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Abstract 
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intra-device communication, including standard, 
proprietary, and literature-based approaches. We 
observed a weakness in the use of JSON Web 
Tokens (JWTs) as a method for authenticating 
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attacker to impersonate the device to the cloud 
service. Our study also motivated us to conceive a 
new secure channel protocol, called NSCP, which 
aims to replace the standard SCP03 protocol for 
secure communications, in order to improve the 
state of the art, both in efficiency and power 
consumption. 

Keywords 
Secure channel protocol, Intra-device 

communication, Handshake, Record protocol 



D5.2 Report about essential and beyond-essential s&p guarantees for 
intra-device communication in restricted environments 

ORSHIN D5.2  Public Page I 

 

Editor 

SEC 

 

 

Contributors (ordered according to beneficiary numbers) 

Alberto Battistello (SEC) 

Federico Gorla (SEC) 

Arianna Gringiani (SEC) 

Maria Chiara Molteni (SEC) 

Lorenzo Nava (SEC) 

 

 

Reviewers  (ordered according to beneficiary numbers) 

Benedikt Gierlichs (KUL) 

Jan Pleskac (TRPC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author`s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
information at their sole risk and liability.



D5.2 Report about essential and beyond-essential s&p guarantees for 
intra-device communication in restricted environments 

ORSHIN D5.2  Public Page II 

Executive Summary 

 

The content of this document is the results of the work done for ORSHIN’s WP5 in tasks 5.3 and 5.4 
about the study of Security and Privacy (s&p) guarantees for intra-device communication in restricted 
environments. Our work is harmonised with ORSHIN's tasks 5.1 and 5.2 that study the s&p 
guarantees for inter-device communication, and the other WPs of the ORSHIN’s project.  

One of the key aspects of the ORSHIN objective, is the analysis of the state of the art security of 
communications in restricted environments. This directly translates to the analysis of secure 
communications of a constrained embedded device between the main controller and the peripheral 
units, like sensors, Secure Elements, or other processors. This is true in particular when the 
cryptographic material, necessary to establish secure communications with the world outside of the 
device, is contained in the secure element and needs to be used by the main processor. Thus a 
secure channel needs to be established between the two components. In this document we provide 
a detailed study of the different protocols that are used by modern systems to secure such links.  

We start our study with the Secure Channel Protocol (SCP) used in most Secure Elements and 
published by the GlobalPlatform consortium, and the Replay Protected Memory Block (RPMB) 
protocol used to secure the communication with memories. Our analysis then moves on to other 
proprietary protocols, like the one used in Optiga products by Infineon, the secure protocol used in 
Microchip’s ATECC chips, or the Chip2Chip security protocol used in Ublox products. We then 
extend our analysis to other literature publications that tackle the problem of providing a robust and 
sound record protocol, as it is used in many modern applications worldwide. Finally we illustrate 
some further constructions that can be interesting to complete the scenario, such constructions, like 
the JSON Web Token (JWT), show emerging ways to build and deploy security by using 
standardized basic blocks.   

Our work towards the accomplishment of the ORSHIN project then provides an in depth investigation 
of one particular communication protocol enabled by the use of the JSON Web Tokens (JWT) 
standard and its use in actual implementations. JWTs are a compact, URL-safe means of 
representing claims to be transferred between two parties. They are for example widely used as 
credential tokens, allowing users that are logged in their phone, to access their Google Drive 
documents without the need to input the credentials again. We present JWT Back to the future, the 
possibility of using the device for preparing JWT that will be later used to connect to the cloud service. 
A malicious user in the supply chain, for instance someone having access to a testing machinery 
capable of interacting with all the devices, might have the possibility to collect a large number of JWT 
for mounting a massive attack in the future. This work has been submitted to the LIGHTWEIGHT 
CRYPTOGRAPHY FOR SECURITY & PRIVACY (LightSEC 2025) conference 2025.  

As a final result of the Beyond essential s&p guarantees for intra-device communication task, we 
developed an original protocol that takes advantage of open-source hardware. We called this new  
secure channel protocol NSCP; it aims to replace the standard SCP03 protocol for secure 
communications. We published it at the DATE2025 conference [Date25].
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Chapter 1 Introduction 

This deliverable contains some material from the interim deliverable iD5.2 provided half way through 
the project and a lot of novel material. More precisely, Chapter 2 in this deliverable corresponds to 
Chapter 2 in iD5.2 and Chapter 3 in this deliverable corresponds to Chapter 3 in iD5.2 (with some 
reshaping of the content). Chapter 4 is completely new with respect to iD5.2, Introduction and 
Conclusion have been updated. 

The ORSHIN project investigates open-source resilient hardware and software solutions for Internet 
of Things (IoT) security. In industrial environments, IoT security is crucial to ensuring data 
confidentiality, system integrity, and operational continuity. Many IoT devices handle sensitive 
information, such as pre-shared secrets or public key infrastructure (PKI) certificates used for 
authentication. Additionally, attackers can exploit vulnerabilities in sensors or embedded 
components to manipulate system behavior, potentially impacting the functionality of entire industrial 
plants. Protecting IoT devices from both remote and physical threats is therefore an essential aspect 
of security. 

A widely adopted approach to improving IoT security is the integration of Secure Elements, 
specialized hardware components designed to resist tampering and to provide a protected 
environment for cryptographic operations. Secure Elements store cryptographic keys securely and 
ensure that sensitive data remains protected even in the presence of physical attacks.  

One of the critical security challenges in this context is ensuring the confidentiality and integrity of 
intra-device communication. Specifically, the communication between Secure Elements and 
microcontrollers. If this communication is not properly protected, an attacker with physical or software 
access to the device could intercept sensitive information, manipulate authentication processes, or 
gain unauthorized access to critical resources. 

This document reports part of the research conducted within Work Package 5 (WP5) of the ORSHIN 
project, specifically tasks 5.3 and 5.4. The work focuses on securing intra-device communication, 
analyzing existing solutions, identifying potential vulnerabilities, and proposing a new protocol 
designed to enhance security while maintaining efficiency and ease of implementation.  

In Chapter 2, we present the contribution to the ORSHIN project about analyzing existing solutions, 
and then we propose a study of the different existing protocols that are used in commercial products 
to secure intra-device communication.  

We start our analysis by illustrating one of the most common protocols for secure communication 
between a microcontroller and a secure element, the Secure Channel Protocol 03 (SCP-03), 
published by the GlobalPlatform consortium. Such a protocol has been the subject of a few revisions, 
due to security weaknesses found on previous versions. Another standardized protocol is the RPMB. 
It is used to secure memory accesses from a microcontroller to a specific memory peripheral. It is 
standardized by the JEDEC organization and implemented by most eMMC. 

Not only standard protocols for secure communications do exist, but many manufacturers design 
and implement their own protocols. We explore them in the second part of the second chapter, for 
example analyzing Infineon’s proprietary protocol to secure the communication between a host MCU 
and the OPTIGA Trust M security controller. Other manufacturers similarly opted for a proprietary 
protocol. For instance, Microchip, with the ATECC cryptoauthentication products, that use the IO 
protection key for securing the communication with the host microcontroller, or the Chip2Chip 
protocol used by the Ubxlib library in U-blox products. We analyze different aspects of their 
functionalities, performances and security in the following sections. 

Another important avenue of research is provided by the protocols in scientific literature devoted to 
the so-called “Record Protocol”, which aims at defining suitable protocols that target both usability, 
performances and security, while trying to provide a sufficient level of abstraction. A record protocol 
is very well suited to replace standard secure channel protocols, as it ensures both privacy and 
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authenticity of the communication, while preserving a transcript of the messages exchanged during 
the session. Among those, NaCl (pronounced “salt”) is probably one of the first efforts to design an 
all-rounded network security library, providing a high level abstraction from the record protocol to 
complex cryptographic primitives, without sacrificing speed and security. From that initial effort, 
further propositions have been made, and protocols like BLINKER, Strobe and the Noise have seen 
a wide adoption due to their flexibility. In particular the Noise protocol is used in the Whatsapp 
application to secure exchanges of billions of users every day. 

We conclude our study with the analysis of two further constructions that can be of interest in order 
to provide an overview of the state of the art in terms of intra-device secure communications. These 
are the JSON Web Tokens (JWT), which provide a compact way to express claims to be transferred 
between parties. They are defined in RFC7519, and several further RFCs define the way to provide 
privacy and authenticity for the claims. Furthermore, we also analyze the properties of the Deck 
functions, where the authors present a way to make use of the sponge construction to create a 
versatile structure to provide the basic functionalities needed by a record protocol, with a very 
efficient, simple and elegant framework. 

In Chapter 3, we address the identification of vulnerabilities in studied protocols, in line with the 
scope of the ORSHIN project to investigate software solutions for Internet of Things (IoT) security. 

We identified a weakness in the JWT standard, showing an attack that exploits it. In particular an 
attacker that takes control of one device in the supply chain, may be able to create a series of valid 
JWTs, that may be used further after the deployment, to impersonate the device when accessing 
the cloud infrastructure. Among the advantages of the attack is that the network is completely 
unaware about the JWTs created in the supply chain by the attacker. 

We call JWT Back to the future the possibility of using the device for preparing JWT that will be later 
used to connect to the cloud service. A malicious user in the supply chain, for instance someone 
having access to a testing machinery capable of interacting with all the devices, might have the 
possibility to collect a large number of JWTs for mounting a massive attack in the future, for example 
to flood the Cloud server, or bias their collected data. 

This work has been submitted to the Lightweight Cryptography For Security & Privacy (LightSEC 
2025) conference 2025, which falls in the scope of the ORSHIN project. 

Finally, in Chapter 4, we explain how the ORSHIN project contributes with a novel secure 
communication protocol designed for industrial IoT environments, taking advantage of open source 
hardware, which is the focus area of the ORSHIN project.  

It focuses on enhancing the security of the connection between microcontrollers and Secure 
Elements while improving efficiency compared to SCP03, the current industry standard. By 
leveraging the Xoodyak cryptographic primitive, our protocol, called NSCP, achieves strong security 
with significantly lower computational overhead, making it ideal for resource-constrained devices. 
This work has been published at the DATE2025 conference [Date25]. 
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Chapter 2 State of the Art of Intra-Device Comms 

This chapter analyzes the state of the art of the protocols for securing the communication between 
the main controller and the peripheral units, like sensors, Secure Elements, or other processors of a 
system. In particular, we focus on the security protocols that provide authenticity and privacy on the 
exchanged messages. 

We start our analysis with a brief overview of the general steps that compose a secure channel 
protocol. Then we study the Secure Channel Protocol (SCP) used in most Secure Elements and 
published by the GlobalPlatform consortium. Our analysis then moves on to other proprietary 
protocols, like the ones used in Optiga products, by Infineon, and the secure protocol used in 
Microchip’s ATECC chips. Afterwards, we illustrate the Replay Protected Memory Block (RPMB) 
protocol used to secure the communication with memories, and the Chip2Chip security protocol used 
in Ublox products. We then extend our analysis to other literature publications that tackle the problem 
of providing a robust and sound record protocol, as it is used in many modern applications worldwide. 
Finally we illustrate some further constructions that can be interesting to complete the scenario. Such 
constructions, like the JWT, show emerging ways to build and deploy security by using standardized 
basic blocks. 

 

2.1 State-of-the-Art Protocols 

In the following we analyze protocols that provide security for intra-device communications. We 
denote such protocols in general as secure channel protocols. A secure channel protocol plays the 
role of the so-called record protocol of TLS, in the sense that no key exchange is involved, but it is 
assumed that both ends of the communication share the same (set of) symmetric key(s), and the 
protocol is fast enough to allow efficient exchange of several messages between the parties. Thanks 
to this pre-shared secret, secure channel protocols typically begin with a handshake to establish 
temporary session keys. These session keys, derived from the pre-shared secret, are sufficiently 
diversified to prevent an attacker who compromises them from recovering the original secret. This 
ensures that future handshakes can re-establish security.  

In general, before the record protocol, a key exchange mechanism is executed. Depending on the 
architecture, this key exchange can be performed on-line (with for example a Diffie-Hellman key 
exchange) or off-line (by using a physically secure environment to write the keys in the memory of 
the different devices involved). This document will not discuss this step, and in the following we 
assume that both components of the communication share the same secret(s), or pre-shared key(s). 

The timeline of a secure channel session can thus be conceptually divided in four phases, occurring 
in the following order: 

1. Provisioning, during which the pre-shared material is stored on both the communicating 
endpoints. The provisioning phase takes place in a secure and trusted environment. 

2. Handshake or initiation, during which the communicating endpoints authenticate each other, 
and exchange the necessary data to perform the cryptographic functions required by the 
following phase. At the end of the initiation phase the session is considered to have been 
successfully established, and both entities are assumed to possess the same session keys 
to be used for the following phases. 

3. Data exchange, during which the entities exchange data enforcing the security protections 
established during the initialization of the session. 

4. Termination, when the session is closed by request of either entity. 
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2.1.1 The Secure Channel Protocol Family 

GlobalPlatform [GlobalPlatform] is a collaborative organisation driven by consensus, and dedicated 
to the standardisation of isolated execution environments in different types of devices, to deliver 
secure services and trusted storage for diverse industries and stakeholders. The members of this 
organisation are dedicated to facilitating the efficient initiation and oversight of innovative, securely 
designed digital services and devices. The objective is to provide users with end-to-end security, 
privacy, simplicity, interoperability, and convenience through these services and devices. 

GlobalPlatform spans various industries, issuing specifications outlining the procedures for post-
issuance management of smart cards, including the capability to securely manage the content of 
cards remotely. At the core of these mechanisms lies the family of Secure Channel Protocols (SCPs) 
designed to protect bidirectional communication between a smartcard and a host. These protocols 
are used as mutual authentication and they provide cryptographic protection for card and host 
subsequent communication, supporting entity authentication, as well as integrity, authenticity, and 
confidentiality of the payload. 

The family of the Secure Channel Protocol (SCP) span a wide set of usages, ranging from a record 
protocol for the encryption of communications over simple buses (like Uart or I2C), to key exchange 
protocols, or protocols to secure the communication between a host and a far away secure element, 
by encapsulating the messages over a high level application protocol. 

SCP is built above ISO/IEC 7816, a standard used to represent command / response messages as 
application program data units (APDUs) (see Section Packet Format). 

The SCPs family comprises the protocols SCP01, SCP02, and SCP03 [Card Specification] which 
describe symmetric keyed ciphering mechanisms. The deprecated SCP01 used DES encryption 
[DES], and SCP02 uses Triple DES in CBC mode with fixed IV of binary zeros. As a result, the 
encryption scheme is deterministic and it was revealed to be vulnerable to classical plaintext-
recovery attacks [SCP02 Attack]. SCP02 is now deprecated and the use of SCP03 [SCP03] is 
recommended. 

Secure Channel Protocol '03' includes services similar to Secure Channel Protocol '02', however, it 
is based on the Advanced Encryption Standard (AES) [AES] encryption algorithm with a randomly 
generated Initialization vector, resulting in a non-deterministic and secure algorithm as opposed to 
SCP02.  

The GlobalPlatform organisation defines two SCP channels relying on asymmetric-key 
cryptography: SCP10 [Card Specification]  and SCP11 [SCP11]. Asymmetric cryptography usually 
leverages on wrapping symmetric session keys with asymmetric encryption or key negotiation.  

The Secure Channel Protocol '10' offers authentication services using an RSA-based Public Key 
Infrastructure (PKI) and secure messaging protection using symmetric cryptography, while SCP11 
uses ECC-based cryptography and secure messaging protection based on SCP03. 

Depending on the real world use case, asymmetric-based protocols could be necessary if there is 
no way to set up pre-shared secrets between the parties involved. 

Concerning SCP02 and SCP03, they both use a counter for the generation of new session keys. For 

instance, if the counter is 2-bytes long, then after 216 sessions the long-term secret key must be 
changed. In SCP10, no counter is required, as the process of key generation/derivation only uses 
freshly generated random bytes without maintaining any stateful information. 

However, multiple issues were discovered in SCP10 ([SCP10 Flaws]), and SCP11 is not broadly 
adopted due to its complexity. 

Other versions of SCP include the following: 

● SCP21 [Card Specification] focuses on enforcing privacy following the requirements defined 
in CEN/EN 419 212 [CEN/EN 419 212]. SCP21 defines two steps:  Password Authentication 
Connection Establishment (PACE) and modular Extended Access Control (mEAC). 

https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.3v544dfad2ck
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.mpsn4z74i6ck
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.vfqrubugf0jc
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.t68sb6547f6f
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.ahur3ioyijqb
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.g6ew9md0twom
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.t68sb6547f6f
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.g43h0ln13m2a
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● SCP22 [Opacity Secure Channel] is a secure channel and key establishment protocol, 
collectively known as the Opacity Secure Channel establishment method. 

● SCP80 supports the Over-The-Air security scheme defined in ETSI TS 102 255 [ETSI TS 
102 225] and ETSI TS 102 266 [ETSI TS 102 226]. The protocol uses DES, which is not 
secure, therefore the use of AES is recommended. 

● SCP81 [Remote Application Management over HTTP] supports an Over-The-Air security 
scheme based on HTTP and Pre-Shared Key TLS protocols. 

 

2.1.2 Secure Channel Protocol 03 (SCP03) 

Among the SCP family, the Secure Channel Protocol ‘03’ is the current state-of-the-art protocol for 
intra-device communications. The protocol provides decryption and MAC verification for incoming 
commands, and encryption and MAC generation on card response. SCP03 provides security 
guarantees, resistance to replay, out of order delivery and protection against algorithm substitution 
attacks. 

The SCP03 protocol supports different security levels for the subsequent command APDUs (C-
APDUs) and response APDUs (R-APDUs). 

The security level corresponds to different combinations of message authentication and encryption 
enforcement. Encryption is performed using AES in Cipher Block Chaining (AES-CBC) [AES-CBC] 
mode while authentication is achieved by appending an 8-byte (or, in some versions, 16 bytes) 
Message Authentication Code (MAC) produced by an AES-based CMAC [AES-CMAC]. 

The security mechanism combinations are listed below (being “C” command and “R” response). 

● C-Encryption, R-Encryption, C-MAC, R-MAC 
● C-Encryption, C-MAC, R-MAC 
● C-MAC, R-MAC 
● C-Encryption, C-MAC 
● C-MAC 
● Plaintext with no authentication 

 

2.1.2.1 Provisioning 

During the provisioning phase, the security domain is initialised on both the endpoints (the card entity 
and the host). In order to initialise it, two AES-128/AES-192/AES-256 keys, K-enc and K-mac, are 
loaded into the memory of each endpoint. Later, these master keys are used to derive three session 
keys required to establish a secure channel session, during the Handshake phase.  

