographic primitives such
as the EO stream cipher [87]. SC uses FIPS-compliant primitives, including Elliptic Curve Diffie-
Hellman (ECDH) and AES-CCM. A device can enforce SC and refuse to pair and connect with
LSC devices by setting Secure Connections Only (SCO) mode, also known as FIPS mode.

4.3.1 Bluetooth Pairing

Pairing (also referred to as Secure Simple Pairing (SSP) for BC) is a key establishment protocol
that derives a long-term symmetric key called PK. It relies on the Trust on First Use (TOFU)
principle and provides optional authentication by requiring user interaction or devices to exchange
secrets out-of-band. It does not rely on trusted third parties.

Figure 4.1 shows an overview of BT pairing, which abstracts both BC SSP and BLE SC pair-
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Figure 4.2: Bluetooth NC association. The devices share their public keys K™, pick
a random value N, and the Peripheral computes the confirmation value as Cp equal to
KDF (K& |KE™|Np|0). The Central checks Cp, and then both devices compute the values to
display to the user as (V¢)Vp = KDF(KE"™|KE"|N|Np). The user confirms the association if
the values match. Otherwise, it cancels it. JW has the same messages but skips the user inter-
action part. The dashed messages represent user-device interactions.

ing. The devices exchange their identities (C, P) and pairing features (F¢, Fp). The features in-
clude the supported security mode, 1/O capabilities, and Cross-Transport Key Derivation (CTKD).
The latter enables pairing once and deriving two PKs, one for BC and one for BLE, and is avalil-
able for devices supporting BC and BLE. If pairing is over BLE, the features include an integer
between 7 and 16 to negotiate the PK entropy.

Next, the devices pick ECDH key pairs, exchange their public keys (KE“, KEu), and compute
a DH shared secret (SS). Depending on their input/output (1/0O) capabilities, they engage one of
the four association protocols: JustWorks (JW), Numeric Comparison (NC), Passkey Entry (PE),
or OOB. JW does not require user interaction but is not authenticated, while the other three
provide authentication relying on user assistance of a pre-shared key.

Figure 4.2 shows NC association. The devices share their public keys K"*", then they both
pick a random value N, and the Peripheral computes the confirmation value as Cp equal to
KDF(K&"|KE™|Np|0). The Central checks Cp, and then both devices compute the values to
display to the user as (V¢)Vp = KDF(KE™|KE"|Ng|Np). The user confirms the association if
the values match. Otherwise, it aborts pairing. We represent the user-device interaction with
dashed lines.

JW association uses the same messages of NC, but it skips the interaction with the user.

After association, the devices derive PK using a Key Derivation Function (KDF), taking as
inputs the concatenation of their identities, pairing features, and keyed with SS. For BLE, the PK
length is adjusted according to the negotiated entropy values.
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Figure 4.3: BT session establishment overview. A Central and a Peripheral share PK, negotiate
their session features, exchange session key diversifiers, derive SK from PK and the diversifiers,
and protect the session with SK. BC also includes PK mutual authentication and SK entropy
negotiation phases before the exchange of key diversifiers.

4.3.2 Bluetooth Session Establishment

Session establishment enables paired devices to generate a session key (SK) to encrypt their
communication. The SK is derived from the PK and fresh random nonces. Typically, devices pair
once over BC or BLE and then automatically establish secure sessions once in range.

Figure 4.3 provides an overview of BT session establishment mapping to BC and BLE SC
session establishment. The devices share PK and their identities and start the protocol by ex-
changing their session features (F¢, Fp), including their security mode. For BC, the protocol also
includes PK mutual authentication based on challenge-response and SK entropy negotiation not
shown in the figure.

Then, the devices exchange key diversifiers (KDo, KDp) and derive from them a fresh SK
using a KDF keyed with PK. The messages are not encrypted, integrity-protected, or authen-
ticated at this stage. Finally, the devices encrypt their messages with SK using AES-CCM, an
Authenticated Encryption with Associated Data (AEAD) cipher, or the EO stream cipher that does
not provide message integrity.

SK provides forward and future secrecy against SK compromise. The attacker can decrypt
messages protected by the compromised SK but not ones of prior or future sessions as they use
different SKs. The standard allows refreshing a SK by terminating the session and starting a
new one but does not allow an intra-session rekey. A PK compromise breaks forward, and future
secrecy as the attacker can compute any SK from the PK and the plain text key diversifiers.

4.4 Motivation

We review the state-of-the-art Bluetooth security and isolate two open challenges: 1) pairing and
session establishment are affected by critical design vulnerabilities leading to impactful and large-
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Table 4.1: BC and BLE pairing and session establishment are vulnerable to seventeen design-
level attacks. The attacks span from 2019 to the current day and cover different protocol phases,
i.e., Association (AS), Feature Negotiation (FN), and Key Derivation (KD). They are effective
against any SC and LSC security modes (SM). They are enabled by four vulnerability categories
(C1-C4).

Attack Yr Phase SM Vulns.

Pairing

BLE Pairing confusion [56] 23 FN,AS SC Ct

BC Pairing confusion [56] 23 FN,AS SC Ct
BLE Method confusion 2 [56] 23 FN, AS SC C1

BC Method confusion 2 [56] 23 FN,AS SC Ci1

BC BLUR [16] 22 FN SC C1,C2
BLE BLUR [16] 22 FN SC C(C1,C2
BC Method confusion [198] 21 FN,AS SC Ci1
BLE Method confusion [198] 21 FN,AS SC Ci1

BC BlueMirror BT-A [57] 21 AS LSC C1,C2
BLE BlueMirror BLE-A[57] 21 AS LSC Cf1,C2
BLE BlueMirror PE-A1[57] 21 AS SC C1,C2
BLE BlueMirror PE-A2 [57] 21 AS SC C1,C2

BLE KNOB [15] 20 FN SC Ct
Session Establishment

BC BLUFFS [10] 23 KD SC C3

BC BIAS [14] 20 FN SC C2,C4
BLE BLESA [208] 20 KD SC C4

BC KNOB [18] 19 FN SC C2,C4

scale attacks, like device impersonation, 2) the specification of pairing and session establishment
is complex, causing problem in maintenance, updates, formal modeling, and security analyses
and resulting in further vulnerabilities and attacks, such as RCE ones. These two challenges,
which are detailed next, motivate this work.

4.4.1 Bluetooth Security Design Issues

We conducted a Bluetooth security survey and found seventeen attacks exploiting design issues
on pairing and session establishment. The attacks, listed in Table 4.1, span from 2019 to cur-
rent days and affect Bluetooth versions up to v6.1, SC and LSC modes, and different protocol
phases. Seventeen of them target pairing, and four exploit session establishment. They result
in eavesdropping, impersonation, and MitM threats, breaking Bluetooth’s confidentiality, integrity,
and authenticity.

Pairing Issues

Pairing feature negotiation (FN) and association (AS) phases are vulnerable. Attacks on FN
exploit the lack of message integrity to downgrade the entropy of PK with the KNOB attack [15].
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Alternatively, they can overwrite a PK across BLE and BC with the BLUR attacks [16]. The
BlueMirror attacks [57] target the AS phase and exploit the lack of message integrity and reflection
protection to bypass user-assisted authentication. Other attacks target both FN and AS. For
instance, the Method and Pairing Confusion attacks [56, 198] exploit the lack of message integrity
in both phases to bypass user-assisted authentication.

Session Establishment Issues

Session establishment FN and key derivation (KD) are also vulnerable because they lack mes-
sage integrity, entity authentication, and protection against message replay and reflection. This
happens despite the availability of a shared PK. An attacker impersonates a BC device without
knowing PK by chaining the KNOB and BIAS attacks [18, 14]. Alternatively, they spoof a BC
device across secure sessions by forcing the reuse of a weak SK using the BLUFFS attacks [10].
For BLE, the adversary spoofs a BLE Peripheral during a secure reconnection by aborting SK
derivation via the BLESA attack [208].