As opposed to the session keys, the master keys do not change across multiple sessions, unless 
the host entity performs a “key rotation” procedure. Key rotation involves using the master keys 
presently stored (or provisioned) on the endpoints to securely encapsulate the new keys. Following 
this process, both endpoints possess the same new master keys, while the old ones are discarded. 

 

2.1.2.2 Handshake 

The authentication of an off-card entity is accomplished by initiating a secure channel session. 
During such initialization, dedicated session keys, valid only for the current session, are exchanged 
between the two parties. In the event of any failure in the authentication process, it requires a restart. 

The authentication of the off-card entity is applicable only until the termination of a secure channel 
session, and holds validity solely for the messages exchanged within that specific secure channel. 
This secure channel session pertains to both the establishment and termination phases of a secure 
channel.  

This procedure enables the host to communicate to the card the required security level for the 
ongoing session, specifying whether integrity and/or confidentiality are necessary, and applying this 
decision to all subsequent exchanged messages. 

https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.s5u4z2lniyck
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.7jy47c7p3b20
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.7jy47c7p3b20
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.rvky1vs12qlz
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.yq23l9tfo3yd
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The handshake assumes that the off-card entity and the card entity share the 2 static keys, previously 
previsioned. These are used to derive the session keys, denoted as S-enc, S-mac, and S-rmac, 
respectively. 

The process consists of the following steps. 

1. The channel is initiated by the off-card entity which sends a specific command (initialise 
update) that carries a host challenge v-h, i.e. a random data unique to this secure channel 
session. 

2. The card, on receipt of this challenge, generates its own card challenge v-s. 
3. The card, using the challenges and its internal static pre-shared keys, creates new secret 

AES secure channel session keys. A CMAC-based key derivation function (KDF) is used 
[AES-CMAC].  

4. Then, the card employs S-mac to produce an initial cryptographic value known as the card 
cryptogram, x-s.  

5. This card cryptogram x-s and the card challenge v-s are transmitted back to the host. 
6. Thanks to the information received from the card, the host can generate identical secure 

channel session keys and the corresponding card cryptogram x-s to those of the card. Also, 
by comparing the cryptogram internally generated against the one received, the host can 
authenticate the card. 

7. The off-card entity employs a comparable process to generate a second cryptographic value 
known as the host cryptogram, x-h, which is then transmitted back to the card with the 
external authenticate command. 

8. The card should be able to generate a copy of the host cryptogram and compare it to perform 
the off-card entity authentication. 

After the handshake, both the communicating entities can use the session keys to enforce the 
security level. The S-enc and S-mac are used to respectively compute the encryption and the mac 
of transmitted messages, while S-rmac is used to protect the transmission of new static keys. 
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Figure 1: Handshake in SCP03 

 

2.1.2.3 Data exchange 

During the data exchange phase, the session keys created by the two parties during the handshake 
phase are used to secure the exchange of messages. Various security properties are applied to the 
exchanges, depending on the requirements specified in the handshake by the off-card entity. 

The external authenticate command is also used by the host to specify one of the five security levels 
of the following communication: 

1. Level 1: authentication of commands. 
2. Level 2: encryption and authentication of commands 
3. Level 3: authentication of commands and responses. 
4. Level 4: encryption and authentication of commands and authentication of responses. 
5. Level 5: encryption and authentication of commands and responses. 

Message authentication is achieved by comparing the C-MAC received from the Host with the C-
MAC computed by the card. The C-MAC is generated by applying the NIST CMAC calculation [NIST 
SP 800-38B] using the S-MAC session key generated in the handshake step.  

To provide integrity of the command sequence, the 16-byte C-MAC of a command is used as input 
for computing the C-MAC of the subsequent command. The final 16-byte C-MAC calculated is 
preserved as part of the channel state, initially set to '00' for the first computation. This mechanism 
serves to reassure the card that every command in a sequence has been received. 

Additionally, the integrity of the response is chained to the integrity of the command sequence by 
employing the same 16 bytes as input for computing the R-MAC on responses. 
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When message data confidentiality is required, the message data field is encrypted using an 
encryption key derived from the session keys generated during the initiation process. Encryption is 
applied across the entire data field of the command message to be transmitted to the card. If 
required, the encryption is also applied across the response transmitted from the card. 

SCP03 relies on the Encrypt-then-MAC method, meaning that the plain-text is first encrypted with 
AES-CBC, then the MAC is computed on the ciphertext, and lastly the MAC is appended to the 
ciphertext. If message data confidentiality is also required, the C-MAC applies to the message data 
field after the encryption has been performed. 

The maximum number of messages per session adheres to the rules set by AES-CBC and AES-
CMAC. In fact, it is crucial to ensure that the initialization vector used for encryption or MAC 
calculation does not repeat. In fact, the initial chaining value (ICV) used by AES-CBC, iv(n), depends 
on the current message counter n. The counter increases with each command sent from the host to 
the secure element, making it dependent on the number of commands sent n. Using iv(n), identical 
payloads within the same session will be encrypted differently, preventing chosen plain text attacks 
(CPA). 

For message authentication, authentication tags are generated using MAC chaining values. At any 
moment, the MAC chaining variable in the host (μ in Figure 2) guarantees the integrity of the 
command sequence produced by the host. In a way, it can be thought of as a summary of the 
session’s history. The authentication tag α associated with the message is the most significant 8 
bytes (or, in some versions, 16 bytes) of the current chaining value μ which is computed from the 
previous one with the current command ciphertext and the S-mac key. Using such a chaining value 
captures the entire command history up to message n. 

This effectively nullifies attempts at replay attacks, as two identical commands or responses will have 
different authentication tags. Thanks to its design, SCP03 has been proven secure against replay 
attacks, out-of-order attacks, algorithm substitution attacks, and more [SCP CardLogic] [SCP 
Cryptanalysis]. 

 

Figure 2 Encrypt-then-MAC method [SCP CardLogic] 

 

2.1.2.4 Packet Format 

SCP03 packets adhere to the format defined by the ISO 7816 standard [ISO 7816], specifically 
designed for communications with smartcards. This format, namely ISO7816 APDU, is organized as 
a TLV, where each packet consists of a Tag, Length, and Value. The Tag uniquely identifies the type 
of data, the Length field specifies the size of the accompanying Value, and the Value itself contains 
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the actual data. This standardized structure ensures consistency and interoperability across 
communication interfaces. SCP03 supports many different communication channels (including i2c 
and uart); in general, this protocol supports all the mechanisms supported by ISO 7816 standard.  

In particular, during the handshake, the packets contain specific information in the header required 
to set up a secure channel (e.g.: security level), as described in section Handshake. The body of the 
packet, on the other hand, contains the cryptographic material required by the protocol handshake 
to establish a secure connection. In essence, SCP03 handshake and message exchange take 
advantage of the structured ISO7816 format to encapsulate secure communication, ensuring the 
integrity, confidentiality, and authenticity of the transmitted data during the entire session between 
the host and the card. 

The packets exhibit four distinct formats, enumerated below, each tailored to specific contexts: 

● Case 1: CLA, INS, P1, P2 
● Case 2: CLA, INS, P1, P2, Le 

● Case 3: CLA, INS, P1, P2, Lc, Data 

● Case 4: CLA, INS, P1, P2, Lc, Data, Le 

Where 

● CLA = Operation class 

● INS = Instruction 

● P = Parameter 

● Le = Expected length to be received from the card 

● Lc = Length of the Data field 

● Data = Message sent to the card 

The exact content of such fields depends on the protocol and on the instruction-set of the card. 

 

2.1.2.5 Implementations 

Unfortunately, GlobalProtform does not offer a reference implementation for their protocol. Instead, 
during our study, we found several implementations of the SCP03 protocol from individuals. Probably 
the de-facto standard implementation of the SCP03 (but of all the GP suite in general), is the one 
from  Martin Paljak: https://github.com/martinpaljak/GlobalPlatformPro/. It is not dedicated to SCP03, 
but in order to load applets into JavaCards, it needs to speak SCP03 to load the applet into the card. 
It also comes with some test vectors, which comes in hand when implementing SCP03 from scratch. 

 

2.1.3 OPTIGA 

OPTIGA is a family of security solutions designed by Infineon, for integration into embedded systems 
to protect the confidentiality, integrity and authenticity of information and devices. The OPTIGA Trust 
family includes products for smaller platforms as well as programmable solutions, such as OPTIGA™ 
Trust M [Optiga Trust M]. OPTIGA™ Trust M implements a connection protocol that provides a layer 
of security over the I2C channel [Optiga shielded connection]. 

 

2.1.3.1 Provisioning 

The protocol for ensuring secure connection between a host microcontroller and an OPTIGA Trust 

M is based on establishing a Pre-Shared Secret (PreSSec), also known as platform binding secret, 

between them. Then a secret key is derived from the PreSSec and used to protect the subsequent 

connections. The process is described in Figure 3. 

1. To generate the shared secret, first the host generates a random number by using a Pseudo 

random number generator (PRNG), then uses it to derive the PreSSec. The host can further 

optionally XOR it with a second random number.  

https://github.com/martinpaljak/GlobalPlatformPro/
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.kyqooy92tisc
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
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2. The PreSSect is then stored in nonvolatile memory (NVM) by the host.  

3. Once the PreSSec has been generated, it is sent to the  OPTIGA™ Trust M for storage.  

4. The host sets the metadata of the PreSSec stored on the OPTIGA™ Trust M in a secure 

environment for integrity and confidentiality protection. Once the PreSSec is written in 

OPTIGA™ Trust M, it can be updated only via a secure protected update mechanism. 

The host and OPTIGA™ Trust M now have the same PreSSec. The recommended secret size is 
32-bytes, or at least 16-bytes. 

 

Figure 3: Pairing OPTIGA™ Trust M with host [Optiga Trust M] 

 

2.1.3.2 Handshake 

Once the PreSSec is established, it is used to derive the symmetric key for encrypting the traffic 
between the host and OPTIGA™ Trust M. The PreSSec is transformed into a symmetric key based 
on the TLS pseudo random function (TLS PRF) SHA256 [TLS 1.2, FIPS 180-4].  

The session key is derived every time a shielded communication is established between the host 
and OPTIGA™ Trust M and therefore, unique on each startup or each session. The following steps, 
also illustrated in Figure 4, are involved in the session key derivation using the PreSSec previously 
established. 

1. The host sends the supported protocol versions to the Trust M  with a particular Security 
Control packet to the presentation layer. This indicates the starting of the handshake process. 

2. The Trust M generates a random value (RND) and the Slave sequence number (SSEQ), 
used to avoid replay attacks.  

3. The slave returns both values along with the chosen protocol version to the host. 
4. The host computes the session secrets (MasterSsec) and so does the Trust M (SlaveSsec) 

by using the TLS PRF. This function takes as input a nonce and the PreSSec, and derives 
the Session Key. 

5. The host uses the SSEQ to generate the ciphertext by using the Generation-Encryption 
Process as per AES128-CCM8. The host sends the SSEQ and the ciphertext to the Trust M, 
indicating that the host-side handshake is finished. 

6. The Trust M decrypts the ciphertext using the Decryption-Verification Process of AES128-
CCM8 and verifies if the expected values were received. If it is the case, the Trust M saves 
the SSEQ for further use. 

https://datatracker.ietf.org/doc/html/rfc5246#section-6.3
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.ohsxynumk8bk
https://datatracker.ietf.org/doc/html/rfc5246#section-6.3
https://en.wikipedia.org/wiki/Cryptographic_nonce
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7. Repeating the steps of the host, the Trust M generates the Master Sequence Number 
(MSEQ) and the ciphertext with the Generation-Encryption Process and sends both to the 
host. 

8. The host decrypts the ciphertext and verifies in the payload if the expected values were 
received and upon success, saves the received MSEQ for further use. 

9. If both ciphertext validations are successful, a cryptographic link is established between the 
two entities, allowing a protected record exchange. 

 

Figure 4: Session key derivation and handshake between OPTIGA™ Trust M and host [Optiga shielded 
connection] 

2.1.3.3 Data exchange 

After deriving the session keys from the PreSSec, they are used for encryption and decryption. The 
used scheme is AES128-CCM8 [NIST SP 800-38C]. 

The same key is also used for authentication using MAC. This kind of scheme where both encryption, 
decryption and authentication are done using the same key is called Authenticated encryption.  

 

2.1.3.4 Implementations 

Infineon does not provide the source code for the client side of the communication, instead they 
provide some example code for interacting with Optiga Trust M, with the “shielded connection” over 
I2C enabled here: https://github.com/Infineon/mtb-example-optiga-
crypto/tree/6f712e2de35d4aa7203d963bf6cd9401a1ca0223. 

 

2.1.4 ATECC 

The Microchip CryptoAuthentication™ [CryptoAuthentication™] is a family of high-security 
cryptographic devices that combine hardware-based key storage with hardware cryptographic 
accelerators to implement various authentication and encryption protocols. 

The family of Microchip ATECCx08A/B CryptoAuthentication Devices are crypto engine 
authentication devices with a flexible command set that include an EEPROM array for storage. 

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.s665qv827pxp
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Authenticated_encryption
https://github.com/Infineon/mtb-example-optiga-crypto/tree/6f712e2de35d4aa7203d963bf6cd9401a1ca0223
https://github.com/Infineon/mtb-example-optiga-crypto/tree/6f712e2de35d4aa7203d963bf6cd9401a1ca0223
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Typical applications include node identity authentication and session key creation and management. 
They support the entire ephemeral session key generation flow for protocols including TLS 1.2 and 
TLS 1.3. 

The main Secure Elements belonging to the CryptoAuthentication family are the ATECC608A 
[ATECC608A] and ATECC608B [ATECC608B]. These devices provide confidentiality, data integrity, 
and authentication to systems with MCU or MPUs running encryption/decryption algorithms.  

The Microchip ATECC608A/B introduced a method to protect the I/O transmission between the 
device and the host MCU for some of the commands. The improvement was necessary as the first 
version of the protection mechanism, as implemented in the ATECC508A [ATECC508A], was 
discovered not to be  secure. The verification of the ECDSA signature returns an encrypted boolean 
result: a value of zero if the signature of the message can be verified using the public key, and a 
value of one if the signature does not match, or another error code if there is some form of parsing 
or execution error. Therefore, no security in the verification command is employed. 

The new method to protect the communication channel is the following: an IO Protection key is used 
to protect I/O transmissions between the device and the host MCU. The IO Protection key feature 
can be used in the ECDSA signature verification, ECDH, secure boot, and the KDF commands to 
encrypt parameters and validate responses by using a MAC. This allows to protect the 
communication on the physical I2C bus against man-in-the-middle attacks.  

 

2.1.4.1 Provisioning 

To activate the I/O security feature, a pairing procedure between the MCU and ATECC608A/B must 
be carried out on first boot. The pairing happens by establishing a unique randomly generated secret 
key and shared between the host MCU and the device, called the IO protection key.  

First, the MCU randomly generates a 32-byte IO protection key using a random command and saves 
it in its internal Flash. Then, the MCU writes the IO protection key to the IO protection key slot, which 
is locked to make the IO protection key permanent. As a pairing check, the MCU could use the MAC 
command to issue a challenge to the IO protection key to check if the key stored in Flash matches 
the IO protection key stored in the ATECC608A/B. 

Once established, the Protection key can be used to encrypt the Premaster key generated from 
ECDH and the generated KDF key, before being sent to the host. In the secure boot process and 
the signature verification process, a MAC is generated using the IO Protection key to provide 
additional authentication to the host. After provisioning the two entities, no real handshake is 
performed. Both the entities own the same IO Protection key with which the material to be shared is 
encrypted. 

 

2.1.4.2 Security history of the ATECC 

The first version of the ATECC608A family was found insecure to laser fault attacks [ATECC608A-
Laser]. In particular, the attackers exploited the self-test procedure of the chip to fine tune their laser 
injection. Subsequently, by using a double-fault attack, it was shown possible to bypass the security 
countermeasures of the chip. 

 

In 2020 Microchip developed a security-enhanced version of the ATECC608A, known as the 
ATECC608B. The ATECC608B has been designed to allow an easy migration from the 
ATECC608A, while improving the overall security of the devices, continuing the line of products 
developed as part of the Microchip CryptoAuthentication family. The ATECC608B uses the IO 
protection key to encrypt the output of the KDF command and to encrypt newly derived keys back to 
the host. It can also be used as the encrypted read key for all session keys. 

All applications and use cases previously supported by the ATECC608A are also supported by the 
ATECC608B.  
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2.1.5 Replay Protected Memory Block (RPMB) 

Not only devices dedicated to cryptographic computations need secure connections. Also memories 
may be enhanced by such a mechanism to improve the security of the stored data. 

A Replay Protected Memory Block (RPMB) [RPMB] is a small partition within a device that allows 
storing data to the specific memory area while guaranteeing authentication and protection against 
replay attacks. RPMB was introduced in eMMC version 4.4, and it is available on other flash-based 
storage devices among which UFS (Universal Flash Storage) [UFS] and NVMe [NVMe]. The RPMB 
interface is defined by the JEDEC organisation [JEDEC] and can be accessed with a specific and 
standardized security protocol that has its own commands and data structures. 

Table 1 shows the layout of the RPMB partition within the device storage. 

 

Table 1: Layout of RPMB 

Section Access Size Initial value 

Authentication 
Key 

Write once. Not 
erasable or 
readable 

32 bytes Authentication key register which is 
used to authenticate accesses when 
MAC is calculated 

Write Counter Read-only 4 bytes 0x0000_0000 

RPBM Data 
Area 

Read/write Multiple of 
128Kb, 16MB 
max 

This data may be overwritten by the 
host but can never be erased. 

 

RPMB makes use of symmetric key authentication, where an authentication key is used by both the 
host and the device to exchange authenticated data. The process is the following: 

● An authentication key is first programmed by the host to the storage device. This process 
must take place in a secure environment. 

● Data to be written to the device is hashed and signed with the authentication key, and the 
storage device will only accept the write operation after checking the signature, which is 
computed through MAC. 

● When reading from the device, the data is returned together with the MAC, so that the host 
can also calculate the MAC and compare it with the one received to verify the authenticity 
of the message 

  

https://www.jedec.org/about-jedec
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.nx6x2sgbaqco
https://sergioprado.blog/a-hands-on-approach-to-symmetric-key-encryption


D5.2 Report about essential and beyond-essential s&p guarantees for 
intra-device communication in restricted environments 

ORSHIN D5.2  Public Page 14 

2.1.5.1 Provisioning 

The Authentication key is a 256-bit key programmed into the One-Time Programmable (OTP) area 
of the storage device. This key can only be programmed once in the device lifetime, and it is invisible 
to any software after it is programmed. This Authentication key must be created in a secure 
environment like in an OEM production, written to the RPMB device, and securely stored in the target 
platform. Therefore, a secure storage is recommended for the proper usage of the RPMB partition. 

The message to be sent to the device for initialization of the Authentication key is composed as 
follows: 

1. The Authentication key programming is initiated by sending a Security Protocol Out 
command with Request Message Type = 0001h and the Authentication Key. 

2. The device receives the command and returns a confirmation message. 
3. The Authentication Key programming verification is issued by a Security Protocol Out 

command with Request Message Type = 0005h. 
4. The device receives it and returns a confirmation message. 
5. The host retrieves the verification result by issuing a Security Protocol In command. 
6. The device returns the RPBM data frame with Response Message Type = 0100h and the 

Result code. If the programming of the Authentication Key fails then the returned result is 
0005h, meaning write failure. If some other error occurs during Authentication Key 
programming then the returned result is 0001h, meaning general failure. 

 

2.1.5.2 Data exchange 

After the initialization of the key, when reading data from the partition, the replay protection protocol 
verifies the counter to confirm that the retrieved data is not a replay. If the counter is valid, the 
protocol generates a MAC using the same encryption keys algorithm employed in the write operation. 
Subsequently, the protocol compares this MAC with the one generated during the write operation to 
guarantee the integrity and authenticity of the data throughout the reading process. 

The MAC is calculated using HMAC SHA-256 [HMAC-SHA] and it is used to authenticate all the 
read and write operations accessing the secured area. The HMAC SHA-256 calculation takes as 
input the secret key, the counter, which counts the total number of writes to the RPMB, and a 
message. The resulting MAC is 256 bits long, and it is embedded in the data frame as part of the 
request or response. 

The key used for the MAC calculation is the 256 bit Authentication Key. Input to the MAC calculation 
is the concatenation of the fields in the RPBM message data frame excluding stuff bytes and the 
MAC itself. 

Without the RPMB key, read access is still possible but without the guarantee of data integrity and 
authenticity. That also means anyone can read the RPMB, so the RPMB does not provide data 
confidentiality, as encryption should be done by software if necessary. 

 

2.1.5.3 Features 

RPMB features the following commands for the request from the memory: 

1. Authentication key programming request 
2. Reading of the Write Counter value request 
3. Authenticated data write request 
4. Authenticated data read request 
5. Result read request 
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The message types for the response are the following. The response type corresponds to the 
previous Replay Protected Memory Block request. 

1. Authentication key programming response 
2. Reading of the Write Counter value response 
3. Authenticated data write response 
4. Authenticated data read response 

Table 2 shows the data frame structure of RPMB. 

Table 2: RPMB data structure 

Bytes count Content 

196 Stuff bytes 

32 Key/MAC 

255 Data 

15 Nonce 

4 Counter 

2 Address 

2 Block 

2 Result 

2 Request/Response 

 

Using the commands reported above and enforcing the sequential MAC calculation, RPMB is 
capable of denying replay attacks and grants integrity of the read and write operations transparently. 

 

2.1.5.4 Implementations 

Microchip, similarly to Infineon,  does not provide the source code for the client side of the secure 
communication with the ATECCx08 family of devices, instead they provide the CryptoAuthLib code: 
the APIs required to communicate with Microchip Security device, available at 
https://github.com/MicrochipTech/cryptoauthlib. 

 

2.1.6 U-blox 

The U-blox host library, called ubxlib [ubxlib], provides C libraries to build embedded applications 
with the aim of providing a unified and thoroughly tested solution, complete with examples. The 
library is delivered as an add-on to chosen popular microcontroller to facilitate integration of 
connectivity, security, and localization into embedded applications, enabling functionalities such as 
network connection, TCP socket opening, location establishment, etc.  

Embedded systems often incorporate an AT interface that facilitates the serial communication 
between a microcontroller and modems or GMS modules. The U-blox host library defines a chip to 
chip (C2C) protection security feature [ubxlib C2C], which provides confidentiality, integrity and 
authenticity to the communication channel between the AT interface and the MCU. The ubxlib library 
also provides some sample code to demonstrate the use of the C2C security feature. 

 

2.1.6.1 Provisioning 

AT commands, parameters, command outputs, and all associated data undergo encryption using a 
pre-generated encryption key produced in the manufacturing process and transmitted to the MCU, 

https://github.com/MicrochipTech/cryptoauthlib
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establishing the Root of Trust (RoT). The initial pairing occurs once, during device production, and 
the keys derived from the RoT can be utilised in each subsequent session.  

Before initiating the pairing process, it is crucial to verify that the process will take place in a secure 
environment, preferably conducted in the factory. To ensure this, the module restricts chip-to-chip 
security pairing until before it has undergone security bootstrapping. This bootstrapping occurs 
precisely when the module makes its initial contact with the network. More precisely, the following 
steps must be meticulously followed in the specified order: 

1. Execute the chip-to-chip pairing process between the MCU and the module. It is important 
that the MCU securely stores the pairing keys for future activation or deactivation of chip-to-
chip security. 

2. Allow the module to establish its initial network connection, during which it will undergo 
bootstrapping with U-blox security servers. 

3. Conclude the security sealing process. 

Once completed, the MCU gains the flexibility to activate the chip-to-chip security at any subsequent 
time. If re-pairing is necessary, authorization can be granted through the REST API. 

 

2.1.6.2 Handshake 

The C2C mechanism defines 3 values used to establish, enable and disable a C2C secure 
connection: pTESecret, a secret, an AES Key, and a SHA256 HMAC Key. Data is padded before 
encryption with the PKCS#7 padding [RFC 5652]. As a consequence, the maximum supported data 
length is 256 bytes. The protocol uses an overhead of 6 bytes as Start and Stop flags, 2-byte length 

and 2-byte CRC, and the length of the IV is 16 bytes. 

A past version of the C2C security feature used AES128 in CBC mode and relies on the MAC-then-
encrypt method. U-blox, later deemed such an implementation as "prone to security attacks" [SARA-
R5 "00B”]. Thus, in further releases, a different cipher suite which provides stronger security was 
implemented by still employing the AES128 in CBC mode, but with the encrypt-then-MAC approach. 

The pairing between the microcontroller and the AT cell is carried out by the uCellSecC2cPair 
function. The function takes 4 arguments on input: 

1. CellHandle: Handler to communicate with the AT module 
2. pTESecret 
3. pkey: the resulting AES key 
4. pHMAc: the resulting SHA256 HMAC key 

The handshake performs the following steps: 

1. Connect to the AT module 
2. Write string pTESecret to AT handle 
3. Read back the AES Key and HMAC Key 
4. Read the 16 bytes c2c confirmation TAG 
5. Encrypt the TAG. The function for the encryption of the TAG takes as input the confirmation 

TAG, the pTeSecret, the pKey, the pHMACKey, and the outputBuffer and does the following 
computations: 

○ Get a random 16 bytes IV and write it to the encryption buffer. Copy the 16 bytes 
TAG, padded with 16 bytes padding, to the encryption buffer. 

○ Encrypt the encryption buffer with AES-128 CBC with key pKey to the output Buffer, 
obtaining the following structure: 

16 bytes of IV || 32 bytes of encrypted padded TAG 

○ Apply HMAC SHA2 with key HMACKey and truncated MAC to 16 bytes, obtaining: 

https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.f7ufusr88udu
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16 bytes of IV || 21 bytes of encrypted padded TAG || 16 bytes of pTeSecret 

○ Obtain the final result, composed by:  

16 bytes of IV || 16 bytes of enc. pad. binary TAG || 16 bytes of truncated MAC 

6. Send the pTESecret back and the encrypted TAG to the module. 

 

2.1.6.3 Data exchange 

The previous pairing process is run only once: C2C sessions are simply opened and closed using 
the stored keys. The function uCellSecC2cOpen defines the session opening operations and it takes 
4 arguments on input: 

1. CellHandle: Handler to communicate with the AT module. 
2. pTESecret. 
3. key. 
4. pHMAc: the resulting HMAC key. 

It performs the following steps: 

1. Connection to the AT module. 
2. Writing of the string pTESecret to the AT handle. 
3. Setting the c2c context with the pKey and HMAC Key. 
4. Setting hooks for Send and Receive to be encrypted/decrypted. 

 

2.1.6.4 Security concerns 

During our review, we noticed a few points that need particular attention to be paid when integrating 
such a security protocol. 

● The code provides a poor random implementation, to be overridden by the application. 
However, the sample code for using the C2C does not provide a better implementation, nor 
warns about it. Therefore, an unaware implementer may accidentally use such a random 
implementation, provided below for reference: 

 

1. int rand() 

2. { 

3.     uint32_t answer; 

4.  

5.     while ((answer = sys_rand32_get()) > RAND_MAX) {} 

6.  

7.     return (int) answer; 

8. } 

For example, we note that in the above implementation, a possible problem or malfunction of the 
hardware generator is not handled, nor are there error codes returned. So for example if the 
hardware random number generator is stuck and always produces the same value (thus it is not 
random), the user would not be aware of it. 
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● During pairing, the AES Key and HMAC Key are sent in clear over the insecure channel. This 
is suggested to be done in a secure environment. However, it is not clear that if a malicious 
user tries to rePair after a Cell is already paired, the latter do not again reply with the AES 
Key and HMAC Key. 

● There seems to be no session keys, only master keys used for each encryption/mac each 
time the same keys are reused, so they are more exposed to side-channel or faults, or other 
cryptanalytic attacks in case of IV collisions. 

● There is no assurance about IV collisions, it is only specified that IVs are randomly generated. 
● There seems to be no tracking of the session counter or an incrementing counter for each 

message after opening a session. This means in particular that an attacker should be able to 
replay messages (despite their content remaining encrypted). 

● It is not clear what happens if the Pairing process is re-tried. 

Such problems have been notified to U-blox as github issues, on the official ublox’s github page, as 
issues #219 (https://github.com/u-blox/ubxlib/issues/219) and #220 (https://github.com/u-
blox/ubxlib/issues/220). Issue 219 has been closed as it applies to the Zephyr project, and latest 
versions solve the issue. Issue 220 has been closed as the chip to chip security feature was 
removed back in commit 2639236, mid 2023. 

 

2.1.6.5 Implementations 

Ublox, provides its ubxlib that provides examples and code to connect to its devices. The library is 
available at https://github.com/u-blox/ubxlib. However, since the beginning of this project, Ublox sold 
its cellular IoT branch, and consequently, the public will be archived on 2024-11-08.  

 

2.2 Secure Channel Protocol Frameworks 

Designing or implementing secure protocols from scratch is generally not recommended and can be 
difficult for software developers, as many existing protocols offer little guidance for secure protocol 
implementation. The most common approach is to use TLS, but it may not suit all applications, for 
instance those implemented by devices with limited resources. Developers can either build a custom 
protocol or use one from the academic literature, however both options present multiple challenges. 
To simplify this process, frameworks like NaCl [NaCl], Noise [Noise], BLINKER [BLINKER] and 
Strobe [Strobe] have been developed. 

 

2.2.1 NaCl 

NaCl [NaCl website, NaCl paper], pronounced “salt”, is a cryptographic software library which stands 
for “Networking and Cryptography Library”, first released in 2009. It aims to provide a simple, easy-
to-use set of cryptographic primitives for developers, such as encryption and signatures needed to 
build higher-level cryptographic tools, and to improve security, usability, and speed.  

 

2.2.1.1 Cryptographic algorithms 

NaCl restricts the cryptographic algorithms, in light of the cryptanalytic literature, in the attempt to 
improve the confidence of their implementations. Specifically, NaCl uses: 

1. EdDSA [EdDSA] with Elliptic curve Curve25519 [Curve25519]. 
2. Salsa20 [Salsa20] for encryption and Poly1305 [Poly1305] for hashing. However, it does 

include an AES implementation on the side. 

Among the main advantages pushed by its authors are the following: 

Curve25519 [Curve25519] is an elliptic curve offering 256 bits of security. It follows the standard 
IEEE P1363 security criteria. Secure implementations of Curve25519 offer good performances due 

https://github.com/u-blox/ubxlib/issues/220
https://github.com/u-blox/ubxlib/issues/220
https://github.com/u-blox/ubxlib
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.6z2zpz7rg7wb
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.nzo41dibhzg8
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.u8w27vc2hnwa
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.2u6v2mg2otfv
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.nzo41dibhzg8
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to the use of Montgomery representation, which allows fast single-scalar multiplication using a 
Montgomery ladder [Montgomery ladder]. 

Salsa20 [Salsa20] is a stream cipher that was selected in eSTREAM, the ECRYPT Stream Cipher 
Project [eSTREAM] in 2005. Salsa20 is based on a pseudorandom function that relies on add-rotate-
XOR (ARX) operations, consisting of a 32-bit addition, bitwise addition (XOR), and rotation 
operations. The core function involves mapping a 256-bit key, a 64-bit nonce, and a 64-bit counter 
to generate a 512-bit block of the key stream. The recommended number of rounds to achieve a 
comfortable margin for security is 12.  

An interesting feature of Salsa20 is the capability to allow users to efficiently navigate to any position 
in the key stream in constant time, avoiding use of lookup tables. However, the variant ChaCha20 
[ChaCha20], developed in 2008, is now preferred due to the increased diffusion and performances. 

Poly1305 [Poly1305] is a hash family that can be used as message-authentication code (MAC). 
Poly1305 was originally coupled with AES in order to make Poly1305-AES [Poly1305-AES]. NaCl 
uses Poly1305 together with Salsa20. Overall, Poly1305 is a widely recognized and secure choice 
for message authentication in various cryptographic applications. 

EdDSA [EdDSA] is a digital signature scheme using a variant of Schnorr signature [Schnorr] based 
on twisted Edwards curves [Twisted Edward Curves]. EdDSA is much newer than other primitives 
employed in NaCl. Generally, EdDSA is considered to be more secure than ECDSA, as the use of 
Edward curves offers protection against timing attacks and some side-channel attacks. 

 

2.2.1.2 The crypto_box API 

NaCl presents a simple high-level crypto_box function that implements the authenticated encryption. 
The function puts a packet into a box that is protected in its integrity and confidentiality.  

● crypto_box(m,n,pk,sk) takes as input the sender’s secret key sk of 32 bytes, the recipient’s 
public key pk of 32 bytes, a packet m, and a nonce n of 24 bytes. It outputs an authenticated 
ciphertext c which is 16 bytes longer than the packet m. 

● m = crypto_box_open(c,n,pk,sk). The receiver uses this function to open the packet closed 
with crypto_box. 

● pk = crypto_box_keypair(&sk). It generates a secret key and a public key 
● pk = crypto_sign_keypair(&sk). It generates a key pair. The public key is 32 bytes long and 

the private key is 64 bytes long. 
● sm = crypto_sign(m,sk). It creates a signed message (64 bytes longer than the original 

message) 
● m = crypto_sign_open(sm,pk). It recovers the original message. 

As for failures, they are indicated by exceptions in C++ NaCl and a -1 return value in C. 

NaCl's crypto_sign implementation utilises lookup tables without relying on secret indices. In this 
approach, each table lookup loads all entries and employs arithmetic operations to obtain the 
required value, eliminating the need for secret indices. The signature verification process in NaCl 
employs signed-sliding-window scalar multiplication, where the processing time varies based on the 
scalars. Importantly, this does not pose security concerns and remains compliant with NaCl's limit 
on the use of branches depending on sensitive values, since the scalars involved are not kept secret. 

  

  

https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.a3eejadd43y0
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.u8w27vc2hnwa
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.kp36ed5864dr
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.2u6v2mg2otfv
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.6z2zpz7rg7wb
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Schnorr_signature
https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://en.wikipedia.org/wiki/EdDSA#cite_note-RFC8032-1
https://en.wikipedia.org/wiki/EdDSA#cite_note-RFC8032-1


D5.2 Report about essential and beyond-essential s&p guarantees for 
intra-device communication in restricted environments 

ORSHIN D5.2  Public Page 20 

2.2.1.3 Code security measures 

As indicated by the authors, NaCl follows various code security measures. The aim is to provide an 
API that helps implementers to improve the security posture of their integration with the least effort 
possible. 

1. Avoiding unnecessary data flow. First, NaCl consistently prevents any data loads from 
addresses tied to confidential information, providing inherent protection against cache-timing 
attacks in all implementations. This imposes limitations on NaCl's implementation strategies 
and significantly influences the selection of cryptographic algorithms within the NaCl 
framework. Analogously, NaCl avoids data flow from secrets to branch conditions by 
systematically avoiding all branch conditions that depend on secret data.  

2. Avoiding padding oracles. NaCl uses  authenticated-encryption mechanism functions. 
Decryption only occurs if the data successfully passes authentication, and the authenticator's 
primary purpose is to prevent any attempts by attackers to forge messages that might 
otherwise pass authentication. Forged messages follow the authenticator verification path, 
with runtime depending solely on the publicly known message length. If the message is found 
to be forged, the system rejects it, providing no output other than confirming the illegitimacy 
of the message. In the case the attacker manages to forge a message, the forgery will be 
visible only through the receiver accepting the message. Standard nonce-handling 
mechanisms in higher-level protocols will instantly reject any further messages under the 
same nonce. 

3. Managing randomness. NaCl avoids centralising randomness by simply reading bytes from 
the operating system kernel’s cryptographic random-number generator. Also, when possible, 
NaCl chooses deterministic cryptographic operations, to reduce the load on the random 
number generator, improve repeatability, and possibly speed. The keypair operations use 
new randomness, but all of the other operations listed above produce outputs determined 
entirely by their inputs. Of course, this imposes a constraint upon the underlying 
cryptographic primitives: primitives that use randomness, such as ECDSA, are rejected in 
favour of primitives that use pseudorandomness. 

While the NaCl API may appear very simple, NaCl has been seamlessly integrated into real-world, 
high-security applications currently operational on the Internet. One such example is DNSCurve 
[DNSCurve], offering authenticated encryption for Domain Name System (DNS) queries between a 
DNS resolver and server. 

As the first framework of its kind, NaCl provided a foundation for constructing secure channel 
protocols. However, in subsequent years, it has been succeeded by other frameworks, namely Noise 
[Noise], Blinker [Blinker] and Strobe [Strobe]. These newer schemes offer advantages in terms of 
extensibility and flexibility. They have built upon the foundation laid by NaCl, enhancing the 
capabilities and adaptability of secure channel protocols for modern networking needs. 

 

2.2.1.4 Implementations 

The [NaCl website] provides instructions on how to download and build the reference implementation 
detailed in the reference paper [ NaCl paper]. 