Vulnerability Categories

We analyzed the root causes of the seventeen attacks in Table 4.1 and isolated four design
vulnerability categories:

C1: No message integrity

C2: No replay and reflection protection

C3: Weak or no forward and future secrecy
C4: Weak or no entity authentication

As shown in the last column of Table 4.1, the seventeen attacks exploit at least one of the four
categories. For instance, the pairing confusion attacks [56] abuse lack of integrity protection (C1),
the BIAS attacks [14] exploit the lack of reflection protection (C2) and the weak entity authentica-
tion (C4), and the BLUFFS attacks take advantage of forward and future secrecy issues among
sessions (C3).

4.4.2 Complex Bluetooth Security Specification

Another issue with Bluetooth security is that the pairing and session establishment specification
is complex. It includes sub-protocols, features, and cryptographic primitives, changing for BC
and BLE according to the association, security mode, and I/O capabilities supported by a device.
Moreover, the specification is informal and scattered across a 3500-page core document, errata,
and supplementary (paywalled) files. Hence, it is hard to understand, implement, update, and
conduct security analyses on pairing and session establishment.

Previous works, like [209, 181, 112, 208], highlight this complexity and provide formal models,
covering some of the pairing and session establishment modes and related issues and attacks
from Table 4.1. However, no formal model covers all pairing and session establishment combina-
tions for BC and BLE. This is mainly due to the complexity of the standard, which, for instance,
increases among Bluetooth version updates.

This complexity also results in numerous implementation mistakes and associated threats,
further complicating the situation for a Bluetooth defender. Researchers found critical implementation-
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level flaws in BC and BLE stacks, leading to DoS and RCE [175, 145, 92], or security issues such
as skipping DH confirmation, installing a zeroed PK [93].

4.5 BlueBrothers Protocols

We introduce BlueBrothers, three new security protocols to address current Bluetooth security
design flaws and specification complexity as motivated in Section 4.4. The protocols offer security
by design and address the seventeen attacks shown in Table 4.1 and the related four vulnerability
categories (C1—-C4). They provide new security guarantees compared to pairing and session
establishment in the standard, like integrity-protected feature negotiation, intra- and inter-session
forward and future secrecy, and hybrid post-quantum (PQ) key agreement. They rely on open
and standard cryptographic primitives and mechanisms.

Their design is simple, making them easy to implement and integrate on existing Bluetooth
devices as replacements for pairing and session establishment at the link layer or as standalone
applications. Next, we describe their threat model, requirements, design, and integration on
Bluetooth.

4.5.1 BlueBrothers Threat Model

System model. We consider two entities that aim to securely communicate over Bluetooth (BC
and BLE) using the BlueBrothers protocols. The entities represent generic Bluetooth devices with
any 1/O capability and security settings. This assumption is important as our protocols should pro-
tect any Bluetooth use case. The entity that initiates a protocol acts as Central, and the responder
acts as Peripheral. We do not set requirements such as a trusted Public Key Infrastructure (PKI)
or globally pre-shared keys as they are unrealistic for Bluetooth. We also assume cryptographic
primitives to be secure, including random number generators.

Attacker model. We assume an attacker in Bluetooth range with the victims aiming at ex-
ploiting design issues in the BlueBrothers protocols. They aim to break the BlueBrothers’s se-
curity guarantees, including confidentiality, integrity, authenticity, inter-session forward secrecy,
intra-session forward, and future secrecy.

The attacker has the capabilities of a Dolev-Yao adversary [70], e.g., intercept, inject, modify,
drop, replay, reflect, or redirect messages and initiate parallel protocol runs. They can access
public information about the victim, such as their Bluetooth name, address, and advertised capa-
bilities. They can attempt to launch any attack listed in Table 4.1 and abuse the related vulnera-
bility categories (C1—C4). Moreover, we assume that 1) an attacker can somehow obtain a SK to
attempt breaking intra-session forward and future secrecy and 2) a passive attacker can obtain a
long-term static private key to break inter-session forward secrecy.

The attacker cannot compromise standard cryptographic building blocks like AES, ECDH, or
HKDF. Physical attacks, like side-channel, fault injection, or implementation issues, are out of
scope as the attacker focuses on design flaws.

4.5.2 BlueBrothers Requirements

R1: Secure by Design. The protocols should protect against the four vulnerability categories
(C1-C4) and seventeen related attacks including the ones shown in Table 4.1. They should
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add new Bluetooth security guarantees to defend against emerging attacks, like PQ ones.
The protocols and associated security properties should be formally modeled and verified.

R2: Simple. The protocols’ design should be simple and representable with formal notation like
message sequence charts (MSC) and symbolic models. This results in protocols that are
easy to understand, analyze, verify, implement, and update.

R3: Open. The protocols’ specification should rely on open and standard cryptographic primi-
tives and mechanisms. Moreover, it should itself be public. These allow anyone to access,
analyze, and use our protocols and speed up their adoption on a large scale.

4.5.3 BB-Pairing Design

Central Peripheral
[P ]
Pick E¢", B¢
Egllby FC
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Figure 4.4: BB-Pairing MSC. The devices securely negotiate their feature, authenticate using
association, securely exchange their static keys, and establish a secure session protected by a
session key (K). The hash transcript (T) is used to authenticate and integrity protect the mes-
sages. If PQDH is negotiated, the ephemeral key exchange relies on Post-Quantum Diffie-
Hellman (PQDH), thus achieving a hybrid PQ key agreement.
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The first BlueBrothers protocol is called BB-Pairing and replaces pairing and its PK with an
authenticated key agreement based on static and ephemeral asymmetric keys. Unlike pairing,
it provides authenticated and integrity-protected feature negotiation, secure associations, pro-
tection against message replay and reflection, identity hiding, and hybrid PQ key agreement.
Moreover, it includes a mutually authenticated secure session establishment protected against
key downgrade and reuse, as well as message replay and reflection, achieving inter-session
forward and future secrecy. Hence, the protocol is not affected by C1-C4.

Figure 4.4 presents the BB-Pairing MSC. Next, we describe its four phases: feature negoti-
ation, association, static key exchange, and secure session. During a protocol run, the devices
maintain and update a message hash transcript (T) that guarantees integrity and authentication
in combination with Message Authentication Code (MAC) or AEAD encryption. The protocol is
aborted whenever a MAC check or AEAD decryption fails.

Feature negotiation

The Central picks an ephemeral key pair (E&™, EE™) and transmits the public key along with its
pairing features (F¢) to Peripheral. The features include the supported associations and hybrid
PQDH and do not include key entropy to avoid key downgrade attacks. When the PQ Hybrid
mode is negotiated, after the static key exchange, the devices use two extra messages to perform
a PQDH key agreement. Using a hybrid PQ key agreement allows for generating a SK with PQ
contributions, thus addressing an attacker with post-quantum capabilities.

The Peripheral picks an ephemeral key pair (EL™, EE'P), computes K, as a DH shared secret.
Then, it sends Central its ephemeral public key, pairing features (Fp), and a MAC of the current
hash transcript (T;) keyed with K; to authenticate the message. The Central computes K;, Ty,
and verifies the message integrity. The FN phase is integrity protected, but it does not provide
entity authentication, as the devices do not authenticate each other yet.

Association

BB-Pairing includes new NC, OOB, PE, and JW association methods that are more secure and
have less computational overhead than the standard ones. The devices determine the associa-
tion method based on their features using the same logic as the standard, e.g., if both devices
support NC, they use it.

New NC. Figure 4.5 illustrates BB-Pairing’s NC. The devices use the shared K; and T to
generate N¢ and Np as HMAC-based One-time Password (HOTP) [141]. They display the values
to the user. If the user confirms that they are the same, the devices derive K, using a KDF whose
inputs are N¢=Np and K. Otherwise, BB-Pairing is aborted.

New OOB. BB-Pairing’s OOB assumes the existence of a pre-shared secret (psk) distributed
to the devices using other mechanisms, e.g., via Near Field Communication (NFC). The devices
then compute K, = KDF¥, (psk). This association method does not require user interaction and
relies on the same assumption of the standard OOB (i.e., the presence of an eternal communi-
cation channel).

New PE. PE for BB-Pairing is shown in Figure 4.9. The devices share K; and T; and compute
N¢ and Np as for NC. The Central displays N to the user who inputs it on Peripheral. If the user
input value is equal to Np, the devices compute K, from N and K;. Otherwise, BB-Pairing is
aborted.
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Figure 4.5: BB-Pairing new NC. The devices compute and display N and Np. The user confirms
that they are the same and the devices derive K.