 

2.2.2 Noise 

Noise [Noise] is a protocol framework based on Diffie-Hellman key agreement that can be used to 
construct secure channel protocols. As NaCl, Noise is not a protocol itself, it takes a basic set of 
cryptographic operations and allows them to be combined in ways that provide exactly the properties 
needed, as well as analyse whether those properties are present. 

Noise is designed to be versatile and can be used to construct various secure channel protocols, 
allowing for the creation of custom protocols tailored to specific needs. It provides a set of building 
blocks, called patterns, that can be combined to create secure communication protocols. 

https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.ckjtwlnwju
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One of the main innovations put forward by their authors is that Noise authenticates the protocol 
transcript by continuously hashing messages being sent and received, as well as continuously 
deriving new keys based on the output of key exchanges and previously derived keys. This 
interesting property stops at the end of the handshake. 

The benefits of Noise are a short code size, very few dependencies, simplicity of the security 
guarantees and analysis. The Noise framework starts with the handshake phase, which includes 
negotiation (not defined in the framework) and the Authenticated Key Exchange (AKE). The second 
phase is the transport, where transport messages are encrypted with the agreed key and sent. 

The Noise framework allows protocol designers to choose from a small set of Diffie-Hellman key 
exchange functions, symmetric ciphers, and hash functions. The framework supports the following 
cryptographic primitives: 

● The Diffie-Hellman key exchange can be employed with Curve25519 or Curve448. The 
25519 DH functions are advisable for standard applications, while the 448 DH functions could 
provide additional security in the event of an attack targeting elliptic curve cryptography. 

● Encryption supports ChaChaPoly cipher functions (AEAD_CHACHA20_POLY1305) [RFC 
7539] and AES256 with GCM [NIST SP 800-38B] 

● HMAC can be computed using the hash function families of SHA2 [FIPS 180-4] and BLAKE2 
[BLAKE2]: SHA2 is widely available and is often used alongside AES, while BLAKE2 is fast 
and similar to ChaCha20. In particular, SHA256, SHA512, BLAKE2s, and BLAKE2b are 
supported. 

 

2.2.2.1 Handshake 

The handshake phase follows a particular pattern defined by the Noise framework. During the 
handshake the parties exchange Diffie-Hellman public keys and perform a sequence of Diffie-
Hellman operations, hashing the results into a shared secret key. The Noise handshake establishes 
an AEAD-encrypted channel that provides various forms of confidentiality, integrity, and authenticity 
guarantees, depending on the chosen handshake pattern. 

The Noise framework supports handshakes where each party has a long-term static key pair and/or 
an ephemeral key pair to provide forward secrecy, so that a later compromise of long-term static 
keys would not reveal the plaintext contents of previous communications. A Noise handshake is 
described by a simple language consisting of tokens which are arranged into message patterns, that 
in turns are arranged into handshake patterns. Noise provides a pre-shared symmetric key or PSK 
mode to support protocols where both parties have a 32-byte pre-shared secret key. 

More in detail, Noise handshake is described by the following language: 

● Tokens: There are a total of 6 tokens: “e”, “s”, “ee”, “es”, “se”, “ss”, “psk” which are arranged 
into message patterns. 

● Message patterns: sequence of tokens. They specify the actual content of a handshake 
message. 

● Pre-message pattern: is one of the following sequences of tokens: “e”, “s”, “e, s”, empty. A 
pre-message pattern represents an exchange of public keys that was performed prior to the 
handshake. 

● Handshake pattern: sequential exchange of messages that comprise a handshake, consists 
of: two pre-message patterns, one with information about the initiator’s public keys for the 
responder, and the other with information about the responder’s public keys for the initiator; 
a sequence of message patterns containing the actual handshake messages. 

During the handshake, the two parties instantiate a set of variables representing the different keys 
used in the protocol. A set of rules define how to send and receive handshake messages by 
sequentially processing the tokens from a message pattern. The variables are updated as the token 
gets processed. 
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● s, e: the local party’s static and ephemeral key pairs. 
● rs, re: the remote party’s static and ephemeral public keys. 
● h: a handshake hash value that hashes all the handshake data that’s been sent and received. 
● ck: a chaining key that hashes all previous outputs that will be used to derive the encryption 

keys for the transport phase. 
● k, n: an encryption key k and a nonce n. Whenever a new output causes a new chaining key 

to be calculated, a new encryption key is also calculated. The key and the nonce are used to 
encrypt static public keys and handshake payloads, which provides some confidentiality and 
key confirmation during the handshake phase. 

The possible tokens are: 

● “e”: This token is used by the sender to store a newly generated ephemeral key.  
● “s”: The sender writes its static public key from the s variable into the message buffer. 
● “ee”, “se”, “es”, “ss”: A Diffie-Hellman key exchange is performed between the key pairs of 

the initiator and the sender. The key pairs could be either ephemeral or static.  
● “psk”: This token does not cause any transmission of data between the parties, as a PSK is 

pre-shared by definition.  

All Noise messages and handshake messages have a maximum length of 65535 bytes. A transport 
message is an AEAD ciphertext that consists of an encrypted payload plus 16 bytes of authentication 
data, and a handshake message consists of a sequence of one or more Diffie-Hellman public keys 
and a single payload which can be used to convey certificates or other handshake data. Static public 
keys and payloads will be in cleartext if they are sent in a handshake prior to a Diffie-Hellman 
operation, and encrypted in the case they occur after. 

In a handshake pattern, a letter indicates whether the parties already know each other’s static public 
keys before the handshake or not. 

● N, if the long-term public key is not defined. 
● X, if it is transmitted during the handshake. 
● K, if it is known by the receiver in advance. 

For unidirectional patterns, a unique letter is appended and refers to the initiator with respect to the 
initiator. This is because the receiver’s long-term public key needs to be known by the initiator in 
advance since otherwise no payload can be encrypted to the receiver. For interactive patterns, two 
letters are used. The first letter refers to the initiator’s long-term public key, and the second letter 
indicates the same for the responder towards the initiator. 

We now show an example of pattern, the authenticated Diffie-Hellman handshake (XX): 

→ e 

← e, ee, s, es 

→ s, se 

The first message consists of a cleartext public key ("e") followed by a cleartext payload. In fact, a 
payload is implicit at the end of each message pattern. The second message represents a cleartext 
public key ("e"), an encrypted public key ("s"), and an encrypted payload. This second message 
represents the responder authenticating itself. The last message consists of an encrypted public key 
("s") followed by an encrypted payload, representing the initiator authenticating itself. 

2.2.2.2 Internals 

Noise depends on the following Diffie-Hellman functions: 
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● GENERATE_KEYPAIR(): Generates a new Diffie-Hellman key pair. 
● DH(key_pair, public_key): Performs a Diffie-Hellman calculation between the private key in 

key_pair and the public_key and returns an output sequence of bytes of fixed length. 

Noise depends on the following cipher functions: 

● ENCRYPT(k, n, ad, plaintext): Encrypts the plaintext with an “AEAD” encryption mode, 
using the cipher key k of 32 bytes and an 8-byte unsigned integer nonce n which must be 
unique for the key k. 

● DECRYPT(k, n, ad, ciphertext): Decrypts the ciphertext. 
● REKEY(k): Returns a new 32-byte cipher key, computed as a pseudorandom function of k. 

By default is ENCRYPT(k, maxnonce, zerolen, zeros)). 

In the following we report the hash-related functions and constants. 

● HASH(data): Hashes some arbitrary-length data and returns an output of HASHLEN bytes. 
● BLOCKLEN: A constant specifying the size in bytes that the hash function uses internally to 

divide its input for iterative processing. This is needed to use the hash function with HMAC. 
● HMAC-HASH(key, data): Applies HMAC from using the HASH() function. This function is 

only called as part of HKDF(), below. 
● HKDF(chaining_key, input_key_material, num_outputs): Takes a chaining_key byte 

sequence of length HASHLEN, and an input_key_material byte sequence with length either 
zero bytes, 32 bytes, or DHLEN bytes. Returns a pair or triple of byte sequences each of 
length HASHLEN. 

Noise is used today in several high-profile projects. For instance, WhatsApp uses the "Noise Pipes" 
construction from the specification to perform encryption of client-server communications. 
WireGuard [WireGuard], a modern VPN, uses the Noise IK pattern to establish encrypted channels 
between clients. The Slack's Nebula project [Nebula], an overlay networking tool, uses Noise, 
together with the Lightning Network [Lighting network] and I2P [I2P]. 

 

2.2.2.3 Implementations 

The noise webpage [Noise] provides reference implementations in different coding languages, from 
C and C#, to Go, Haskell, Java, Javascript, Python and Rust. 

 

2.2.3 BLINKER 

BLINKER [Blinker] is a light-weight cryptographic suite based on the Sponge construction used by 
the SHA-3 algorithm [SHA-3] KECCAK [KECCAK]. The basic idea is to use the Duplexing of the 
sponge [Sponge Duplex], where the ciphertext is produced by absorbing the plaintexts on the rate. 
Then at each time a MAC of the session can be generated by padding with 0's and squeezing.  

BLINKER utilises a sequential state authentication mode, prioritising security and efficiency while 
allowing for straightforward security proofs. To address synchronisation challenges and minimise 
the implementation footprint, BLINKER employs a half-duplex mode, enabling full state sharing 
between the involved parties. In a half-duplex mode, communication alternates between the two 
parties on a single channel. The continuously updated shared state authenticates the current 
message and also validates all prior messages and secrets exchanged during the session by both 
parties, preserving their relative order. 

The protocol defines an encoding transform that takes as inputs a state variable, a plaintext, and a 
padding, and outputs a new state and ciphertext message. The decoding function produces the 
same new state and plaintext from the ciphertext and equivalent state variable and padding, 
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synchronising the state between sender and receiver, or resulting in a failure in case of an 
authentication error. 

Through judicious use of domain-separating padding, security proofs enable the utilisation of sponge 
states for an unlimited sequence of authenticated messages without the necessity for sequence 
numbers and re-keying: The new state can be then used for transmitting another message. This is 
one of the main observations which led to BLINKER and it is called MAC-and-Continue mode. This 
mode greatly reduces the latency of implementation as “initialization rounds” are not required for 
each message.  

The new padding rule is called Multiplex. All different kinds of data, such as input and output blocks, 
encrypted and authenticated data, keys, and nonces must be encoded unambiguously as Sponge 
inputs. Sponge constructions generally consist of a state and a keyless cryptographic permutation. 
At each iteration, one word of size equal to the capacity is retained for domain separation. The 
iteration is then defined in terms of an  arbitrary absorption, squeezing, encryption and decryption. 
In the squeezing phases the output blocks are virtually 0-padded. If less than rate  bits of the block 
are being squeezed out, a single “1” bit is XORed to the state after the location of the last output bit. 

A set of domain separators is indicated to distinguish the different phases of the protocol. In Figure 
5 are shown the proposed bits used in the Multiplex Padding Word which is XORed with the state. 
Depending on protocol state and the intended usage of the message block, multiple bits are set 
simultaneously. 

 

Figure 5: BLINKER domain separators 

BLINKER has inspired the development of Strobe, another cryptographic protocol framework based 
on a sponge construction. We delve into the details of Strobe in the next section. 

 

2.2.3.1 Implementations 

Unfortunately, we were not able to find any open source implementation of the Blinker framework. 
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2.2.4 Strobe 

Strobe [Strobe paper, Strobe website] is a lightweight framework, designed for embedded systems, 
for building both cryptographic primitives and network protocols. Strobe is a sponge construction in 
the same family as the BLINKER framework, used for building cryptographic two-party protocols. It 
can also be used for symmetric cryptosystems such as hashing, AEAD, MACs, PRFs and PRNGs. 

Strobe aims to enhance the development, deployment, and analysis of cryptographic protocols, 
tailored to seamlessly integrate with memory-constrained IoT devices. It achieves this by employing 
a singular block function, Keccak-f, for both message encryption and authentication. Strobe supports 
a diverse array of protocol building blocks, such as authenticated Diffie-Hellmann, signatures, and 
password-authenticated key exchange. Performance is a secondary goal for Strobe as it is based 
on SHA-3, which does not have acceleration on most CPUs. 

Strobe benefits from a similar property as Noise, effectively absorbing every operation to influence 
the next ones. The Strobe specification is comparable in aspect to Noise, but focuses only on the 
symmetric parts of a protocol. 

Strobe offers a notable advantage over BLINKER by linking the cryptography of an operation 
primarily to its data flow, resulting in divided metadata. At a low level, padding in Strobe serves as 
an indication of data flow, adhering to a strict format closely tied to the operation's execution. The 
second layer of metadata defines the operation's significance to the protocol, presenting a flexible, 
free-form structure with arbitrary length. This metadata, sharing mechanisms with other messages, 
can be implicit or serve as framing information for the transport, sent either encrypted or in the clear. 
Strobe's approach enhances application flexibility, generally outperforming BLINKER with 
comparable complexity. Additionally, Strobe refines BLINKER's ordering of metadata and data: 
BLINKER’s pad word is input along with the data, so it only affects later operations and later blocks 
of the same operation. Strobe’s padding is entered before the data, so that a MAC is always different 
from an encryption. 

Strobe library offers a link between application and network, shown in Figure 6. The application 
domain holds data such as keys, plaintext messages, nonces and associated data, which must be 
protected in their confidentiality and integrity. 

 

Figure 6: Strobe division of responsibilities [Strobe paper] 

 

2.2.4.1 Implementation 

The parameters are the following. 

● Let b be either 400, 800 or 1600. 
● Let F be the function KECCAK-f. 
● Let N = b/8. Strobe treats F as a function which takes as input an array of N bytes and returns 

another array of N bytes. 
● Let sec be a target security level, either 128 or 256 bits. 

http://strobe.sourceforge.io/
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● Let R = N - (2*sec)/8 - 2. This will be the number of bytes in a Strobe block. 

A Strobe object has the following state variables: 

● A duplex state st: an array of N bytes. 
● A position pos: the position in the duplex state where the next byte will be processed. 
● A position posbegin: the position in the duplex state which is 1 after the beginning of the 

current operation, or 0 if no operation began in this block. 
● A variable I0: This variable describes the role of this party in the protocol to keep protocol 

transcripts consistent.  
○ I0 = None. Initially, the role is undecided 
○ I0 = 0. When a party sends a message, becoming initiator  
○ I0 = 1. When a party receives a message, becoming responder 

A Strobe protocol is composed of a sequence of low-level operations. For example, an AEAD system 
might consist of a key, an associated datum, an encrypted message and a message authentication 
code. 

Each operation has a corresponding "meta" variant, and the meta operation functions in the exact 
same manner as the standard operation. The only point of distinction between the two lies in the 
presence of an "M" bit, which is hashed into the protocol transcript specifically for the meta 
operations. 

The Horton principle states that it is important to authenticate the meaning rather than the message 
itself. Strobe implements the principle with Composite operations. This is achieved by incorporating 
metadata into the operation to articulate its significance. The way to encode this meaning is not 
defined, allowing the metadata to manifest in numerous meta operations of varying lengths. The 
processing sequence involves handling the metadata before the data, meaning that PRF outputs, 
encrypted data and MACs will depend on the metadata as well as on previous operations. 

The operations are: 

● AD: xor bytes of the associated data into the state. This data must be known to both parties, 
and will not be transmitted. 

● KEY: sets a symmetric key and, if there is already a key, the new key will be cryptographically 
combined with it. The KEY operation shares a data flow similar to AD, as both are intended 
to function as inputs to a random oracle. However, the KEY operation involves overwriting a 
section of the state with the new key, so that when the key has sufficient length, it serves as 
a preventive measure against rollback.  

● CLR: send or receive plaintext data, and xor it into the state. 
● ENC: send or receive encrypted data. To send, run F to begin a new block, xor the plaintext 

with the state, which produces both a new state and a ciphertext, and send the ciphertext to 
the other party. To receive, run F to begin a new block, receive a ciphertext, and xor it with 
the state to obtain a plaintext. 

● MAC: send or receive message authentication code. To send: run F to begin a new block, 
send bytes of the state to the other party. To receive, run F to begin a new block, receive 
bytes and check whether they coincide to the bytes of your state. If not, then the session has 
been corrupted. 

● PRF: extract hash or pseudorandom data. Run F to begin a new block, read bytes of the 
state out to the application. This data can be treated as a hash of all preceding operations, 
messages and keys. 

● RATCHET: This operation does not have input or output, as its primary purpose is to mitigate 
rollback attacks. In a scenario where an attacker manages to retrieve the sponge's state at 
the protocol's conclusion, potentially through an application exploit, the attacker could 
reverse the Strobe steps to discern earlier states and decrypt preceding messages. This 
process is analogous to recovering the key in a symmetric cipher. The RATCHET operation 
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addresses this vulnerability by selectively erasing a portion of the state, rendering the 
protocol non-invertible. Consequently, an attacker would not be able to decrypt messages 
from earlier stages. The function runs F to begin a new block and then overwrites L bytes of 
the state with zeros to prevent rollback. As nullifying the whole state would destroy the key, 
only up to R bytes are nullified at a time, calling F in between. 

Operations are categorised by four important pieces of information, called flags: 

● I: If the operation first performs transport, then cipher, then application, as opposed to the 
other direction. 

● A: If the operation sends or receives data belonging to the application.  
● C: If the operation sets a key or uses the cipher's output. Operations with the C flag either 

output the cipher's data, or if they have no output, rekey the cipher. 
● T: If the operation sends or receives data via the transport. 

By using this flag system, the behaviour of each operation follows in a straightforward manner. 
Strobe operations and their data flow are illustrated in Figure 7. 

 

Figure 7: Strobe operations [Strobe paper] 

 

2.2.4.2 Implementations 

The Strobe project page [Strobe website] provides information on an open source implementation of 
its framework. Alternatively, we found another open source implementation at 
https://github.com/mimoo/strobe-mirror. 

 

2.2.5 Remarks 

The frameworks discussed in this section - NaCl, Noise, Blinker, and Strobe - function as sets of 
simple APIs for constructing cryptographic protocols, providing a range of primitives for implementing 
secure communication.  
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NaCl, the pioneering framework, laid the initial foundation for secure channel protocols frameworks, 
but over time, Noise, Blinker, and Strobe have emerged as successors. 

Noise is characterised by keeping a running hash of the messages: in this way, the output from any 
step depends not only on the keys, but also on all the preceding inputs, such as nonces and 
associated data. Noise has achieved significant real-world adoption with its flexible and extensible 
design, due to the use of predefined patterns in the handshake phase. Blinker, designed with 
simplicity, relies on a single cryptographic permutation, Keccak. It operates  in a half-duplex mode, 
meaning that it alternates communication between parties on a single channel. Strobe evolved from 
Blinker with a focus on versatility, and also shares certain characteristics with Noise, continuously 
hashing messages and deriving keys. However, it exclusively focuses on the symmetric part. 

In designing our new protocol, we will take inspiration from these established frameworks, 
incorporating their best properties, but adapting these properties and algorithms to target resource 
constrained environments, like that of IoTs. 

 

2.3 JSON Web Tokens 

The JSON Web Token (JWT) standard described in RFC 7519 [JWT] specifies how to securely 
represent claims between two parties. It is one of the building blocks of the Oauth protocol [RFC 
9396], which allows authorization grants to be exchanged between services. For example, 
applications on computers, phones, TVs, printers etc. can use Google OAuth 2.0 to authorize access 
to Google’s APIs [Goo23]. This means that once you are logged in your phone, you can access 
Google Drive documents without the need to input your credentials again. 

JWT’s have been developed in order to reduce both development complexity and friction in user 
adoption. Developers can use a single API to create and validate JWTs for different services. At the 
same time the user experience is simplified by requiring a Single-Sign-On (SSO) to use different 
services. 

While the user experience has effectively been improved, the same is not completely true for 
developers. The main problem lies in the versatility of JWTs which can be declined in several 
different forms, use many different cryptographic algorithms and solve many different problems. 

For example, security has been introduced in JWTs in the form of signature and encryption, providing 
respectively authenticity and privacy. JWTs are described in RFC 7519 [JBS15b], however, their 
security aspects are discussed in separate RFCs, namely RFC 7515 [JBS15a] and RFC 7516 
[JH15]. The former describes the JSON Web Signature (JWS), a signed JWT, to ensure authenticity. 
The latter, instead, describes a JSON Web Encryption (or JWE), which is an encrypted JWT and 
ensures privacy. These three RFCs specify how JWT, JWS and JWE can be combined together, as 
not all combinations are allowed.  

However, the cryptographic algorithms to be used are specified in RFC 7518 [Jon15a], which 
describes the JSON Web Algorithms (or JWA). Finally, a JSON Web Key (JWK), described in RFC 
7517 [Jon15b] is the data structure used to represent a cryptographic key for one of the 
JWT/JWE/JWS. Apparently, this fragmentation of references does not ease the work of developers, 
which may lead to security issues. To cope with such a situation, a further RFC was provided: RFC 
7520, which describes “Examples of Protecting Content Using JSON Object Signing and Encryption 
(JOSE)”.  

On top of all these references, IETF added its contribution, by drafting RFC 8725 [SHJ20], with best 
practices for implementations (specific to the cryptographic usage) in order to guide developers 
implementing the specifications. Unfortunately, the issues described in this work are not covered by 
the best practices listed in that RFC. 

Recently, Shingala [Shi19] published an interesting comparison between the use of JWTs versus 
the use of the mutual authentication from the TLS [Res18] protocol  for authentications of things on 
the Internet. Interested by such work and from the internet discussions on-going, we decided to 
contribute with our findings concerning the use of JWTs for IoT. 
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In the following sections we present in more detail the different aspects of the JWT, JWS and JWE 
standards, described respectively in RFC 7519, RFC 7515, and RFC 7516 [JBS15b, JBS15a, JH15]. 

 

2.3.1 JWT 

A JSON Web Tokens (JWT), described in RFC 7519 [JBS15b], is a compact, URL-safe means of 
representing claims to be transferred between two parties. The payload of a JWT consists of a series 
of key-value pairs known as claims.  Some claims have specific value that triggers validation logic, 
for instance the exp claim which defines when the token should expire and no longer be considered 
valid. 

The claims in a JWT are encoded as a JSON object that can be used as the payload of a JSON 
Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, 
enabling the claims to be digitally signed or integrity protected with a MAC and/or encrypted. 

2.3.2 JWS 

A JSON Web Signature (JWS), described in RFC 7515 [JBS15a], allows the creation of a digital 
signature or Message Authentication Code (MAC) over a JSON-based data structure to ensure data 
integrity and authenticity.  

Cryptographic algorithms and identifiers for use with this specification are described in the separate 
JSON Web Algorithms (JWA) specification and an IANA registry defined by that specification.   

The JWS does NOT protect the confidentiality of the data. Anyone who can get ahold of the JWS 
can decode and read the bytes that were signed. Related encryption capabilities are described in 
the separate JSON Web Encryption (JWE) specification. 

 

2.3.3 JWE 

A JSON Web Encryption (JWE), described in RFC 7516 [JH15], is a JSON-based data structure 
which protects the confidentiality of the payload by encrypting it and can sometimes ensure integrity 
of the payload data (depending on the algorithm chosen). A JWE can be used to store/transport 
sensitive data. 

 

2.3.4 Supported cryptographic algorithms 

One issue within the JWTs is how public keys used to sign them are distributed among the services. 
For example, a common tool used to generate key pairs and certificates is  Keytool [Keytool].The 
tool first generates a key pair, which also creates a Java Keystore. The public key is then wrapped 
into an X.509 self-signed certificate, which can be distributed directly by the owner or by a Certificate 
Authority (CA). 

The cryptographic algorithms supported by JWT and the identifiers to be used are collected in the 
JSON Web Algorithms (JWA) [JWA] specification. The JWT module supports the following JSON 
Web Algorithms: 

● Signing algorithms: 
1. HS256, HS384, HS512 
2. RS256, RS384, RS512 
3. ES256, ES384, ES512, ES256K 
4. PS256, PS384, PS512 
5. EdDSA 

● Encryption key agreement algorithms: 
1. RSA1_5, RSA-OAEP, RSA-OAEP-256, ECDH-ES 
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1. A128KW, A192KW, A256KW 
2. A128GCMKW, A192GCMKW, A256GCMKW 

● Content encryption algorithms: 
1. A128CBC-HS256, A192CBC-HS384, A256CBC-HS512 
2. A128GCM, A192GCM, A256GCM 

The first combination of algorithms that can be used is RS256, RSA-OAEP, and A256GCM: 

1. Sign with RSASSA-PKCS1_v1_5 [RFC 3447] with SHA256. The digital signature is validated 
as follows: submit the JWS Signing Input, the JWS Signature, and the public key 
corresponding to the private key used by the signer to the RSASSA-PKCS1-v1_5-VERIFY 
algorithm using SHA-256 as the hash function.  

2. Key encryption is performed with RSA with OAEP. 
3. Perform content encryption with AES256 GCM [RFC 5288]. 

In RFC 3447 [RFC 3447] it is explicitly recommended to not adopt RSASSA-PKCS1-v1_5 for new 
applications, and instead requests the transition to RSASSA-PSS. However, the specification does 
consider RSASSA-PKCS1-v1_5 for interoperability reasons as it is commonly implemented. 

The second option is to use ES256, ECDH-ES, and A128GCM. The signature is computed with 
ECDSA using P-256 and SHA-256 [JWA]. Then, ECDH-ES (Ephemeral-Static) is used for the key 
agreement using Concat KDF [NIST SP 800-56A], and a temporary AES128 key is computed with 
AES128GCM [RFC 5288] to encrypt the content. 

Regarding the final size of the JSON Web Token, it can be noticed that due to the necessary base64 
encoding the size of the final composition of JWE and JWS is increased by about 60% (30 + 30). 
However, it is possible to use compression algorithms to compress back the JTW to a reasonable 
size. 

2.3.5 Sign then encrypt 

JSON Web Tokens can be signed then encrypted to provide confidentiality of the claims. While it's 
technically possible to perform the operations in any order to create a nested JWT, senders should 
first sign the JWT, then encrypt the resulting message. Sign-then-encrypt is the preferred order for 
three reasons:  

1. It prevents attacks in which the signature is stripped, leaving just an encrypted message. 
2. It provides privacy for the signer. 
3. Signatures over encrypted text are not considered valid in some jurisdictions. 

Certain papers advocate applying a second signature after the encryption [Dav01]. This isn't required 
with standard JWE algorithms due to their use of authenticated encryption [Bla05]. 

 

2.3.6 Remarks 

JWTs are used in many places on the internet, for example OpenID Connect (OIDC) ID Tokens [ID 
Token] and Access Tokens, or in the authentication protocol to connect devices to the Google IoT 
core. During our review of the protocol we identified a security issue in the use of JWT as 
authentication mechanism, for example in the Google IoT code. Such an issue is described in detail 
in chapter [JWT Back to the future]. 
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2.3.7 Implementations 

Several implementations for JWTs exist. The project page provides an extensive list of libraries for 
JWTs in different languages: https://jwt.io/libraries. 

 

2.4 Xoodyak 

In recent years, newer AEAD algorithms have been proposed that might promise better performance 
and productivity trade-offs with respect to the current SCP standard. One of them is based on the 
sponge construction and is called Xoodyak [Xoodyak]. 

Xoodyak operates in a duplex sponge-based mode, which allows for flexible and efficient processing 
of various cryptographic operations. It does not use traditional block cipher modes like CBC or GCM 
but instead relies on a single evolving state that is continuously updated through the Xoodoo 
permutation. Xoodyak's main modes of operation include authenticated encryption with associated 
data (AEAD), hashing, and key derivation. In AEAD mode, the algorithm initializes with a secret 
key and nonce, processes associated data for authentication, encrypts the plaintext while 
simultaneously generating an authentication tag, and ensures decryption integrity by verifying the 
tag. In hashing mode, Xoodyak absorbs input data in blocks, applies the Xoodoo permutation to mix 
the state, and then squeezes out a hash digest. For key derivation (KDF), it absorbs an initial key 
and optional context data, processes them through Xoodoo, and extracts cryptographic keys. This 
flexible duplex mode makes Xoodyak highly efficient for lightweight cryptography, as it eliminates 
the need for separate encryption and authentication steps while maintaining strong security 
guarantees 

Authenticated Encryption with Associated Data (AEAD) 

Xoodyak provides AEAD, which ensures confidentiality, integrity, and authenticity of encrypted data. 
It follows the MonkeyDuplex construction, where encryption and authentication are combined into a 
single operation. 

Steps: 

1. Initialization 
○ A key and nonce are absorbed into the state. 
○ Xoodoo permutation is applied to mix the input securely. 

2. Processing Associated Data (AD) 
○ Any additional data (e.g., headers, metadata) is absorbed. 
○ This ensures the authentication covers more than just the ciphertext. 

3. Encryption & Tag Generation 
○ The plaintext is absorbed and transformed using the Xoodoo permutation. 
○ Ciphertext is extracted (squeezed) while authentication data is updated. 
○ A cryptographic tag is generated for integrity verification. 

4. Decryption & Authentication 
○ The ciphertext is absorbed and transformed back into plaintext. 
○ The computed authentication tag is compared with the received tag. 
○ If the tags match, the message is valid; otherwise, decryption fails. 

Hashing 

Xoodyak can function as a cryptographic hash function, producing a fixed-length digest from 
variable-length input. 

Steps: 
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1. Initialization 
○ The state is reset and prepared for hashing. 

2. Absorbing Input Data 
○ The message is absorbed into the state in blocks. 
○ Xoodoo permutation is applied after each block to ensure diffusion. 

3. Squeezing the Hash Output 
○ Once all input is absorbed, the hash output is extracted. 
○ Xoodoo permutation continues to mix the state for extended-length hashes. 

Key Derivation Function (KDF) 

Xoodyak can derive cryptographic keys from an initial secret and optional context information. 

Steps: 

1. Absorbing the Key Material 
○ The input secret (e.g., master key) and context data (e.g., salt) are absorbed. 

2. Applying Xoodoo Permutation 
○ The state is mixed to ensure security. 

3. Squeezing Derived Keys 
○ New cryptographic keys are extracted from the state. 

The exchange of C-APDUs and R-APDUs between a secure element and a host can be seen as a 
special case of Authenticated Encryption with Associated Data (AEAD). APDUs can be conceptually 
divided into two parts: one that is always sent in clear (e.g., the header field) and another which may 
be encrypted (like the message payload). While encryption is applied only to one part of the message 
(the payload), verification of integrity is typically applied to the entire message, that is, even to the 
associated data that are sent in clear. 

Xoodyak is a lightweight cryptographic primitive that employs a special mode of operation called 
Cyclist, and an underlying permutation called Xoodoo. 

 

2.4.1 Xoodoo 

A deck function [Farfalle][Deck functions] stands for doubly extendable keyed cryptographic function. 
A deck function is a function that by taking a key and a string as input, produces a seemingly random 
output. 

A property that characterises a deck function is that the data input is not a single string, but a 
sequence of binary strings, and the output depends on this sequence. Moreover, a deck function 
must implement efficient incrementality properties. This means that both the input and the output 
must be extendable with an additional string without additional cost, except for cost derived from 
processing the extra string. This property is similar to that of an extendable output function (XOF), 
with the addition that in a deck function the input is extendable as well. 

A deck function can readily be used for encryption, authentication and authenticated encryption. 
Moreover, their incrementality properties can simplify processing streams of data, with intermediate 
tags, and bi-directional communication. Another interesting use case is the transmission of long 
messages to low-end devices, where intermediate tags can authenticate the message in an 
incremental way. 

A construction for building deck functions is Farfalle [Farfalle], of which Kravatte [Farfalle] and Xoofff 
[Xoodoo] are instances. 

Xoodyak utilizes the Xoodoo permutation, which operates over a 384-bit state divided into 12 rounds 
and can be stored in 12 registers of 32 bits each, making it ideal for low-end 32-bit devices. Among 
its methods, it includes a ratchet mechanism (method ratchet()) that zeros out part of the state. This 

https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.sa9bnav66me4
https://keccak.team/farfalle.html
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.sa9bnav66me4
https://keccak.team/kravatte.html
https://keccak.team/xoofff.html
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feature is beneficial in scenarios involving certain types of attack, such as side-channel attacks, 
which could allow an attacker to retrieve the internal state of the cipher. In such situations, the 
attacker cannot discover the secret key after the ratchet is applied. Therefore, the ratchet mechanism 
is said to provide forward secrecy, at least within the context of a single session. 

State Representation 

The Xoodoo state consists of 384 bits, represented as a 3D array of 32-bit words: 

● 3 planes 
● 4 columns per plane 
● Each word is 32 bits 

This gives a 3 × 4 × 32-bit structure, visualized as: 

           Plane 0                 Plane 1                  Plane 2 

  [ A0  A1  A2  A3 ]   [ B0  B1  B2  B3 ]   [ C0  C1  C2  C3 ] 

Permutation Steps 

Each Xoodoo round consists of five steps, ensuring strong diffusion and security: 

1) Θ (Theta) – Mixing Across Columns 

● XORs each column across all three planes. 
● Ensures every bit influences multiple parts of the state. 

2) ρ-west (Rho-west) – Bitwise Rotation 

● Applies a cyclic shift (rotation) to each word. 
● Increases the randomness in the state. 

3) ι (Iota) – Round Constant Injection 

● Introduces round constants to break symmetry and add non-linearity. 
● Ensures resistance against differential cryptanalysis. 

4) χ (Chi) – Non-linear Layer 

● Applies a bitwise Boolean function across each row. 
● Strengthens security by adding non-linearity. 

5) ρ-east (Rho-east) – Additional Rotation 

● Applies a second cyclic shift, further scrambling the state. 

 

2.4.2 Cyclist 

Cyclist should be seen as a stateful object with a set of methods1 that manipulate the state so that it 
is always a reflection of the history of all preceding method invocations. Some of these operations 

 
1 Think of it as a C++ object. 
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can apply the Xoodoo permutation to the state itself so as to accomplish various cryptographic 
functions according to the two operating modes, namely: 

1. Hash mode. Once the Cyclist object is initialized with constant values, Xoodyak can be used 
to absorb an input string (of arbitrary length) and produce (“squeeze”) hash digests of the 
said input strings (methods absorb(), squeeze()). 

2. Keyed mode. In this case, the Cyclist object is initialized with a key K. In this mode, Xoodyak 
is capable of performing, among other things, MAC computations and encryption / decryption 
(methods encrypt(), decrypt(). 

Xoodyak does not have any parameters that can be chosen by the user. This means that the user 
does not decide on the number of permutation rounds or the method of padding and splitting the 
input into blocks before encryption. 

 

2.4.3 Implementations 

The reference implementation for Xoodyak is provided by the Keccak Team at 
https://github.com/KeccakTeam/Xoodoo/blob/master/Reference/C%2B%2B/Sources/Xoodyak.cpp. 

 

2.4.4 Final remarks 

In this section, we delved into concepts that serve as valuable insights for developing secure channel 
protocols. JSON Web Tokens and Deck functions both present opportunities for advancing research 
in new frameworks and protocols. These constructs have the potential to become essential building 
blocks, offering the sought-after properties of authenticity and confidentiality within a protocol.  

Finally, we investigated Xoodyak [Xoodyak] and related lightweight cryptography. The study of the 
state of the art motivated the protocol proposed in this work, in chapter 4. Xoodyak was selected as 
one of the finalists of the NIST Lightweight Cryptography standardization process (NIST-LWC), due 
to its adaptability and outstanding performance, as also evidenced by an evaluation conducted on 
the NIST-LWC finalists using RISC-V architectures [CLMLD19]. 

 

2.5 Conclusions 

In this chapter we examined the state of the art in secure communication protocols within a device. 
For clarity in our exposition, we highlighted the key phases - Provisioning, Handshake, and Data 
exchange -  for each protocol under examination. 

Our analysis began with an examination of the widely used Secure Channel Protocol (SCP) family, 
followed by the Replay Protected Memory Block (RPMB) protocol. Subsequently, the proprietary 
protocols employed in Optiga products, Infineon's ATECC chips, and Ublox products, were 
scrutinised for their characteristics, performances, and security attributes.  

The exploration further extended to the protocol frameworks, which provide foundational structures 
and building blocks for creating “customised” secure channel protocols. These frameworks, known 
for prioritising usability and abstraction, have significantly influenced the design of our new protocol, 
as detailed in the upcoming chapter. 

The chapter concludes by shedding light on the emerging constructions of JWT and Deck functions, 
underscoring evolving methodologies in building and deploying security. The exploration undertaken 
here sets the stage for the subsequent chapter, where we delve into a weakness found in the use of 
JWTs for the IoTs. Furthermore, this work motivated us to conceive a new secure channel protocol, 
which we present in chapter 4. 

 

 

https://github.com/KeccakTeam/Xoodoo/blob/master/Reference/C%2B%2B/Sources/Xoodyak.cpp
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Chapter 3 JWT Back to the future 

The JWT standard described in RFC 7519 (JBS15b) specifies how to securely represent claims 
between two parties. It is one of the building blocks of the OAuth protocol (Lodderstedt, Richer), 
which allows authorization grants to be exchanged between services. For example, applications on 
computers, phones, TVs, printers etc. can use Google OAuth 2.0 to authorize access to Google’s 
APIs (Goo23). This means for example that once you are logged in your phone, you can get access 
to your Google Drive documents without the need to input your credentials again. 