New JW. BB-Pairing supports JW to cope with Bluetooth devices with no 1/O capabilities.
During JW, the devices computes K, from T; and K; without user interaction. There is no
authentication as in the standard JW.

BB-Pairing NC and PE associations are more secure than the ones in the standard. The
standard association methods rely on plaintext public keys and random nonces to compute the
confirmation value and do not provide message authentication or integrity. Moreover, they are
not resilient against message reflection. BB-Pairing associations instead rely on K; and T; to
compute the confirmation values and K,, which is then used to encrypt and authenticate the
upcoming messages. This ensures message integrity, and since the phase is bound to the fresh
ephemeral keys, it also enables protection against replay and reflection attacks.

Static key exchange

In Figure 4.4, the devices perform a secure static key exchange after the association phase. The
Central updates the transcript (T,) and sends its SE*P encrypted and authenticated using K, and
T,. The Peripheral updates the hash transcript (Ts), decrypts and stores the received public key,
then updates the hash transcript again (Ts) and sends its SEP encrypted and authenticated using
K, and T3. The Central updates the transcript (T'3) and decrypts and stores the peripheral static
public key.

The static keys represent the devices’ identity. They replace the PK to mitigate key compro-
mise attacks and strengthen forward and future secrecy. Without the PK, an attacker can only
impersonate a trusted device if they compromise the static private key, for which they need to
break the DH key exchange.

Using freshly generated ephemeral keys ensures session key separation, as even if an at-
tacker compromises a static private key, they cannot decrypt past or future session messages.
Moreover, since the static key exchange is encrypted, this phase provides identity hiding and
protects against tracking attacks via static credentials. The keys are generated once during the
device bootstrap and stored in memory or secure storage if available. They are not changed
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unless a device is factory reset or the user explicitly changes them.

Secure session

At the end of BB-Pairing the two devices establish a secure session, unlike the standard pairing
protocol. They both compute a session key K using a KDF keyed with K5 and input with the con-
catenation of a DH secret computed from the static keys and T5. Then, they run an encrypted and
authenticated session using K. If the devices negotiated PQ security in the feature negotiation,
two extra messages are exchanged to perform a PQDH key derivation, and the result is mixed
with K to obtain the final session key. The PQDH key exchange is encrypted and authenticated
using K.

Since K depends on a fresh DH secret, the session benefits from forward and future secrecy,
as even if a static private key is compromised, the attacker cannot decrypt future session mes-
sages unless it breaks the ephemeral DH key exchange. Moreover, the session is not vulnerable
to session key reuse and device impersonation attacks as the entities and their key diversifiers
are mutually authenticated, and the latter cannot be replayed or reflected.

4.5.4 BB-Session Design

The second BlueBrothers protocol is called BB-Session. It replaces the symmetric session estab-
lishment in the standard with an asymmetric authenticated key agreement and session protocol.
It requires two devices to share their static public keys via BB-Pairing. Unlike session estab-
lishment, it provides mutual authentication, protection against key downgrade and reuse, inter-
session future secrecy, and protection against replay and reflection attacks. Hence, it avoids
C1-C4 by design.

Figure 4.6 shows BB-Session MSC. The protocol has two phases: feature negotiation and se-
cure session. Like for BB-Pairing, the devices maintain and update T for messages and protocol
integrity.

Feature negotiation

BB-Session’s feature negotiation is authenticated, integrity protected, and immune to message
replay and reflection. The Central generates an ephemeral key pair (E5*, EE™), derives K; and
update the hash transcript T;. Then, it sends to Peripheral its ephemeral public key, session
features F, and a MAC authenticating T, with K;. The features include support for PQDH and
lack key entropy to avoid entropy downgrades.

The Peripheral computes K;, T, and verifies the MAC. It generates an ephemeral key pair
(Ebub EBM), derives a session key (K) using a KDF keyed with K; and as input the DH shared
secret. Then it updates the hash transcript (T). Then, it sends Central its ephemeral public key,
session features, and a MAC keyed with K authenticating Ts.

The Central derives K mirroring the Peripheral computations, updates the hash transcript
(Ts), and verifies the message integrity and authenticity. If the devices negotiate PQDH, they
also derive PQ key pairs, securely exchange their PQ public keys, compute a PQ DH shared
secret, and mix it with K using a KDF, achieving a hybrid PQ key agreement. These optional
messages and computations are not shown in Figure for readability 4.6.
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Verify MAC
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Verify MAC

AEAD Session with K

Figure 4.6: BB-Session MSC. The devices use the shared static keys to authenticate the
ephemeral key exchange and securely negotiate features. Then they derive a session key (K)
and securely communicate.

Secure session

The devices run an AEAD session using K. We note that such a session provides the same
security properties as a BB-Pairing session, including strong inter-session forward and future
secrecy and hybrid PQ key agreement.

4.5.5 BB-Rekey Design

BB-Rekey is the third BlueBrothers protocol. It runs over an encrypted and authenticated session
established with BB-Pairing or BB-Session. It addresses C4 by providing intra-session forward
and future secrecy, two new Bluetooth security properties to protect past and future messages
within a session, even if the current K is compromised. The Central dynamically initiates the rekey
procedure and can be asymmetric or symmetric. The asymmetric rekey provides intra-session
forward and future secrecy using a DH key exchange, while the symmetric rekey provides intra-
session forward secrecy using nonces.
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Central Peripheral
@
< AEAD Session with K >
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SS=DH(E¢", Ep") SS=DH(Ep", E¢")

Kn=KDFk(SS) Kn=KDFk(SS)

AEAD Session with Ky
— —

Figure 4.7: BB-Rekey new asymmetric rekey MSC. The devices exchange ephemeral public keys,
compute a DH shared secret, and derive a new session key (Ky) without aborting the session.

Asymmetric rekey

Figure 4.7 depicts BB-Rekey’s asymmetric rekey MSC. The devices pick ephemeral key pairs and
exchange their public keys. They compute SS and use it to derive the new session key (Ky) via a
KDF keyed with K. The asymmetric rekey provides intra-session future secrecy because even if
the attacker compromises K and eavesdrops on the rekey messages, they cannot know SS as it
results from a DH computation. Hence, they cannot compute the new session key (Ky).

Symmetric rekey

BB-Rekey’s symmetric rekey is shown in Figure 4.8. The devices pick and exchange two nonces
(R¢, Rp). Then, they derive Ky using a KDF keyed with K and input with the nonces’ concate-
nation. The symmetric rekey provides intra-session forward secrecy as an attacker who knows
Ky cannot compute past messages encrypted with K as they cannot invert the secure one-way
function employed by KDF.

4.5.6 Protocols Integration on Bluetooth

The BlueBrothers protocols are designed considering the challenges related to their integration in
the Bluetooth ecosystem. They can be integrated at the link layer (stack) with a standard update
or at the application-layer without updating the standard.

Link layer integration. The protocols can be integrated into the standard as they keep TOFU
security model and do not rely on trusted third parties or a PKI. We introduce two feature flags
to negotiate them at the link layer. The BB flag indicates BlueBrothers support. The BBO flag
signals that a device only uses BlueBrothers and protects it from protocol downgrade attacks.
These flags are similar to the SC and SCO ones already in the standard. Hence, if a device does
not support them, it can maximize backward compatibility and allow usage of current pairing and
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session establishment or refuse the secure connection.

Application layer integration. The protocols can also be integrated at the application layer,
similarly to Apple’s Magic Pairing for Peripherals [102]. A vendor can pick an L2CAP channel and
use it as a logical channel to run the protocols. It can authenticate devices not knowing their static
public keys by pre-distributing them or securely exchanging them using BB-Pairing authenticated
with vendor pre-shared secrets and OOB association.

4.5.7 Extra MSCs

Central Peripheral

< D
[Ficcrc]
o

AEAD Session with K

Pick R¢

Re
Rp Pic Rp
Ky =KDFx (Rc|Rp) Ky =KDFk (Rc|Rp)
AEAD Session with Ky

Figure 4.8: BB-Rekey new symmetric rekey MSC. The devices exchange nonces (R¢, Rp), and
derive a new session key (Ky) without aborting the session.

User Central Peripheral
[ v ]
Share Ki, Ty
. < >
_______________ >
Np
______________________________ N
Ko =KDFk, (T1|N¢) K2 =KDFk, (T1|Np)

Figure 4.9: BB-Pairing new PE. The user inputs an identical Passkey on both devices. Alterna-
tively, the passkey may be displayed on one device, and the user then inputs it on the other. In
such a case, the passkey is computed as in Figure 4.5 using an HOTP.

4.6 BlueBrothers Verification with ProVerif

We formally verified the three BlueBrothers protocols using the automatic cryptographic protocol
verifier ProVerif. In this section, we show that the results confirm the security of the protocols,
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User Central Peripheral
[ v ] @
< Share K&"°, Kp"P >
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““““““““ g Vy
______________________________ N
x20
Pick N Pick Ny
Compute C; Compute Cp;
Cci
Chpi
Nci
Check Cg;
Nopi
Check Cp;i
— + ——

Figure 4.10: Bluetooth Association with PE. The user inputs an identical Passkey on both de-
vices. Alternatively, the passkey may be displayed on one device, and the user then inputs it
on the other. The confirmation values are computed as follows: C.; = KDF(KE™|KE™|N|Ve),
Cpi = KDF(KE™ [KE™ [Ny V).

describe the models’ creation, and list the queries we used.

We report the models in Appendix 4.6.4. Here, we briefly explain the details necessary to un-
derstand them and the results. In Listing 4.2, we document the cryptographic primitives used. We
model a Diffie-Hellman exponentiation using the notation DH(publickey, privatekey) to mirror
the notation used in the protocol MSCs throughout the paper to improve the models’ readability.

4.6.1 BB-Pairing Security Analysis

The BB-Pairing protocol model, shown in Listing 4.3, defines the User, Central, and Periph-
eral roles, mirroring their descriptions in Figure 4.4. We specifically model the NC association,
which is detailed in Figure 4.5. We do not run an unbounded number of instances since the
user is assumed to be physically interacting with the Central and Peripheral devices during the
association phase and, thus, by assumption, would not do that with more than one set of devices
at a time. All public keys and negotiation parameters are assumed to be known to the attacker
and are explicitly given to the attacker before the protocol starts. For this protocol, we model
four properties: secrecy and integrity of the session key, prevention of user decision bypass, and
mutual authentication of Central and Peripheral.

Secrecy is modeled by encrypting a dummy value at the end of the protocol with the session
key K and requiring this value to remain secret. If the attacker can obtain K, they can also obtain
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Central Peripheral
@
< Share K&"°, Kp"P >

[ [
Pick rc Pick rp
Compute Cc Compute Cp

[ OOB Exchange of C¢,r¢ or/and Cp,rp ]

Figure 4.11: Bluetooth Association with OOB. The devices exchange their confirmation values
(Ce, Cp) using an out-of-band communication channel. The values are computed similarly to the
other association mechanisms.

Query (ies):

- Query not attacker (SKtest[]) is true. @

- Query event(PeripheralTerm(skl,k,nl1,n2)) && event(CentralTerm(sk2,k,nl,n2)) ==> skl = sk2
is true. ()

- Query event(CentralTerm(sk,k,nl,n2)) && event(PeripheralTerm(sk,k,nl,n2)) ==> event(
UserSays0K(sk)) is true. @

- Query inj-event(CentralTerm(sk,k,nl,n2)) ==> inj-event(PeripheralAccepts(sk,nl,n2)) is true
- Query inj-event(PeripheralTerm(sk,k,nl,n2)) ==> inj-event(CentralAccepts(sk,nl,n2)) is true

Associated lemma(s):
- Lemma event(UserSaysOK(ka)) && event(UserSaysOK (kb)) ==> ka = kb is true in process 1.

Listing 4.1: BB-Pairing ProVerif results. Queries are provable and true.

the value. If not, K benefits from secrecy.

Integrity is modeled by requiring that if the protocol terminates correctly for both parties, their
session key must be the same. This ensures that an adversary cannot manipulate the resulting
key and cause one (or both) parties to believe that they have a valid key if they do not.

User decision is modeled by requiring that the user must have accepted the connection during
the association phase if the protocol terminates correctly for both parties. This ensures that the
adversary cannot bypass the user’s decision and complete the protocol despite the user rejecting
(or not interacting).

Authentication is modeled by requiring that if either device terminates the protocol correcily, it
must be the case that the other device accepted the protocol run. This ensures that the adversary
cannot complete a run with one of the devices by impersonating the other device.

Listing 4.1 shows the summary output of ProVerif when run on the model of BB-Pairing.
The queries are numbered with (3) for secrecy, (@ for integrity, (3) for user decision, and (4) for
authentication.

ORSHIN D5.1 PU Page 91 of 121



D5.1 - Report about Essential and Beyond Essential S&P Guarantees for * ORe
Inter-device Communication in Restricted Environments ReHIR

4.6.2 BB-Session Security Analysis

The BB-Session protocol model is shown in Listing 4.4. We again model the roles mirroring their
description in Figure 4.6 and explicitly give the attacker the long-term public keys corresponding
to the two devices and the negotiation parameters. Since the user is not directly involved in the
execution of this protocol, we allow an unbounded number of instances from the attacker (e.g.,
they can start infinite parallel executions of the protocol) and consider a security property not
verified if it is violated in at least one instance.

For BB-Session we verify the secrecy and integrity of the resulting session key and authen-
tication of the Peripheral device. This is the same as for BB-Pairing, except for two details: i) the
user is not directly involved, so there is no requirement involving the user’s decision, and ii) we
only verify that Peripheral authentication.

While Central’s authentication is not confirmed when the protocol terminates, the resulting key
still benefits from the same properties as BB-Pairing key. Even if an adversary starts a session,
they do not have the required session key at the end of the protocol. Hence, Central authentica-
tion is implicitly confirmed (or not) with the first message after the handshake. This is a deliberate
design choice to use one less message and is similar to what is done by Wireguard [71]. If ex-
plicit mutual authentication is required, adding a third key confirmation message to the protocol
is possible.

The queries’ details and ProVerif’s output are the same as for BB-Pairing so we do not repeat
them.

4.6.3 BB-Rekey Security Analysis

The BB-Rekey protocol model is shown in Listing 4.5. As before, we model the roles mirroring
their description in Figure 4.7. This protocol does not use the long-term (static) public keys.
Hence, the attacker does not need them. We model the secrecy and integrity of the resulting
session key and mutual authentication of the devices, precisely like the other two protocols.

One additional property we require for BB-Rekey is future secrecy, i.e., if an attacker manages
to compromise the current K, they should not have access to Ky after a successful rekey. To
model this, we use a copy of the same model with two changes: i) we explicitly give K to the
attacker before rekeying starts, and ii) we require the attacker to be passive.

With these assumptions, we verify that an attacker who knows K cannot obtain Ky, even given
an unbounded number of instances. We note that requiring a passive attacker is unavoidable
unless we let the attacker have the session key but not the private key of one of the devices.
Since the attacker would have gotten the session key by compromising a device, we find the
passive attacker to be the most realistic and honest assumption.

The queries’ details and ProVerif’s output are the same as for BB-Pairing so we do not repeat
them.

4.6.4 ProVerif Models

In this section, we present the ProVerif models of the protocols: BB-Pairing (with NC Association)
in Listing 4.3, BB-Session in Listing 4.4, and BB-Rekey in Listings 4.5 and 4.6. Each model lists
the entire process and all the queries, which is sufficient to check the validity of the model. We
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leave out some type and event definitions to improve readability. Listing 4.2 shows the models of
the cryptographic primitives used throughout the other four listings.

type key.

fun ENC(key, bitstring): bitstring.
reduc forall m: bitstring, k: key; DEC(k, ENC(k, m)) = m.

fun MAC(key, bitstring): bitstring.
reduc forall k: key, m: bitstring; VERIFY(k, m, MAC(k, m)) = true.

fun HASH(bitstring): bitstring.
fun KDF(key, bitstring): key.

type publickey.
type privatekey.
fun pk(privatekey): publickey.

fun DH(publickey, privatekey): key.
equation forall a,b: privatekey; DH(pk(b), a) = DH(pk(a), b).