JWT’s have been developed in order to reduce both development complexity and friction in user 
adoption. Developers can use a single API to create and validate JWTs for different services. At the 
same time the user experience is simplified by requiring a Single-Sign-On (SSO) to use different 
services. While the user experience has effectively been improved, the same is not completely true 
for developers. The main problem lies in the versatility of JWTs which can be declined in several 
different forms, use many different cryptographic algorithms and solve many different problems. 

Lately, Google Cloud IoT Core adopted the use of JWTs to authenticate the requests coming from 
devices in the field. The idea is that the JWT token is much more lightweight to produce than a TLS 
authentication, thus improving the efficiency of the “things”, as described in (Goo18; HiveMQ). 

The present work stems from the fact that the JWT standard does not require the inclusion of a 
nonce in the token construction, thus the server receiving the token cannot validate its freshness. 
Despite a claim named “nonce” being defined and registered with IANA for JWT (see (IANA)), none 
of the JWT claims are mandatory, thus in practice such nonces are never used. This remark is the 
starting point for replay attacks and also for a more subtle attack that we describe in this work as 
JWT Back to the future. We show an abuse of the JWTs in the supply chain, where a malicious 
attacker who can manipulate the time perceived by the iot device under production can obtain a set 
of valid JWTs that she can use in the future to authenticate custom messages sent to the Cloud. 
After the JWTs are produced, the device has no recollection or logs of the happening, and so the 
abuse cannot be detected. Naively, without a SE, an attacker may simply obtain the signing key by 
accessing the micro-controller internal memory in debug mode, during production. One of our main 
contributions is to show that the presence of a SE does not necessarily thwart the attack, and we 
present the few options currently available to protect a system against our finding, in 
Countermeasures. 

In the following, we showcase our work by using the Arduino MKR 1010 and the Google Cloud IoT 
Core. This example is illustrated by Google in (Goo20). We specifically opted to use a now retired 
platform in order to avoid the abuse of our attack in real world scenarios (as the service has been 
completely shut down in 2023, existing connections were shut down and no device connecting to it 
should still remain in the field). However, this work straightforwardly applies to other uses of the JWT, 
like for example HiveMQ or the EMQX platforms (HiveMQ; EMQX), and also to other token 
standards, for example the CWT (JWET18), described by the OSCORE IETF working group 
(BS16;LV18) in the context of the RESTful environments for authentication and authorization for 
constrained environments (ACE) project. CWTs were used for example in the EU Digital Covid 
certificate, or in eat tokens from (LMOW24). Finally, we remark that our work also applies to the 
emerging technology of Electric Vehicles (EV) as the standard used to transfer charge information 
to the station is based on the JWT and CWT standard and is described in (Se). 

Recently, Shingala (Shi19) published an interesting comparison between the use of JWTs versus 
the use of the mutual authentication from the TLS (TLS 1.2) protocol for authentications of the things 
on the Internet. Interested by such work and from the internet discussions on-going, we decided to 
contribute with our findings concerning the use of JWTs for IoT. 

Interestingly, we remark that our work does not apply to the ARM PSA tokens (ARM), as such tokens 
include a mandatory nonce coming from the caller, to demonstrate freshness of the generated token 
(see ARM Section 4.1.1). 
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3.1 JWTs, JWSs and JWEs 

In this section we present in more details the different aspects of the JWT, JWS and JWE standards, 
which collectively go under the JOSE acronym (for JSON Object Signing and Encryption), described 
respectively in RFC 7519, RFC 7515, and RFC 7516 (JBS15a; JBS15b;JH15)). Then we describe 
other token types, as the cwt, and eat, defined by the ACE group (LV18), and the RATS working 
group (LMOW24), respectively. 

 

3.2 JWT 

A JWT, described in RFC 7519 (JBS15b), is a compact, URL-safe means of representing claims to 
be transferred between two parties. The claims in a JWT are encoded as a JSON object that is used 
as the payload of a JWS structure or as the plaintext of a JWE structure, enabling the claims to be 
digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted. 
A JWT is divided into three fields: header, payload, and signature. The header provides information 
about the content of the JWT, like the cryptographic algorithms used in the other blocks. The payload 
contains the actual claims: a set of statements about an entity. Claims can be public or private and 
standardized by the IANA Web Token Registry or not. Finally the latter field consists of the signature 
of the previous blocks. These three fields, encoded in Base64, and separated by dots, compose the 
JWT. An example JWT from the site (Okta) is provided in the next picture. 

 

 

Figure 8: Example of a legitimate JWT 

Obtained by using an Arduino MKR WiFi 1010 and and decoded by JWT.io. On the left is 
presented the base64 encoded value, while on the right are presented the decoded header and 

payload, and the signature verification. 
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3.3 JWT 

A JWS, described in RFC 7515 (JBS15a), allows the creation of a digital signature or Message 
Authentication Code (MAC) over a JSON-based data structure to ensure data integrity and 
authenticity. Cryptographic algorithms and identifiers for use with this specification are described in 
the separate JSON Web Algorithms (JWA) specification and an IANA registry defined by that 
specification. 

The JWS does NOT protect the confidentiality of the data. Anyone who can get a hold of the JWS 
can decode and read the bytes that were signed. Related encryption capabilities are described in 
the separate JSON Web Encryption (JWE) specification. 

 

3.4 JWE 

A JWE, described in RFC 7516 (JH15), is a JSON-based data structure which protects the 
confidentiality of the payload by encrypting it and can sometimes ensure integrity of the payload data 
(depending on the algorithm chosen). A JWE can be used to store/transport sensitive data. 

 

3.5 Sign then encrypt 

JWTs can be signed then encrypted to provide confidentiality of the claims. While it’s technically 
possible to perform the operations in any order to create a nested JWT, senders should first sign the 
JWT, then encrypt the resulting message. So, sign-then-encrypt is the preferred order for the 
following reasons: it prevents attacks in which the signature is stripped, leaving just an encrypted 
message; it provides privacy for the signer; finally, signatures over encrypted text are not considered 
valid in some jurisdictions. Certain papers advocate applying a second signature after the encryption 
(Dav01). This isn’t required with standard JWE algorithms due to their use of authenticated 
encryption (Bla05). 

In the following, we will use the term JWT to denote a JWT being it in plaintext, signed or encrypted 
(JWE, JWS). In particular, we will focus on the authenticity property, thus on JWSs, for which we 
demonstrate that the attacker can bypass the authenticity of some of the fields contained in the 
claims in Back to the future. 

 

3.6 Other formats: CWTs and EATs 

The Authentication and Authorization for Constrained Environments (ACE) working group from IETF 
(LV18) is responsible for the standardization of a solution framework to enable the protection of 
exchanges between a client and a server in a constrained environment. The method chosen by the 
working group to protect the exchanges uses tokens similar to the JWTs, but based on the CBOR 
format (Bormann and Hoffman 2020; Ericsson, n.d.), called CWTs. A Go implementation for CWTs 
can be found for example in (COSE). Furthermore, the RATS IETF working group developed a draft 
(LMOW24) in which they describe the eat token (LMOW24) as a JWT or cwt token, with some 
attestation-oriented claims. Such tokens are used by a relying party, server or service to determine 
the type and degree of trust placed in the entity, like a smartphone, IoT device, network equipment 
and so on. 

 

3.7 The IoT generic architecture 

We consider a generic IoT environment, composed of a device which connects to the Cloud in order 
to securely send and receive data from its own sensors. The device itself is composed of a micro-
controller, which implements the application, and various modules in charge of different tasks. For 
example the micro-controller may implement the connectivity itself, or delegate it to an WiFi, BLE, or 
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GSM module. Similarly, the micro-controller may use the cryptographic functionalities exposed by a 
SE. 

In our scenario, we assume that the cryptographic primitives necessary for the security operations 
are provided by an SE module connected to the MCU, for example by the I2C channel (NXP21), and 
not operated by the MCU itself. Such a situation is usually depicted as more secure, thanks to the 
presence of the SE and the assurance provided by it (see for example (Goo18)). Then a WiFi module 
(for example connected to SPI bus (Mot84)) is in charge of establishing the TLS connection to a 
Cloud endpoint. This architecture is commonly realized by many IoT devices. 

As described in (Goo18), the use of JWTs works as follows. The device will establish a secure 
connection to the global Cloud endpoint using TLS by using the WiFi module, but instead of triggering 
the mutual authentication it will generate a very simple JWT, sign it with its private key and pass it 
as a password. The JWT is received by the Cloud, the public key for the device is retrieved and used 
to verify the JWT signature. If valid, the mutual authentication is effectively established. As the SE 
offers the possibility to sign JWTs securely without ever exposing the private key, this scenario is 
generally considered more secure than in the absence of an SE. 

We depict in Figure 9 and Figure 10 the two different architectures described above in the following 
pictures. The latter architecture is realized for example by the Arduino MKR WiFi 1010. We use it in 
the following by connecting it to the Google IoT Core. Such a combination has been suggested in 
(Goo18; Ard19). 

 

 

Figure 9: Architecture with different modules for the connectivity and security 

 

 

Figure 10: Example of an IoT hardware and software stack architecture 
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Figure 11: Organization of the Arduino MKR WiFi 1010 module 

 

3.8 Device's lifecycle 

This section presents an example life-cycle of an IoT device that we will use to illustrate the attack. 
The life-cycle of an IoT device is split into two main parts: manufacturing and deployment. Such 
splitting is useful to distinguish those steps which need to be performed before and after the device 
is deployed in the field. 

 

3.9 Manufacturing 

During the first stages of life, the device is assembled, in particular all sub-modules are soldered 
together, the SE is connected to the micro-controller which is itself connected to the Wi-Fi module 
for communication. Afterwards, tests are performed on the complete device to verify all connections 
and functionalities. This step in general involves the generation of a cryptographic private key inside 
the SE on-boarded with the device, and the publication of the associated public key, together with 
an ID of the device, onto the Cloud Provider’s fleet management system. Alternatively, it is possible 
that the SE comes pre-provisioned by the founder. For Google Cloud IoT Core, the instructions for 
device on-boarding can be found on different sources (GooBP;NXPA71H). The final firmware is then 
loaded onto the micro-controller and thus the device is ready to go in the field. It is quite common 
that the manufacturing process is performed by a dedicated third-party company, where the use of 
secure manufacturing lines is not guaranteed. So the personnel having access to the devices during 
the manufacturing could be malicious and may try tampering, in particular, with the cryptographic 
assets. This aspect is commonly referred to as supply chain attacks, since it extends to all the steps 
of the supply chain, from component acquisition to manufacturing up to last mile shipping. During 
manufacturing, a supply chain attack can be problematic because the malicious attacker can act on 
the complete population of produced devices. Loading malicious firmware is the most naive supply 
chain attack. In such an environment, a remote attestation can be used to prove the device’s software 
and hardware integrity to a remote party, providing cryptographic evidence that it’s running as 
expected and hasn’t been tampered with. However there are attacks, such as the one we present 
here, that leave no evidence on the final device, and thus are hard to detect. 
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3.10  Deployment 

After manufacturing is finished, the device is deployed in the field. From that moment on, every time 
the device needs to connect to the cloud to transfer data, the micro-controller connects to the Wi-Fi 
module through the SPI channel, and requests the current time to a network time server. The current 
time thus retrieved is used to prepare a JWT. Claims in the JWT are generated by the micro-
controller and signed by the SE. The signature generation is requested and returned through the I2C 
channel. The micro-controller then requires the opening of a TLS session with the cloud service to 
the Wi-Fi module; the interconnection between the micro-controller and the Wi-Fi module is ensured 
by the SPI channel. After the TLS session is established the micro-controller passes the signed JWT 
to the Wi-Fi module, to be sent to the Cloud service. Once the Cloud receives the JWT, it validates 
it and acts accordingly. 

We want to stress that since the SPI and I2C channels are not protected, the micro-controller and 
the SE are not capable of understanding if the input data are coming from legitimate sources. This 
is true in particular for the signature request and data to be signed from the SE perspective, or 
time/date incoming from the SPI in the case of the micro-controller perspective. 

 

3.11 Threat Model 

This work considers a typical IoT device production scenario where a designer provides a factory 
with the hardware design and firmware. The factory’s role is to manufacture a specified number of 
devices, each loaded with the designer’s chosen firmware and secrets. It is assumed that the 
designer uses a SE to protect sensitive information and employs JWTs to ensure message 
authenticity between the IoT device and the Cloud after production. 

For the purpose of this work, we can assume that the private key used for signing messages is the 
only secret, generated and accessible exclusively to the SE on the device. A key assumption is that 
factory employees are untrusted and could potentially tamper with devices during production to 
extract sensitive information like the signing key, by accessing the micro-controller internal memory 
in debug mode. 

Specifically, attackers are assumed to be capable of eavesdropping and manipulating data on 
exposed communication channels (buses) before, during, and after firmware installation, to retrieve 
all secret material. However, the model excludes physical attacks on devices, such as side-channel 
or fault injection attacks. 

In this context, the attacker’s goal is to generate valid communication that the Cloud provider will 
accept, effectively impersonating legitimate IoT devices. The authors highlight that while JWTs are 
intended to provide authentication, they fail to protect against attackers who gain access to the 
private key. This also implies that JWTs cannot protect against attackers who have access to the 
private key at any time, but also that even if the attacker cannot access the secret, the JWT 
construction fails to protect the communications that use the secret key. 

In this perspective we want to remark two main aspects. First, if the SE is not present, then the 
attacker may simply obtain  the signing key by accessing the micro-controller internal memory in 
debug mode. Second, in order to thwart such a naive attack, an SE is usually mounted on the device. 
Although very surprisingly, using a SE in this context opens a new attack scenario (Back to the 
future) which was not identified by the manufacturer nor the Cloud platform (Goo18). 

 

3.12  Back to the future 

In this section we show that JWTs used in such a context create a security threat to the system. The 
JWT is created by the device based on its own time representation, while the Cloud side has no 
interaction in the generation of the JWT. This means that a JWT can be created at any time by the 
device or by anyone having access to the private key associated with the device. This represents a 
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weakness in the authentication protocol, it can be used for example to mount replay attacks, by 
sending twice the same JWT. 

We found a more subtle attack than a replay, and show in this section how to generate custom JWTs 
that will be valid in the future. 

Our attack applies when the device is provided with a SE, being it pre-provisioned or not. An attacker 
having access to the device during manufacturing can interact with the SE and request the signature 
of a JWT for whatever moment in time. This is possible since the I2C between the micro-controller 
and the SE is not protected. Despite the possibilities for commercial SEs to establish a secure 
channel over the I2C with the micro-controller, we observe that this is not a sufficient countermeasure 
to thwart the attack presented in this work. As the key used to protect the I2C channel needs to be 
exchanged/rotated on the very same I2C channel on first boot, an attacker that can eavesdrop on 
such a communication would know the key and would thus be able to observe/modify all further 
communications. 

Similarly, since the SPI connection between the micro-controller and the Wi-Fi module is not 
encrypted, an attacker can tamper with the time communicated by the Wi-Fi module as well. The 
attacker eavesdrops on the SPI channel and waits for the micro-controller to connect to a network 
time server. The attacker then alters the response, setting the time to some moment in the future. 
The micro-controller then receives the modified time and requests the signature on a JWT with a 
wrong time, to the SE. In this way, the micro-controller obtains a signed JWT with a custom time field 
(“iat”), which is controlled by the attacker, and can be used in the future. 

We observe that by targeting the Wi-Fi channel, only the JWT “iat” can be misused, and the attack 
is limited with respect to the one targeting the micro-controller-SE connection. 

 

3.13 Attack 

We present our attack by using the Arduino MKR WiFi 1010 (Ard19) as the victim's board. The 
attacker uses a second Arduino, the Arduino MKR 1000 WiFi, which is not provided with an SE, to 
abuse the SE of the victim and make it generate a JWT for authenticating to the Cloud. As shown in 
Figure 12(a), the SE on the MKR WiFi 1010 is easily accessible. The experiment setup is depicted 
in Figure 12(b). It shows that the GND, SDA and SCL signals are connected from the PINs of the 
attacker to the corresponding PINs on the victim’s board, while the power (VCC) is connected from 
the PIN of the attacker, directly to the VCC PIN of the SE. 

 

(a) Attack schematics 
 

 (b) Attack experiment 

Figure 12: Attack schematics (a) and experimental setup (b) 
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We demonstrate our attack by using the sketch given by Arduino in (Ard19) to connect the MKR to 
the Cloud Provider, in particular the version for the Google IoT Cloud. In order to emulate a pre-
provisioned keypair, on the victim board we first load the Arduino ECCX08JWSPublicKey sketch 
(Ard19) to generate the cryptographic material inside the SE. Further instructions on these 
procedures can be found in (ARD24). 

The obtained public key (necessary to validate the signature of the JWT) is: 

-----BEGIN PUBLIC KEY----- 

MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEoEPtFj 

VHxvodsOKutQilCP/5gCjzF1pzUU+3eqLLD255e4Q4 

xOBCqOWwC4gY6l6fHFNLlLKYyV8jiqJzzaLJxA== 

-----END PUBLIC KEY-----     

After registering the corresponding public key on the Cloud provider, we load the Arduino 
GCP_IoT_Core_WiFi (Ard19) sketch to authenticate the node to the Cloud. This sketch executes 
the following steps: connects to the WiFi, retrieves the time information from the network, signs a 
JWT that contains the retrieved timing information in the “iat” claim, then uses the signed JWT to 
authenticate to the MQTT server to publish and retrieve information. An example of a legitimate JWT 
generated by the victim is provided in the next picture. 

The attacker’s board performs the same actions, but it cannot authenticate to the server as it has no 
SE connected. So it needs to “steal” it from the victim’s board. In order to do so, she disconnects the 
power from the victim, and wires the two boards as depicted. With the GND and VCC from the 
attacker to the victim’ SE PINs, and the SDA and SCL signals to the corresponding signals of the 
victim’s board. 

Once this is done, the attacker can use the SE to sign any JWT of her choice, as if the SE was on 
its own board. So what she can do for example is to create a set of signed JWTs for the future, by 
manipulating the time, and store them for further use. We have performed such an attack, and edited 
the “iat” claim by setting it to a date in the future. The corresponding obtained JWT is depicted below. 
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Figure 13: Example of a JWT generated by the attacker with “iat” claim set to a date in the future 

 

We would like to stress that once the attacker obtains the JWTs, she doesn’t need the devices 
anymore, and the JWTs can be used on any other device, i.e. a software tool executing an MQTT 
(Sta19) client. Finally, as far as we know, if the attack is detected by the Cloud backend, the only 
possibility to mitigate it is to revoke all of the devices’ keys. Alternatively, if the devices’ private key 
can’t be changed, dispose of all the devices. 