(¥ encoding for keys *)
fun K2B(key): bitstring [typeConverter].
reduc forall m: key; B2K(K2B(m)) = m.

(¥ encoding for publickeys *)
fun PK2B(publickey): bitstring [typeConverter].
reduc forall m: publickey; B2PK(PK2B(m)) = m.

Listing 4.2: Cryptographic primitives.

4.7 BlueBrothers Implementation

We implement BlueBrothers for BLE by patching NimBLE, an open-source BLE stack by the
Apache Software Foundation compliant with Bluetooth v5.4. Our implementation supports any
device compatible with NimBLE, including nRF51, nRF52, nRF53, and DA1469x chips. We also
implement BlueBrothers for BC at the application layer using Linux and BlueZ. We picked the
following primitives for our implementations: Ascon and ChaChaPoly for AEAD, Ascon-Hash and
Blake2b for secure hashing, key derivation and OTP, Curve 25519 for ECDH, and Kyber768 for
PQDH. The BLE implementation also includes the primitives of the standard, like curve P256,
AES-CMAC, and AES-CCM.

As our implementation is a POC, we discourage its usage in production. Moreover, it is
not tested against side-channel attacks nor optimized for performances. Next, we describe the
BlueBrothers protocols’ implementation details for BLE and BC.

4.7.1 BLE Implementation for NimBLE

The BLE implementation involves patches to NimBLE’s Host and Controller components. We
implement BB-Pairing and BB-Session by patching NimBLE’s Security Manager (SM) component
in the Host. Moreover, we add logic and messages to the NimBLE’s Link-Layer (LL) component
in the Controller to provide a key confirmation mechanism. BB-Rekey is implemented in a new
Host component, which we call the Rekey Manager (RM), and by extending the LL component.
Next, we describe the modifications in detail.
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[ opcode | asso | pqgflag | reserved |
reserved |
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MAC

Figure 4.12: BB-Pairing SMP Pairing Request/Response packet. The 1-byte 10O capabilities and
OOB flags are the same as in the standard. The size of the Ephemeral Public Key is 32 bytes for
ECDH and 1184 bytes for PQDH. The MAC size is 16 bytes.

NimBLE Host

Our patched Host allows compile-time configuration to enable different C25519 for ECDH and
PQDH via two setting flags, i.e., ENABLE_SM 25519 and ENABLE_SM_PQ. Disabling its related code
at compilation time saves memory when not using PQDH. We set the SM L2CAP channel
Maximum Transmission Unit (MTU) to 87 bytes for ECDH and to 1208 bytes for PQDH. In the
SM component (see ble_sm alg.c), we also implement the following high-level cryptographic
functions. Each function calls a reference cryptographic implementation we embed in the stack:

* update_hash transcript to update T.

* aead_encrypt/decrypt to perform AEAD encryption/decryption.

* crypto_auth and crypto_auth verify to compute and verify the MACs.
 hkdf to implement the HMAC Key Derivation Function (HKDF) construct.
* hotp to generate HOTP one-time numeric codes during association.

We modify some SMP packets and create new ones to implement BB-Pairing and BB-
Session. We also modify and create the respective packet processing functions and insert them
in NimBLE’s SM state machine ble_sm _dispatch, replacing the standard ones.

For example, Figure 4.12 shows the structure of the modified SMP Pairing Request and
Response messages used for BB-Pairing. The packet contains an asso byte-field that indicates
the association mechanism, a pq byte-flag that indicates support for PQDH, four reserved bytes, a
DH public key up to 1184 bytes, and a 16-byte MAC. The asso field uses bitwise flags to efficiently
represent combinations of options (JW, NC, PE, OOB) using a single uint8_t (8-bit byte). Each
flag is assigned a unique bit position (e.g., JW =1 << 0, NC = 1 << 1), allowing their combination
using bitwise OR (]) and check them using bitwise AND (&). For example, flags = FLAG_JW |
FLAG_PE sets both the JW and PE bits. This approach enables compact storage and fast checks
for the presence or absence of any combination of the four flags, using values from 0 to 15. The
complete mapping is at the beginning of the ble_sm priv.h file. To process the new Pairing
Request and Response messages, we modify the ble_sm pair req.rx and ble_sm pair_req -
rsp functions.

When devices perform association, they check their respective supported mechanism and
pick the most secure that is common to both, e.g., if they both allow JW and NC, they pick the
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latter. If the devices negotiated NC or PE, they use hotp to generate the association passcode,
otherwise for JW, they use hkdf to derive K from T and the DH shared secret. If they opted for
OOB association, they use the hkdf function to derive K from the OOB shared secret and the
DH one. For the static key exchange of BB-Pairing, we modify the Pairing Public Key message
by adding a 16-byte MAC field. While for the optional PQDH key exchange, we define a new
message called Pairing PQ Key and implement two message handler functions for it ble_sm_sc_-
pqdh_exec and ble_sm_sc_pqdh rx.

Once the session key (K) is computed in the Host, it is sent to the Controller using a new HCI
command we call BLE_.HCI_LE_F_ENCRYPT with opcode 0x0100. BB-Session implementation
relies on similar modifications. Hence, we skip its description.

BB-Rekey relies on a new component we call Rekey Manager (RM) in the host/src/ble_-
rm.c file. The RM uses a dedicated L2CAP channel with seven (7) as channel identifier (CID)
and uses two messages ble_rm rekey req and ble_rm rekey_rsp containing either the public
keys for the asymmetric mode, or a 32-byte random nonce for the symmetric mode. The RM
exposes a rekey API through BLE’s Generic Access Profile (GAP), which allows Central to start
a key refresh from the application layer. The devices compute Ky in the Host as in Figures 4.7
and 4.8 and send it to the Controller using a new HClI command with call BLE_HCI_LE_REKEY
with opcode 0x0101.

NimBLE Controller

In the Controller, we add four LL messages:
1. LL_ENCF_REQ opcode 0x2A
2. LL_ENCF_RSP opcode 0x2B
3. LL_REKEY REQ opcode 0x2C
4. LL_REKEY_RSP opcode 0x2D

The first two messages are used for session key agreement by BB-Pairing and BB-Session.
The first is in cleartext, while the second is encrypted and authenticated with K. The last two
messages have the same purposes for BB-Rekey: the first is encrypted and authenticated with
K while the second is with Ky. These messages do not appear in the MSCs as they are specific
to the BLE implementation. They are necessary because, in BLE, the Host handles asymmetric
cryptography and pairing-related operations, while the Controller handles low-level encryption.

4.7.2 BC Implementation for BlueZ

We implement the BlueBrothers protocols at the application layer for BC as a Linux application
using BlueZ. The protocols run over L2ZCAP channel 0x0235 and are implemented in a C library
called bb-1ib. The library provides a high-level API to build and process the messages. For ex-
ample, bb_session_rx and bb_session _build are the functions to process and build BB-Session
messages.
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4.8 Performance Evaluation for BLE

We evaluate the latency and power consumption of BlueBrothers protocols for BLE. We focus on
a worst-case scenario where constrained BLE devices (nRF52 boards) communicate. We com-
pare our protocols in different configurations (e.g., classic vs. PQ key agreement) and with the
ones in the standard. We consider the latter as our performance evaluation baseline. Our exper-
imental results show that the BlueBrothers protocols have acceptable time and power overheads
or perform even better than the baseline while providing much better security guarantees. Next,
we describe our experimental setup and results.

4.8.1 Setup

Our setup includes two Nordic nRF52840 development boards with Mynewt v1.13.0 and our
patched version of NimBLE v1.8.0. Mynewt is the reference open-source real-time OS for Nim-
BLE, which Apache also maintains. We position the boards one meter (1m) apart in a room
with other BT and Wi-Fi devices sharing the 2.4 GHz band. We run measurements with different
configurations for each protocol, e.g., using Hybrid PQ mode and using ECDH with C25519 or
P-256. The Hybrid PQ mode uses a combination of Kyber768 and C25519.

The devices run custom Central and Peripheral applications and NimBLE stack. The Cen-
tral is a modified btshell app [19] providing a serial interface to automatically test connecting,
pairing, session establishment, and asymmetric and symmetric rekeys. The Peripheral uses the
bleprph app [19].

We measure latency using the Mynewt native time APIs, which have microseconds (us) res-
olution, and we convert these values to milliseconds (ms) for readability. We compute power
consumption in Coulombs (C) using a Nordic Power Profiler Kit Il sampling at 1000 Hz. We con-
vert the values to pAh to compare against actual devices’ power consumption data. We reduce
experimental noise by running ten iterations for each protocol configuration and computing the
average latency value and standard deviation. This gives us latency measurements, which we
use to estimate the power consumption from the data registered by the Nordic Power Profiler
application. For instance, the nRF52 provides timestamps relative to its boot process, while the
power profiler application timestamps are relative to the beginning of the monitoring. Since they
are independent, we isolate the protocols run by placing the starting point 100 ms before the
first energy consumption spike, representing the first message the Peripheral device received as
shown in Figure 4.13.

4.8.2 Results

Table 4.2 shows the latency and power consumption experimental results. It compares three
BB-Pairing configs against BLE pairing and session establishment (rows 1-4), three BB-Session
configs against session establishment (rows 5-8), and one symmetric and three asymmetric BB-
Rekey rekeys against the BLE key refresh procedure (rows 9—-13). Latency results are shown in
Table 4.2’s second column in ms. They indicate a range computed from ten experimental runs’
average and standard deviation. The power consumption (in pAH) is computed over the output
data of the Nordic Power Profiler application using the average latency to isolate the protocol run
as explained in Section 4.8.1.
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Figure 4.13: BB-Pairing Power Consumption Chart. We consider the start of the protocol as
100ms before the first energy spike, which corresponds to the first DH computation.

Latency Range

BB-Pairing with C25519 and Hybrid PQ is faster than pairing plus session establishment. The
latency is reduced from 1225 ms to 553 ms (-54.9%) when using C25519 and to 692 ms (-55.6%)
when using Hybrid PQ mode. With P-256, the latency increases to 1464 ms, causing a 19.5%
overhead.

BB-Session is slower than the standard session establishment. The baseline latency is 328
ms, increasing to 556 ms (+69.5%) when using C25519 and 656 ms (+100.8%) with the Hybrid
PQ configuration. When using P-256, the latency increases to 1830 ms (+468.3%). These results
are expected as BB-Session employs asymmetric cryptography while session establishment is
symmetric.

BB-Rekey is faster than the standard key refresh except when using P-256 in asymmetric
mode. The baseline latency is 456 ms, and it improves to 186 ms (-59.3%) when using the
symmetric rekey, to 389 ms (-14.7%) with asymmetric C25519, to 322 ms (-29.3%) with asym-
metric Hybrid PQ. Asymmetric P-256 is slower than the baseline as it has a latency of 1072 ms
(+134.0%).

From the latency results, we conclude that DH key exchange using P-256 is unfit for the
protocols as its latency overhead is too high. However, C25519 and Hybrid PQ are faster than
the baseline for BB-Pairing and BB-Rekey. For BB-Session we argue that the latency overhead
with C25519 or Hybrid PQ is acceptable in a performance-security trade-off, as forward and future
secrecy require using asymmetric cryptography.

Average Power

BB-Pairing has generally lower power consumption than pairing plus session establishment. The
power consumption goes from 0.524 pAh to 0.187 pAh (-64.3%) when using C25519 and from
0.524 pAhto 0.176 pAh (-66.5%) when using Hybrid PQ. In contrast, P-256’s power consumption
is slightly higher at 0.606 pAh (+15.6%).
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Table 4.2: BLE latency and power consumption of several BlueBrothers configurations against
their counterparts in the standard. BB-Pairing is compared against standard pairing plus ses-
sion establishment as it provides both features. The latency is shown as a range computed as
avg + stdev. The Hybrid PQ mode uses Kyber768 and C25519.

BLE Protocol Latency (ms) Power (pAh)
BB-Pairing C25519 548 — 558 0.187
BB-Pairing Hybrid PQ 680 — 704 0.244
BB-Pairing P-256 1463 — 1465 0.606
Std Pairing+Session Est. 1218 — 1232 0.524
BB-Session C25519 552 — 560 0.192
BB-Session Hybrid PQ 650 — 662 0.239
BB-Session P-256 1803 — 1857 0.523
Std Session Est. 327 — 329 0.055
BB-Rekey Symmetric 175 — 198 0.040
BB-Rekey Asym C25519 372 — 406 0.123
BB-Rekey Asym Kyber768 307 — 337 0.106
BB-Rekey Asym P-256 1059 — 1085 0.336
Std Session Rekey 440 — 472 0.076

BB-Session has a higher power consumption than the standard session establishment, going
from 0.055 pAh to 0.192 pAh (+249.1%) when using C25519, to 0.239 pAh (+334.5%) when
using Hybrid PQ, and to 0.523 pAh (+850.9%) when using P-256. These results are expected
due to our use of asymmetric cryptography.

We argue that BB-Session’s power overhead is acceptable even for a real-world constrained
device when using C25519 or Hybrid PQ. For instance, the average daily power consumption of
an Apple AirTag, whose battery is a 240 mAh CR2032, is about 650 pAh. To cause a small 5%
(32.5 pAh) increase in the daily power consumption, a device would need 169 sessions per day
when using C25519 or 136 when using Hybrid PQ. These amounts of session establishments
per day are unrealistic, as session establishment happens when two devices disconnect and
reconnect.

BB-Rekey symmetric rekey has a lower power consumption than the baseline, while asym-
metric rekey performs slightly worse than the baseline. The power goes from 0.076 pAh to 0.040
WA (-47.4%) when using the symmetric rekey, to 0.123 pAh (+62.5%) when using the asymmet-
ric rekey with C25519, to 0.106 pAh (+39.5%) when using Hybrid PQ, to 0.336 pAh (+342.1%)
when using P-256.

BB-Rekey’s power overheads are small and acceptable. For example, to obtain the same 5%
increase in the daily power consumption of an Apple AirTag, a device would need to perform 812
symmetric rekeys per day, 264 asymmetric rekey with C25519 or 306 with Hybrid PQ. This means
that devices could perform asymmetric rekey every 10 minutes without impacting the battery life.
While even more frequent symmetric rekeys.

Overall, the power results confirm that no protocols should be used with P-256 as it introduces
a high power consumption overhead. In contrast, C25519 and Hybrid PQ perform better and are
closer to the baseline. We note, however, that BB-Pairing power consumption is not as relevant
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as BB-Session or BB-Rekey since pairing is executed sporadically. Hence, P-256 could still be
suitable for BB-Pairing.

4.9 Related Work

Security Extensions. Researchers developed Bluetooth security extensions to cover specific
attacks. For example, [97] presents a lightweight certificate-based alternative to BLE pairing
with JW. [86] mitigates attacks against SC pairing in a backward-compliant way using deferred
challenge-response authentication. Legacy BT pairing was extended with asymmetric cryptogra-
phy to address passive and active attacks [206]. We do not focus only on pairing or authentication,
but we improve the security of the entire Bluetooth stack without introducing a trusted PKI.

IDS. Researchers explored Bluetooth Intrusion Detection System (IDS). Reconnaissance,
DoS, and information theft attacks on legacy BC were addressed by [147]. BlueShield [207]
detects spoofing attacks on BLE via cyber-physical fingerprints. OASIS [52] embeds an IDS
inside a popular BLE controller for low-level detection. BlueSWAT [53] focuses on detecting
session-based BLE attacks via a finite state machine and eBPF. BLEGuard [45] checks for BLE
spoofing attacks via pre-detection, reconstruction, and classification models built using a dataset
of simulated attacks. IDSs are orthogonal to the protocols proposed in our work.

Testing. Tools for testing the security of Bluetooth implementations are available in the liter-
ature. The BLEDIff [116] framework checks BLE protocol noncompliance via differential testing,
while the Frankenstein [161] fuzzer relies on firmware emulation. More BC and BLE fuzzers were
presented in SweynTooth [93] and BrakTooth [92]. Implementation testing is orthogonal to our
work, as we focus on the design of Bluetooth protocol.