 

3.14  A JWT weakness 

JWTs were initially conceived to be used to authenticate users between interconnected servers, 
where all servers were controlled by the same entity and no (or little) clock skew was possible 
between them. The attack described above is the result of the use of the JWTs in a different context, 
where the token producer and the token consumer are different devices, under control of different 
entities. Thus, probably, the JWTs mechanism would require some adaptation in order to be securely 
applied to such use cases. Alternatively, one can argue that the problem is present due to a 
weakness in the JWT standards. Such weakness can be identified in the lack of communication 
between the Cloud and the device during the JWT generation. One of the building blocks of many 
security protocols is a random nonce generated by the party that verifies the claims and included in 
the signature by the party that wants to prove its identity. The lack of such nonce in the JWT 
specification makes it difficult to prove the protocol security, and opens the way to attacks as the one 
demonstrated in this work. 
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3.15  Countermeasures 

In this section we present possible countermeasures that can be applied to thwart our attack. The 
applicability of the countermeasure obviously depends on the particular setup, device at hand, supply 
chain condition, resources, etc. 

 

3.16  Use the TLS authentication 

One simple solution is to use the TLS authentication mechanism instead of the JWT one. This has 
the obvious drawback that not all Cloud providers allow it, and of a heavier authentication 
mechanism. However it allows to thwart the attack as the nonces included in the TLS handshake 
prevent attackers from reusing previous commitments or generating JWTs valid in the future. 

 

3.17 Pre-provisioned keys 

A second solution would be to take advantage of the presence of pre-provisioned private-keys inside 
the SE. For example, many commercial SEs contain a private key pre-provisioned by the founder 
(commonly referred to as attestation key). This countermeasure assumes that such pre-provisioned 
keys are installed by a trusted party, in a trusted environment. The attestation key can only be used 
to sign data internal to the SE or data internal to the SE and some additional external bytes. The 
module also provides slots to store additional self generated private keys, which can be used to sign 
external data. We suggest the following protocol to thwart the attack described in this work. During 
provisioning, the public key corresponding to the attestation key is published to the Cloud. After 
deployment, the Cloud sends a random nonce to the SE. After receiving the nonce, the SE generates 
a private key in one of the free slots. Then, the SE uses the attestation key to sign the digest of the 
public key corresponding to the private self-generated key, and the nonce received from the Cloud. 
The signature is sent to the Cloud, which, upon verification, updates the public key to use during 
JWT verification with the one just received. THen, after this first “provisioning” phase, the signature 
of subsequent JWTs can be signed by the self-generated private key, without need for further nonces 
from the Cloud. In such a way the Cloud can trust that the JWTs have been generated only after the 
nonce has been communicated during the “provisioning” phase. This solution has the advantages of 
avoiding the need to implement a TLS stack on the micro-controller, and offering a robust mechanism 
to update the device’s private keys in the field. The drawback of this solution is that a new step needs 
to be implemented in the Cloud provider’s back-end, and the device must implement the new 
protocol. Another advantage of such countermeasures is that compromised keys can be revoked 
and compromised devices can be re-provisioned, simply by generating another signing key inside 
the SE and repeating the nonce procedure.  

 

3.18 Use the nonce claim 

A fourth solution to thwart the attack is similar to the previous one, but does not require the use of 
pre-provisioned keys in the SE module. It simply requires the Cloud to send the nonce to the device 
after deployment, prior to creating JWTs. Once received, the device includes the Cloud’s nonce into 
the JOSE header of the JWTs. Afterwards, each JWT must contain the signed JOSE header 
containing the nonce, thus providing an assurance to the cloud concerning the generation time of 
the JWT. The main advantage of such a solution is that it is the simplest solution to implement. The 
drawbacks involve a new step to be implemented in the Cloud provider’s back-end. Similarly to the 
solution with pre-provisioned keys, a further advantage is that compromised keys can be revoked 
and compromised devices can be re-provisioned by generating new sign keys and refreshing the 
nonce step. 
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3.19 Key use limit 

A fifth solution takes advantage of the presence of monotonic counters in the SE, paired with a 
private key slot. Each time the key in the paired slot is used, the counter is incremented. By using 
an additional JWT field, the micro-controller can include the value of the counter in the JWT. The 
Cloud then verifies that the value in the counter is monotonic increasing, in order to mitigate the 
attack described in this work. The advantage of this solution is that it is simple and does not require 
a TLS stack on the micro-controller. On the other hand, a new step is to be implemented in the Cloud 
provider’s back-end, and a new field needs to be implemented in the JWT. Furthermore, differently 
from the solutions proposed above, this solution does not allow revocation of the used key if it is 
compromised. 

 

3.20 Trusted supply chain 

One final mention has to go to the simplest solution of all, at least from the technological point of 
view, which is of having a secure supply chain, or at least partially secure supply chain. Definition of 
a trusted supply chain is out of scope of this work, however we consider a supply chain to be trusted 
if it consists of a comprehensive and verifiable system encompassing all stages of an IoT device’s 
lifecycle – from design and component sourcing to manufacturing, distribution, deployment, 
operation, maintenance, and eventual disposal – that ensures the security, integrity, and resilience 
of the device and its associated data throughout its entire existence. This would allow the first steps 
of the personalization of the SE to be performed in a trustworthy environment. The following steps, 
where the attack can’t be mounted anymore, can be delegated to an untrusted supply chain. This 
solution, however, has an intrinsic drawback of dividing the production into two different sites, the 
secure and insecure one, with obvious costs and troubles. 

 

3.21 Conclusions 

This work presents JWT Back to the future, the possibility of (ab)using an IoT device during 
production for preparing credential claims (JWTs) that will be later used by the malicious actor to 
connect to the Cloud service. A malicious user in the supply chain might have the possibility to collect 
a large number of JWTs for mounting a massive attack in the future. 

The flaw is related to the lack of a mandatory nonce in the JWT standard. We show that it is possible 
to take advantage of such a flaw to abuse the authentication of IoT devices in the field, when JWT 
is used. In particular we show that an attacker in the supply chain may be able to make the IoT 
device generate some JWTs which are valid in the future and use them afterwards to impersonate 
the device with respect to the Cloud Provider. 

Interestingly, we describe our attack against devices with different architectures. Showing that a 
Secure Element (SE) attached to the micro-controller cannot protect from such an attack. We present 
a practical attack against an off-the-shelf IoT device by Arduino (Ard19) and the mechanism used 
by the Google Cloud IoT Core to authenticate the devices. We demonstrate that an attacker on the 
production line can request a number of signatures on self generated JWTs, from the SE connected 
to the micro-controller, to be used in the future to connect to the Cloud. 

We showcase our attack on the - now retired - Google Cloud IoT Core, in order to avoid malicious 
use of our findings, but our discovery can be applied to other services that provide token-based 
authentication. For example we further show that the same weaknesses apply to other tokens like 
the CWT and the EAT, and to platforms like HiveMQ and EMQX (HiveMQ; 
EMQX;LMOW24;JWET18) providing a much wider attacker scope than merely a single token type 
or Cloud provider. Furthermore, our attack also applies to the OCMF standard, used for recording 
meter readings from charging stations for eV[Se]. 

In order to thwart the presented attack we provide a few countermeasures that can be applied, 
depending on the IoT infrastructure at hand. The simplest countermeasure is to use TLS 
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authentication, while other countermeasures involve implementing a nonce-like mechanism in the 
JWTs or the authentication itself. 
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Chapter 4 A New Secure Channel Protocol 

4.1 Overview 

In this chapter, the NSCP (New Secure Channel Protocol), a novel secure communication protocol 
designed for industrial IoT environments, will be presented. It focuses on enhancing the security of 
the connection between microcontrollers and Secure Elements while improving efficiency compared 
to SCP03, the current industry standard. By leveraging the Xoodyak cryptographic primitive, NSCP 
achieves strong security with significantly lower computational overhead, making it ideal for 
resource-constrained devices. 

The Internet of Things (IoT) has become a popular technology in the industrial sector that demands 
high reliability, robustness, and security. In industrial IoT, security can have various implications. For 
example, to connect to the cloud, IoT devices need to handle sensitive information such as pre-
shared secrets or certification authority’s PKI certificates. As another example, security is crucial for 
continuous operation and proper machinery functionality if we think about an attacker tampering with 
simple sensors that drive any type of industrial plant. Therefore, protecting IoT devices against both 
remote and physical threats is becoming increasingly important. 

An effective way to improve security in the Internet of Things is by incorporating secure integrated 
circuits, also known as Secure Elements (SE). These specialized hardware components are certified 
to resist tampering and serve as secure storage for confidential information and cryptographic 
operation. A secure element typically provides its services over serial interfaces by creating 
protected channels using standardized protocols such as GlobalPlatform’s Secure Channel Protocol 
(SCP). SCP03, in particular, is a resource intensive protocol based on shared secrets that is typically 
used in such environments. However, as we will show, it may not be optimal when bandwidth (such 
as sensor data protection) is at stake. 

In this chapter, we propose an alternative to SCP03 consisting of a lightweight secure channel 
protocol that utilizes Xoodyak (Xoodyak), a cryptographic primitive known for its efficiency and 
minimal resource requirements. The new protocol aims to simplify the operational framework to 
provide adequate security while maximizing throughput. 

The remainder of this chapter is organized as follows. First, we provide an overview of related work 
and existing secure channel protocols with a focus on SCP03. Next, we detail the design and 
implementation of the proposed protocol, called the New Secure Channel Protocol (NSCP), 
highlighting its key innovations. This is followed by a comprehensive performance evaluation on an 
ARM-based STM32 microcontroller and a RISC-V one, including comparisons with SCP03 on 
metrics such as throughput and memory occupation. Finally, we conclude with a discussion of the 
findings and potential future research directions. 

 

4.2 Background 

The protocol proposed in this chapter aims to present a suitable alternative to SCP03 for embedded 
devices. For this reason, we will first cover the fundamentals around SCP03 then discuss the 
Xoodyak stateful object on which our protocol is based. 

 

4.2.1 The Secure Channel Protocol 

In this section we present the Secure channel protocol. Despite having presented it in Chapter 2, we 
recall it here as we recall some more in-depth explanation, necessary for understanding the rest of 
the work. 

The Secure Channel Protocol (SCP) is a suite of protocols published by GlobalPlatform (GP), a 
technical organization focused on the standardization of secure component technologies 
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(GlobalPlatform); SCP03 (SCP03)(Card Specification) is the latest iteration of SCP protocols that 
operate with symmetric encryption and authentication primitives to exchange data between a host 
MCU and a secure element (SE) over a bus such as I2C. SCP is built above ISO/IEC 7816, a 
standard used to represent command / response messages as application program data units 
(APDUs). In this short exposition, we will gloss over the packet encoding format and headers and 
focus on the main cryptographic functions implemented in the protocol. 

In SCP03, the host typically specifies the security level for the subsequent command APDUs (C-
APDUs) and response APDUs (R-APDUs). The security level might correspond to either message 
authentication only, or both message authentication and encryption. Encryption is performed using 
AES in Cipher Block Chaining (AES-CBC) (AES-CBC) mode while authentication is achieved by 
appending an 8-byte (or, in some versions, 16 bytes) Message Authentication Code (MAC) produced 
by an AES-based CMAC (AES-CMAC). 

During the SCP handshake (see Figure 14), the host and the secure element use pre-shared keys 
(𝐾𝑒𝑛𝑐, 𝐾𝑚𝑎𝑐) to generate three session keys: {𝑆𝑒𝑛𝑐 , 𝑆𝑚𝑎𝑐 , 𝑆𝑟𝑚𝑎𝑐}. These keys are used for encryption 
and to authenticate the following commands and responses. The generation of session keys is done 
with a specific command sent by the host (initialise update) that carries a host challenge 𝜈ℎ (nonce). 
The secure element generates its own challenge 𝜈𝑠 and computes the session keys 𝑆∗ using a 
CMAC-based key derivation function (KDF) (AES-CMAC). Then it uses 𝑆𝑚𝑎𝑐 to produce a 

cryptogram 𝜒𝑠 with another KDF based on CMAC. Finally, 𝜒𝑠 is sent back to the host together with 

𝜈𝑠. 

To validate 𝜒𝑠, the host attempts to regenerate it using the pre-shared keys 𝑘∗ and the exchanged 

challenges 𝜈∗. Upon successful validation, the host uses the external authenticate command to send 
its cryptogram 𝜒ℎ to the secure element, which will validate it similarly. At the end of this process, 

apart from having proven that they have the same pre-shared keys (𝑘∗), both the host and the secure 

element have agreed on common session keys (𝑆∗) derived from the shared base keys. 

The external authenticate command is also used by the host to specify one of the five security levels 
of the following communication: 

1. Level 1: authentication of commands. 

2. Level 2: encryption and authentication of commands 

3. Level 3: authentication of commands and responses. 

4. Level 4: encryption and authentication of commands; authentication of responses. 

5. Level 5: encryption and authentication of commands and responses. 
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Figure 14: Handshake in SCP03 

The aim is twofold: 1) to generate shared session keys 𝑆∗ from exchanged nonces 𝜈∗ and 2) 

validate the presence of shared secrets between host and SE (i.e. the base keys 𝑘∗) through 

cryptograms 𝜒∗. 

To ensure confidentiality, SCP03 employs an “Encrypt-then-Authenticate” method (refer to Figure 
15) in which encryption is carried out using AES-CBC.2. The initial chaining value (ICV) used by 
AES-CBC (𝑖𝑣(𝑛)) depends on the current message counter 𝑛. The counter increases with each 
command sent from the host to the secure element, making it dependent on the number of 
commands sent 𝑛. Using 𝑖𝑣(𝑛), identical payloads within the same session will be encrypted 
differently, preventing chosen plaintext attacks (CPA). 

 
2AES-CBC is a stream cipher built from AES which works as follows: given an arbitrarily long message M 

decomposed in a sequence of N 16-byte blocks {mi}, it produces recursively the encrypted representation yi 
of mi as 

yi=AES(miyi−1,S),  y0=iv 

where S is the session key and iv is the initial chaining value. 
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Figure 15: SCP03 encrypt then MAC applied to command PDUs sent from the host 

On the left, 𝐶 is the command to be sent, 𝑆𝑒𝑛𝑐 is the encryption key, 𝑖𝑣(𝑛) is a session dependent 
initialization value, 𝜇 is the MAC chaining value (16 bytes, at the beginning 𝑝𝑟𝑒𝑣 𝜇 is 0). On the 

right 𝐶𝑒 is the encrypted command, 𝛼 is the authentication tag (upper 8 bytes) of 𝜇, 𝑆𝑚𝑎𝑐 is the 

message authentication key, 𝜇 is the new MAC chaining value (used in the next session).  

 

For message authentication, authentication tags are generated using MAC chaining values. At any 
moment, the MAC chaining variable in the host (𝜇 in Figure 15) guarantees the integrity of the 
command sequence produced by the host. In a way, it can be thought of as a summary of the 
session’s history. The authentication tag 𝛼 associated with the message is just the most significant 
8 bytes (or, in some versions, 16 bytes) of the current chaining value 𝜇 which is computed from the 

previous one with the current command ciphertext and the 𝑆𝑚𝑎𝑐 key. Using such a chaining value 
“captures” the entire command history up to message 𝑛. This effectively nullifies attempts at replay 
attacks, as two identical commands or responses will have different authentication tags. Thanks to 
its design, SCP03 has been proven secure against replay attacks, out-of-order attacks, algorithm 
substitution attacks, and more (SCP CardLogic;SCP Cryptanalysis). 

The exchange of C-APDUs and R-APDUs between a secure element and a host can be seen as a 
special case of Authenticated Encryption with Associated Data (AEAD). APDUs can be conceptually 
divided into two parts: one that is always sent in clear (e.g., the header field) and another which may 
be encrypted (like the message payload). While encryption is applied only to one part of the message 
(the payload), verification of integrity is typically applied to the entire message, that is, even to the 
associated data that are sent in clear. In recent years, newer AEAD algorithms have been proposed 
that might promise better performance and productivity trade-offs with respect to the current SCP 
standard. One of them is based on the sponge construction and is called Xoodyak (Xoodyak) and is 
the cornerstone of the protocol proposed in this chapter. Xoodyak was selected as a finalist of the 
NIST Lightweight Cryptography standardization process (NIST-LWC), due to its adaptability and 
outstanding performance, as also evidenced by an evaluation conducted on the NIST-LWC finalists 
using RISC-V architectures (CLMLD19). 

 

4.2.2 The Xoodyak Primitive 

We briefly recall here some information on Xoodyak, for ease of reading. Xoodyak is a lightweight 
cryptographic primitive that employs a special mode of operation called Cyclist, and an underlying 
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permutation called Xoodoo. Cyclist should be seen as a stateful object with a set of methods3 that 
manipulate the state so that it is always a reflection of the history of all preceding method invocations. 
Some of these operations can apply the Xoodoo permutation to the state itself so as to accomplish 
various cryptographic functions according to the two operating modes, namely: 

1. Hash mode. Once the Cyclist object is initialized with constant values, Xoodyak can be used 
to absorb an input string (of arbitrary length) and produce (“squeeze”) hash digests of the 
said input strings (methods absorb(), squeeze()). 

2. Keyed mode. In this case, the Cyclist object is initialized with a key 𝐾. In this mode, Xoodyak 
is capable of performing, among other things, MAC computations and encryption / decryption 
(methods encrypt(), decrypt(). 

Xoodyak does not have any parameters that can be chosen by the user. This means that the user 
does not decide on the number of permutation rounds or the method of padding and splitting the 
input into blocks before encryption. Xoodyak utilizes the Xoodoo permutation, which operates over 
a 384-bit state divided into 12 rounds and can be stored in 12 registers of 32 bits each, making it 
ideal for low-end 32-bit devices. Among its methods, it includes a ratchet mechanism (method 
ratchet()) that zeros out part of the state. This feature is beneficial in scenarios involving certain types 
of attack, such as side-channel attacks, which could allow an attacker to retrieve the internal state 
of the cipher. In such situations, the attacker cannot discover the secret key after the ratchet is 
applied. Therefore, the ratchet mechanism is said to provide forward secrecy, at least within the 
context of a single session. 

 

4.3 NSCP: a new secure channel protocol for hardening 
communications in industrial IoT 

A secure element safeguards cryptographic keys and provides cryptographic services to an IoT-
integrated microcontroller (MCU). These elements are specifically bound to the MCU, which ensures 
that only the MCU can access their security services. This binding can occur at various 
manufacturing stages and can be adjusted for different security levels based on the device’s needs 
and MCU features. 