Formal Verification. Several Bluetooth security protocol phases have been formally modeled
and verified using the Tamarin and ProVerif symbolic protocol verifiers. In [181], the authors mod-
eled BLE SC pairing associations with Tamarin [137], rediscovering two attacks and uncovering a
new one. [112] developed a Tamarin model for BLE Passkey Entry and used it to rediscover three
attacks and find two new ones. In [56], the authors used Tamarin to analyze the key agreement
protocol and discover two new pairing confusion attacks.

In [208, 209], the authors modeled key sharing and data transmission of BC, BLE, and Mesh
with ProVerif, finding five known vulnerabilities and two other security issues. Always using
ProVerif [177] found a double misbinding attack on BC pairing. Our work relies on ProVerif to
formally verify our new protocols, not the existing ones since we aim to provide a simpler and
more secure alternative.

BC PE was also computationally analyzed with the CYBORG authenticated key exchange
model, which can study attacks on human-assisted association [189]. [85] cryptographically an-
alyzed SC pairing protocols of both BC and BLE against active attacks in the TOFU model.

4.10 Conclusion

This work presents the BlueBrothers protocols to replace the standard Bluetooth pairing and
session establishment. The need for new Bluetooth security protocols is motivated by the design
vulnerabilities and attacks affecting the current ones and their complex specifications. This leads
to implementation-level flaws and makes formal verification and security analysis challenging.
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BB-Pairing provides authenticated pairing and session establishment. BB-Session guarantees
authenticated key agreement using the static public key distributed via BB-Pairing. It benefits
from key compromise protection (i.e., inter-session forward and future secrecy) by leveraging
ephemeral DH operations. BB-Rekey is a novel key refresh mechanism enabling intra-session
forward and future secrecy.

The BlueBrothers protocols advance the state-of-the-art for Bluetooth security. They provide
new Bluetooth security properties, like intra-session forward and future secrecy or hybrid PQ key
agreement. They address four classes of design issues (C1-C4) and seventeen related impactful
attacks (Table 4.1).

They can be integrated with the Bluetooth standard using a negotiation mechanism or as
standalone application-layer protocols. They use open cryptographic mechanisms and primi-
tives. Their design and implementation are open source. For instance, their design follows the
ephemeral-static DH model used in the Noise Protocol Framework [153], WireGuard [71], and
WhatsApp [202]. While the rekeying logic is inspired by the Double Ratchet algorithm [154].

We successfully model and verify the BlueBrothers protocols and their security properties
with ProVerif. We implement the protocols by patching a real-world BLE stack (NimBLE) and
as a BlueZ application for BC. We evaluated their latency and power consumption performance
with constrained BLE devices (nRF52). The experiments show that BlueBrothers impact on la-
tency and energy consumption is better in some cases and worse in others than the standard
Bluetooth security protocols. However, when worse, the impact is negligible in practice, making
BlueBrothers suitable for real-world deployment.
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let User () =
in(uvisc, (Kc: key));
in(uvisp, (Kp: key));
if Kc = Kp then
( out(uinp, (ok)); event UserSaysOK(Kc) )
else
( out(uinp, (abort)); event UserSaysAbort(Kc) ).
let Central(Fc: bitstring, Sc: privatekey) =
new Ec: privatekey;
out (¢, (pk(Ec), Fc));
in(c, (pkep: publickey, Fp: bitstring, ml: bitstring));
let K1 = DH(pkep, Ec) in
let T1 = HASH((pk(Ec), Fc, pkep, Fp)) in
if VERIFY(K1, Ti1, ml) then
out (uvisc, (K1));
in(uinp, (result: decition));
if result = ok then
let K2 = KDF(K1, T1) in
event CentralAccepts (K1, Fc, Fp);
let T2 = HASH((T1, ENC(K2, PK2B(pk(Sc))))) in
out (c, (ENC(K2, PK2B(pk(Sc))), MAC(K2, T2)));
in(c, (encpksp: bitstring, m2: bitstring));
let T3 = HASH((T2, encpksp)) in
if VERIFY (X2, T3, m2) then
let K = KDF (K2, (T3, DH(B2PK(DEC(K2,encpksp)), Sc))) in
out (c, (ENC(K, SKtest)));
event CentralTerm(K1, K, Fc, Fp);
0.
let Peripheral (Fp: bitstring, Sp: privatekey) =
in(c, (pkec: publickey, Fc: bitstring));
new Ep: privatekey;
let K1 = DH(pkec, Ep) in
let T1 = HASH((pkec, Fc, pk(Ep), Fp)) in
out (¢, (pk(Ep), Fp, MAC(K1, T1)));
out (uvisp, (K1));
in(uinp, (result: decitiomn));
if result = ok then
let K2 = KDF(K1, T1) in
event PeripheralAccepts (K1, Fc, Fp);
in(c, (encpksc: bitstring, ml: bitstring));
let T2 = HASH((T1, encpksc)) in
if VERIFY(K2, T2, ml) then
let T3 = HASH((T2, ENC(K2, PK2B(pk(Sp))))) in
out (c, (ENC(K2, PK2B(pk(Sp))), MAC(K2, T3)));
let K = KDF(XK2, (T3, DH(B2PK(DEC(K2,encpksc)), Sp))) in
out (c, (ENC(K, SKtest)));
event PeripheralTerm(K1, K, Fc, Fp);
0.
process
new Fc: bitstring; out(c, Fc);
new Fp: bitstring; out(c, Fp);
new Sc: privatekey; out(c, pk(Sc));
new Sp: privatekey; out(c, pk(Sp));
((User) | (Central (Fc, Sc))|(Peripheral (Fp, Sp)))
(* secrecy x*)
query attacker (SKtest).
(* integrity x*)
query skl, sk2, k: key, nl, n2: bitstring; event(PeripheralTerm(skl, k, nl, n2)) && event(
CentralTerm(sk2, k, nl, n2)) ==> skl = sk2.
(¥ user decition cannot be bypassed *)
query k, sk: key, nl, n2: bitstring; event(CentralTerm(sk, k, nl, n2)) && event(PeripheralTerm
(sk, k, nl, n2)) ==> event(UserSaysOK(sk)).
(* authentication *)
query k, sk: key, nl, n2: bitstring; event(CentralTerm(sk, k, nl, n2)) ==> inj-event(
PeripheralAccepts(sk, nl, n2)).
query k, sk: key, nl, n2: bitstring; event(PeripheralTerm(sk, k, nl, n2)) ==> inj-event(
CentralAccepts(sk, nl, n2)).

Listing 4.3: BB-Pairing model.
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let Central(Fc: bitstring, pksp: publickey, Sc: privatekey) =
new Ec: privatekey;
let K1 = DH(pksp, Ec) in
let T1 = HASH((pk(Ec), Fc)) in
out(c, (pk(Ec), Fc, MAC(K1, T1)));
in(c, (pkep: publickey, Fp: bitstring, ml: bitstring));
let K = KDF(K1, K2B(DH(pkep, Sc))) in
let T2 = HASH((T1, pkep, Fp)) in
if VERIFY(K, T2, ml) then
event CentralAccepts(K1, Fc, Fp);
out (c, ENC(K, SKtest));
event CentralTerm(K1, Fc, Fp);
0.
let Peripheral (Fp: bitstring, pksc: publickey, Sp: privatekey) =
in(c, (pkec: publickey, Fc: bitstring, ml: bitstring));
let K1 = DH(pkec, Sp) in
let T1 = HASH((pkec, Fc)) in
if VERIFY(K1, T1, ml) then
event PeripheralAccepts (K1, Fc, Fp);
new Ep: privatekey;
let K = KDF (K1, K2B(DH(pksc, Ep))) in
let T2 = HASH((T1, pk(Ep), Fp)) in
out (¢, (pk(Ep), Fp, MAC(K, T2)));
out (¢, ENC(K, SKtest));
event PeripheralTerm(K1, Fc, Fp);
0.
process
new Fc: bitstring; out(c, Fc);
new Fp: bitstring; out(c, Fp);
new Sc: privatekey; out(c, pk(Sc));
new Sp: privatekey; out(c, pk(Sp));
(!Central (Fc, pk(Sp), Sc))|(!Peripheral (Fp, pk(Sc), Sp))
(* secrecy *)
query attacker (SKtest).
(¥ authentication *)

query sk: key, nl, n2: bitstring; event(CentralTerm(sk, nl, n2)) ==> inj-event(
PeripheralAccepts(sk, nl, n2)).
query sk: key, nl, n2: bitstring; event(PeripheralTerm(sk, nl, n2)) ==> inj-event (

CentralAccepts(sk, nl, n2)).

Listing 4.4: BB-Session model.
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let Central() =
new Ec: privatekey;
out (c, (pk(Ec), MAC(X, (P, pk(Ec)))));
in(c, (pkep: publickey, ml: bitstring));
if VERIFY(K, (C, pkep), ml) then
event CentralAccepts (K, pk(Ec), pkep);
let SS = DH(pkep, Ec) in
let Kn = KDF (K, K2B(SS)) in
out (¢, ENC(Kn, KNtest));
event CentralTerm(Kn, K, pk(Ec), pkep);
0.
let Peripheral() =
in(c, (pkec: publickey, ml: bitstring));
if VERIFY(K, (P, pkec), ml) then
new Ep: privatekey;
event PeripheralAccepts (K, pkec, pk(Ep));
out (¢, (pk(Ep), MAC(K, (C, pk(Ep)))));
let SS = DH(pkec, Ep) in
let Kn = KDF (K, K2B(SS)) in
out (¢, (ENC(Kn, KNtest)));
event PeripheralTerm(Kn, K, pkec, pk(Ep));
0.
process
((Central ()) | (Peripheral ()))
(* secrecy *)
query attacker (K).
query attacker (KNtest).
(* authentication *)
query k, kn: key, pkc, pkp: publickey; event(CentralTerm(kn, k, pkc, pkp)) ==> inj-event(
PeripheralAccepts (k, pkc, pkp)).
query k, kn: key, pkc, pkp: publickey; event(PeripheralTerm(kn, k, pkc, pkp)) ==> inj-event(
CentralAccepts(k, pkc, pkp)).
(* integrity x*)
query k, k1, k2: key, pkc, pkp: publickey; event(PeripheralTerm(kl, k, pkc, pkp)) && event(
CentralTerm(k2, k, pkc, pkp)) ==> k1 = k2.

Listing 4.5: BB-Rekey model.

process
out(c, K); (* Give old key to the passive attacker *)
((!Central ()) | ('Peripheral ()))

(* future secrecy *)
set attacker = passive.
query attacker (KNtest).

Listing 4.6: BB-Rekey model for future secrecy.
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Chapter 5

Summary and Conclusion

D5.1 successfully addresses its goals and advances the state of the art of essential and be-
yond essential S&P guarantees for inter-device communication in restricted environments. It
addresses T5.1 and T5.2 by uncovering vulnerabilities and attacks in state of the art inter-device
communication technologies such as Bluetooth and FIDO2. Moreover, it creates original and
stronger alternatives like the BlueBrothers protocols for Bluetooth. Next, we recall the tasks from
ORSHIN’s description of action document, and explain how we complete them with D5.1.

T5.1 Description

“Essential S&P guarantees for inter-device communication. Constrained device-to-
device communication, such as the ones between loT and IloT devices, might not
always provide necessary S&P guarantees for several reasons. For example, a device
might lack a hardware accelerator block to perform cryptographic operations that are
too expensive in software. With the advent of open-source hardware, we will have
access to more and better hardware blocks that we can integrate into embedded
devices to provide essential security guarantees by design.”

T5.1 Completion Chapter 1 addresses T5.1 by showing how real-world and pervasive propri-
etary intra-device communication protocols used for e-scooters are not capable of providing es-
sential S&P guarantees, despite promising them when marketing the products. While, Chapter 3
targets T5.1 by demonstrating that even standard and more open intra-device communication
protocols, such as FIDO2, can fail to provide essential S&P guarantees, like confidentiality, in-
tegrity and authenticity. Chapter 4 presents new intra-device communication protocols that are
not vulnerable to the attacks presented in the other Chapters but provide essential S&P properties
by design using a simple and open specification.

T5.2 Description

“Beyond essential S&P guarantees for inter-device communication. Secure messag-
ing applications, such as Signal and WhatsApp, provide attractive security guarantees
beyond the essentials, such as forward and backward secrecy. Unfortunately, those
guarantees are very rarely considered in constrained communication environments,
such as loT and lloT, because they are complex and relatively new in the field. We
want to fill this gap by pivoting on open-source hardware to develop protocols provid-
ing "beyond-essential” security guarantees for constrained devices. Those protocols
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will significantly raise the bar for an attacker by providing the best possible defence
solutions in the most constrained scenarios. For example, those advanced protocols
will protect the confidentiality of past and future data even if the present secret key is
compromised.”

Addressing T5.2 Chapter 2 addresses T5.2 by assessing the forward and future secrecy guar-
antees in the Bluetooth standard. |t demonstrates that these guarantees are not holding by un-
covering novel vulnerabilities and attacks and recommend effective countermeasures. Moreover,
Chapter 3 contributes to T5.2 by analyzing beyond-essential properties of FIDO2 like resistance
against credential deletion or tracking attacks. It uncovers new vulnerabilities and attacks capable
of violating these properties and discuss effective fixes. Chapter 4 completes T5.2 by proposing
new inter-device communication protocols providing beyond-essential S&P properties like forward
and future secrecy, identity hiding, and forward and future secrecy across and among Bluetooth
sessions. The BlueBrothers artifact will be used in D5.3 and WP6.

Research Contributions Overall, D5.1 generates nine open access research papers and open
source research artifacts. The papers were presented at prestigious security and privacy scien-
tific conferences and journals (e.g., S&P CORE A* and A), hacking events (e.g., BlackHat US
and DEF CON), invited research talks (e.g., Uni of Oxford and ETHZ) or are under submission
for such venues. The deliverable, for space reasons, covers four papers but next we list them all:

P1: Chapter 1 appears in a paper titled E-Spoofer: Attacking and Defending Xiaomi Electric
Scooter Ecosystem at the ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec), 2023 [50] and as a selected talk at the Toulouse Hacking Convention
(THCON), 2024 [48].

P2: Chapter 2 appears in a paper titled BLUFFS: Bluetooth Forward and Future Secrecy Attacks
and Defenses at the ACM Conference on Computer and Communications Security (CCS),
2023 [10] and in two selected talks at the 37th Chaos Communication Congress (37¢3),
2023 [11] and Toulouse Hacking Convention (THCON), 2024 [12].

P3: Chapter 3 appears in a paper titted CTRAPS: CTAP Impersonation and APl Confusion
on FIDOZ2 at the IEEE European Symposium on Security and Privacy (Euro S&P), 2025.
Moreover, it is accepted at DEF CON 33 (2025). [49].

P4: Chapter 4 is currently under submission in a paper titled BlueBrothers: Three New Protocols
to Enhance Bluetooth Security at the IEEE Symposium on Security and Privacy (S&P),
2026.

P5: A paper titled CheckOCPP: Automatic OCPP Packet Dissection and Compliance Check is
accepted at IEEE Automotive Cybersecurity Euro S&P Workshop (ACSW), 2025.

P6: A paper titled Bluetooth Security Testing with BlueToolkit: a Large-Scale Automotive Case
Study is accepted at USENIX Workshop On Offensive Security (WOQOT), 2025

P7: A paper titled SimProcess: High Fidelity Simulation of Noisy ICS Physical Processes is
accepted at ACM Cyber-Physical System Security Workshop (CPSS), 2025

P8: A paper titted EmuOCPP: Effective and Scalable OCPP Security and Privacy Testing is
accepted at USENIX Symposium on Vehicle Security and Privacy (VehicleSec), 2025

P9: A paper titled E-Trojans: Ransomware, Tracking, DoS, and Data Leaks on Battery-powered
Embedded Systems is under submission at the Annual Computer Security Applications
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Conference (ACSAC), 2025. Moreover, it is accepted at Black Hat USA (BH US), 2025.

For resources about a paper, like slides, code, demos, see: https://francozappa.github.i
o/publication/
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