Our proposal for NSCP is designed for connecting a secure element to a host MCU and meets 
several requirements. Firstly, it ensures security against major threat models. Secondly, to support 
secure intensive applications, the protocol is fast, and efficient on low-end devices as it exploits the 
Xoodyak object for lightweight cryptography. Concerning the threat model, here we assume that the 
attacker can perform any type of eavesdropping/tampering with the communication buses between 
the host MCU and the secure element  (Murdoch07). However, both the MCU and secure element 
are assumed to have defenses against physical attacks, including side-channel attacks (e.g., 
masking (PBSHCSL23) and fault injection to protect pre-shared keys. Performance-wise, NSCP has 
been conceived to operate under principles simpler than SCP03. In keeping with this goal, the new 
protocol offers only one possible level of cryptographic protection for APDUs, which corresponds to 
the highest one that can be specified through the ‘External Authenticate’ command in SCP03: the 
level which demands that all messages be encrypted and authenticated. 

 
3 Think of it as a C++ object. 
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Figure 16: High-level comparison of session management in SCP03 and NSCP 

SCP03 needs a handshake phase to mutually authenticate the host and the secure element. In 
NSCP, a valid initial session state 𝑋𝐸 in both host and the secure element ensures they are 

mutually authenticated and the states in both of them evolve in a mirrored way. 

 

SCP03 and NSCP also differ in the way sessions are established (see Figure 16). SCP03 uses a 
single handshake to exchange nonces and cryptograms for mutual authentication and session keys 
𝑆∗ (see Figure 16(a)). NSCP, however, uses the Xoodyak object’s state 𝑋 as the session state4, 
initializing its value during the first APDU exchange before the RPDU is created by the secure 
element (see Figure 16(b)). 

 
4 In the following description, we will add a subscript to identify a specific point in time in which that state 
must be considered, so XC must be considered the state of the Xoodyak object at stage C. 
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Figure 17: NSCP internal data on the host 

When communicating with the secure element SE: 𝐶 represents the plain text command, whereas 

𝐶𝑒 denotes the corresponding encrypted command. 𝐻𝐶 is identified as the command header, and 
𝐿𝐶 specifies the command’s length. 𝜈ℎ (𝜈𝑠) is the 128-bit nonce generated by the host (secure 

element), and 𝛼ℎ is the authentication tag (128 bits), 𝐾 is the pre-shared key (128 bits), 𝑖𝑑𝐾 is the 
identifier of the key while 𝑐𝐾 is the session counter for that particular key. 𝑋 is the intermediate 
state of the session (i.e., the Xoodyak state), also highlighted in blue color. Note that Cyclist is 

initialized only at the beginning of the session (𝑋𝐼), otherwise the previous state 𝑋𝐸 of the session 

is used as the initial state 𝑋𝐴 of the 𝑛-th message exchange. 
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Figure 18: NSCP internal data on the secure element 

Delineated as follows: 𝑅 denotes the plain text response, and 𝑅𝑒 represents its encrypted 
counterpart. 𝐻𝑅 refers to the response header, whereas 𝑇𝑅 indicates the response trailer. 

Additionally, 𝜈𝑠 is the nonce generated by the secure element (128 bits), and 𝛼𝑠 is the 
authentication tag (128 bits). Note that the Xoodyak state of the secure element (red) mirrors the 

one on the host. 

 

In a valid session, both host’s and secure element’s state evolve synchronously through Xoodyak’s 
methods (see Figure 17 and Figure 18. The initial CPDU/RPDU exchange initializes the Xoodyak 
state 𝑋 to 𝑋𝐼 for both the host and the secure element. Subsequent CPDU/RPDU exchanges use 
the final state 𝑋𝐸 of the exchange (𝑛 − 1) as the initial state 𝑋𝐴 for the exchange 𝑛 (see feedback 

loops in Figure 17 and Figure 18). The initial session state 𝑋𝐼 is created by both the host and the 
secure element with the Cyclist constructor in keyed mode, using the static key K (128 bits as 
suggested in (Xoodyak), the key identifier 𝑖𝑑𝐾 and a static key usage counter 𝑐𝐾 (incremented with 
each static key use). 

During the session in the host (see Figure 17), the entropy of the initial state 𝑋𝐴 increases by 
absorbing a 128-bit nonce 𝜈ℎ (as suggested in (Xoodyak) then the state 𝑋𝐵 is irreversibly transformed 
by a cryptographic Ratchet. After absorbing the APDU header and length, the session state is used 
as a key to encrypt the command 𝐶 into 𝐶𝑒. In addition, it is also used to generate an authentication 

tag 𝛼ℎ (128 bits, as suggested in (Xoodyak) that is used (by the secure element) to verify the integrity 
of the communication. At this point, the secure channel is in the state 𝑋𝐶 and the C-APDU is sent to 

the secure element. 

The secure element (see Figure 18), after extracting the associated data 𝜈ℎ from the C-APDU, can 

validate the integrity of the message and reconstruct the state of the session 𝑋𝐶 as it ended on the 
host. This is then used to absorb a nonce generated internally (𝜈𝑠) and encrypt the response payload. 

In addition, it also produces an authentication tag 𝛼𝑠 that the host will use to validate the integrity of 
the response. Once the host has received the RPDU (Figure 17, right), it absorbs the nonce 𝜈𝑠. At 

this point, it has reconstructed state 𝑋𝐷 and is thus able to both verify the integrity of the entire RPDU 
and decrypt the response payload (tag check block). If successful, both the host state and the state 
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of the secure element have reached the state 𝑋𝐸. In the next exchange, this will become the initial 

state 𝑋𝐴
5. 

 

4.4 Evaluation 

The purpose of this section is to corroborate, through a benchmarking study, that NSCP outperforms 
SCP03 even in its highest security and integrity settings6 , primarily due to the lighter cryptographic 
primitive and simpler design. 

 

4.4.1 Experimental setup 

The performance of both protocols was tested using a RaspberryPi acting as host in two scenarios, 
one emulating a sophisticated secure element with an ARM Cortex M4 at 168 MHz 
(STMicroelectronics STM32f439zi SoC) and the second emulating a smaller factor secure element 
with a RISC-V core (OpenHW CV32E40P) synthesized on an Artix-7 FPGA (clock frequency 
10MHz). 

The secure element and the host MCU are connected via the I2C bus in normal speed mode (up to 
12.5KB/s). The devices were programmed to simulate a real-life scenario of a host and a secure 
element exchanging data through a secure channel using the NXP’s nano-package library 
[NXPNano]. To enable extensive benchmarking of protocols, we introduced a new ‘Echo’ command-
response APDU pair and used the chaining functionality of the ISO / IEC 7816-3 (T = 1) protocol to 
exchange messages of arbitrary length and measure burst performance by varying burst size. 

The measurement campaign aims to assess the overall throughput of secure element protocols, 
evaluating wall clock time of critical functions divided by bytes processed, with SCP03 focusing on 
CMAC, AES-CBC decryption/encryption, and ICV generation, while NSCP focuses on command 
authentication/decryption and response encryption/authentication. 

In the ARM Cortex M4 scenario, we observed that the new protocol significantly improves handshake 

execution time, reducing it from more than 8.2 × 104 (SCP03) to approximately 2.2 × 104 clock cycles 
(for NSCP), achieving a speed-up factor of about 3.7. 

 
5 Obviously, such mirroring can be subject to rare problems where the host and secure element go out of 

sync, aborting the current session and creating a new one. Note that also SCP03 suffers from this problem 
as both host and secure-element MAC chaining values must evolve synchronously. 

6 Corresponding to the activation of all SCP03 options C_MAC, R_MAC, C_DECRYPTION and 
R_ENCRYPTION. 



D5.2 Report about essential and beyond-essential s&p guarantees for 
intra-device communication in restricted environments 

ORSHIN D5.2  Public Page 56 

 

Figure 19: Throughput comparison of NSCP and SCP03 level-5 across various payload sizes (host: RPI, SE: 
ARM Cortex M4, bus: I2C)  

 

Figure 19 illustrates the performance of NSCP throughput (denoted nscp.std) compared to SCP03 
at security level 5, in different payload sizes (ranging from 128 to 896 bytes) and type (CPDU vs 
RPDU). The Y-axis measures throughput in KB/s, while the X-axis depicts the payload size in bytes. 

On average, NSCP consistently demonstrates higher throughput relative to SCP03, ascending from 
2.4 KB/s at the smallest payload size (128 bytes) to about 3.7 KB/s at the highest payload size tested 
(896 bytes). NSCP however presents different performance on command and response, which are 
probably due to the additional actions that the secure element must perform to validate the tags. 
This difference tends to attenuate as the packet size increases, probably because tag verification 
becomes negligible. The speedup of NSCP on SCP03 ranges from approximately 3.64x to 4.0x. 

Table 3 provides a comparative analysis of resource utilization between NSCP and SCP03, when 
implemented on an embedded ARM M4 architecture. The comparison examines several aspects of 
memory consumption, namely SRAM, FLASH, and designated memory sections (.rodata, .data, 
.bss, .text). From the data, it is evident that NSCP is significantly more efficient across all categories. 
Specifically, NSCP reduces SRAM usage by 25%, FLASH by 37%, and shows substantial savings 
in the .rodata, .data, .bss, and .text sections — 94%, 17%, 28%, and 27% respectively, compared to 
SCP03. These savings indicate that NSCP not only requires less volatile (SRAM) and nonvolatile 
memory (FLASH), but also optimizes the storage of read-only data, initialized global variables, zero-
initialized data, and executable code segments. The practical implication of this efficiency is that 
NSCP could offer more headroom for other functionalities on resource-constrained embedded 
systems. 
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Table 3: Benchmarks of NSCP vs SCP03 

Resource usage comparison between NSCP and SCP03. Positive delta values correspond to a 

reduction in resource consumption of NSCP with respect to SCP03. 

Protocol SRAM FLASH .rodata .data .bss .text 

nscp.std 10047 31667 416 176 8346 30587 

scp03.level-5 13350 49912 7475 212 11592 41789 

difference 25% 37% 94% 17% 28% 27% 

To corroborate our findings on a different architecture, we also benchmarked an RPI+RISC-V 
platform where the payload size range was limited to smaller values (slightly higher 256 bytes) due 
to the fixed I2C buffer size in the synthesized core. As Figure 20 shows, NSCP still offers significantly 
higher performance throughput compared to SCP03 in all payload sizes tested. Again, the disparity 
in throughput between command and response can be attributed to the additional validation 
operations performed by the secure element when processing responses, a pattern observed 
consistently across all presented payload sizes. SCP03 throughput exhibits a more moderate growth 
trajectory, starting from near zero and eventually reaching slightly more than 2KB/s. 

 

Figure 20: Throughput comparison of NSCP and SCP03 across various payload sizes (host: RPI, SE: RISC-
V@10MHz, bus: I2C) 
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Figure 21: MCU secure boot implemented supported by a secure element 

 

4.5 Implications for realistic scenarios 

In this section, we will discuss some usage scenarios and the implications of NSCP. We will start 
first with a common scenario in IoT, that is, secure boot (SA19) where the MCU uses the secure 
element to attestate the integrity of the application image to be executed (see Figure 21). The MCU 
hashes (e.g., with SHA-256) the application image, and the resulting 32-byte SHA-256 digest is sent 
to the secure element together with a message authentication code (MAC) generated using the 
image digest, a pre-shared secret, and a 16-byte challenge nonce. The secure element 
independently reproduces the MAC (using the challenge nonce and a valid image hash) and 
compares it with the MAC received for attestation. In an illustrative example using a ARM Cortex M4 
(Figure 19) assuming that 80 bytes of data (32-byte digest, 16-byte nonce, and 32-byte MAC) need 
to be transferred, an SCP I2C channel channel would transmit data in 108.1 ms, while NSCP I2C 
would transmit data within 26.9 ms with a potential 4x improvement on secure boot related 
communications. 

Another scenario involves sending sensor data from the MCU to the cloud. Here, the secure element 
would store the cloud service’s public key7 to encrypt the data coming from the MCU, which is 
attached to the sensor. It would also handle decrypting the cloud service’s responses. From our 
experiments on ARM Cortex M4 as a secure element, by batching data up to 224 single-precision 
floating point values, a throughput of 3.7kB/s could be reached using NSCP, in contrast to just 

 
7 Or the shared secret produced by a TLS handshake. 
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0.9kB/s with SCP03 at level 5. It is important to note that NSCP remains faster even if one opts not 
to encrypt data over I2C (for example, by using SCP03 level-3, see Figure 22). 8 

 

Figure 22: Throughput comparison of NSCP and SCP03 level-3 across various payload sizes (host: RPI, SE: 
ARM Cortex M4, bus: I2C) 

 

Our protocol could also be applied to Trusted Platform Modules (TPMs) in PCs. TPMs enable CPU 
bus data encryption, but TPM2.0 encryption is malleable to attacks and requires additional 
mitigations (“Information technology — Trusted Platform Module Library — Part 1: Architecture” 
2015). A simpler approach, as proposed here, might be beneficial. 

 

4.5.1 Comparison with other Secure Channel Protocols 

We provide in Table 4 a comparison on the key features of the different Secure Channel Protocols 
detailed in this work. 

 

 
8 NSCP’s performance isn’t weighed against that of SCP03 level-1 because SCP03 level-1 doesn’t impose 
any confidentiality or integrity on the response messages. 
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Table 4: Comparison of Secure Channel Protocols 

Protocol 

typical 
implemen

tation 
(HW/SW) 

Body 

Offers Open 
source 

implementatio
n for both 
client and 

server 

Reference or alternative 
implementation 

SCP-03 HW Global 
Platform 

No https://github.com/martinpaljak/GlobalPla
tformPro/ 

Optiga 
shielded 
connecti
on 

HW Infineon No https://github.com/Infineon/mtb-example-
optiga-
crypto/tree/6f712e2de35d4aa7203d963bf
6cd9401a1ca0223 

ATECC 
secure 
communi
cation 

HW Microchip No https://github.com/MicrochipTech/cryptoa
uthlib 

U-Blox 
Chip2Chi
p 

HW UBlox No https://github.com/u-blox/ubxlib 

NaCl SW https://nacl
.cr.yp.to/ 

Yes NaCl website 

Noise SW Trevor 
Perrin 

Yes Noise 

Blinker SW Markku-
Juhani O. 
Saarinen 

No  

Strobe SW Mike 
Hamburg 

Yes 
Strobe paper 

JWT SW IETF Yes https://jwt.io/libraries 

Xoodyak HW Keccak 
Team 

Yes https://github.com/KeccakTeam/Xoodoo/
blob/master/Reference/C%2B%2B/Sourc
es/Xoodyak.cpp 

NSCP HW ORSHIN 
Project 

Yes ORSHIN open source repository 

 

4.6 Considerations on security 

Regarding confidentiality and integrity, it is easy to see that our protocol follows Xoodyak’s 
recommended Authenticated Encryption strategy coupled with a cryptographic Ratchet (Xoodyak). 

https://github.com/martinpaljak/GlobalPlatformPro/
https://github.com/martinpaljak/GlobalPlatformPro/
https://github.com/Infineon/mtb-example-optiga-crypto/tree/6f712e2de35d4aa7203d963bf6cd9401a1ca0223
https://github.com/Infineon/mtb-example-optiga-crypto/tree/6f712e2de35d4aa7203d963bf6cd9401a1ca0223
https://github.com/Infineon/mtb-example-optiga-crypto/tree/6f712e2de35d4aa7203d963bf6cd9401a1ca0223
https://github.com/Infineon/mtb-example-optiga-crypto/tree/6f712e2de35d4aa7203d963bf6cd9401a1ca0223
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/u-blox/ubxlib
https://docs.google.com/document/d/1h4NNuBFQNt-C_pi9tC5QOcK-f_mAFLMHCoyPoENVelk/edit?pli=1#heading=h.ckjtwlnwju
https://jwt.io/libraries
https://github.com/KeccakTeam/Xoodoo/blob/master/Reference/C%2B%2B/Sources/Xoodyak.cpp
https://github.com/KeccakTeam/Xoodoo/blob/master/Reference/C%2B%2B/Sources/Xoodyak.cpp
https://github.com/KeccakTeam/Xoodoo/blob/master/Reference/C%2B%2B/Sources/Xoodyak.cpp
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More in detail, it enjoys the security strength levels expressed in Corollary 2 of (Xoodyak), i.e., the 
confidentiality and integrity of plain text, as well as the integrity of associated data correspond to 128 
bits of computational complexity strength and 160 bits of data complexity strength. These values can 
be derived from the length 𝜅 = 128 bits of NSCP’s static keys as well as the dimension 𝑡 = 128 bits 
of NSCP’s authentication tags. 

However, when dealing with a secure protocol, an additional security property that must be 
considered is forward secrecy. Forward secrecy ensures that the confidentiality of data exchanged 
in previous sessions remains intact even if long-term secrets, such as the private key 𝐾, are 
compromised. In our scenario, forward secrecy is achievable through Diffie-Hellman ephemeral 
(DHE) key exchange (DH). Before starting the session 𝑖, both the host and the secure element can 
create a local ephemeral public/private key pair, swap public keys and establish a shared secret 𝐴𝑖 
following the DHE protocol. During the initialization of the Cyclist object, 𝐾⊕𝐴𝑖 can be fed to the 
constructor instead of only 𝐾. Thus, a compromise of 𝐾’s secrecy would not allow decryption of a 

previous session due to the reliance of the Xoodyak state on these ephemeral secrets9. 

 

4.7 Conclusions and future work 

This chapter presented the design and implementation of a new secure channel protocol for 
connecting microcontrollers to SEs. Starting from SCP03, the de facto standard in connecting SEs 
to MCUs in the IoT domain, we addressed the question of whether it is possible to design an even 
more lightweight secure channel protocol using sponge primitives. The new protocol operates under 
simpler principles than SCP03, as it requires that the entities share only one static key, has a reduced 
handshake phase integrated in the exchange of usual application data, mandates only one security 
level, and does not require the usage of a MAC chaining value mechanism. Experimental results 
show that the new protocol is faster than SCP03 even considering resource-constrained 
requirements while being easier to understand and implement. In future work, it would be beneficial 
to implement and test the protocol on a larger set of platforms, especially ones that employ 
processors that are different from the STM32 board used in this chapter. Future studies may also 
explore its suitability in SEs that use protocols that are not APDU-based to exchange application 
data with their hosts (e.g., RPMB devices such as SD cards) or to facilitate a secure element-
supported DTLS communication. 

 

 

 
9 Note that forward secrecy is also provided by SCP11 (the secure channel protocol for eSIMs). However, 
unlike NSCP, SCP11 is based on public key cryptography (Bettale, Dottax, and Grémy 2024). 
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Chapter 5 Summary and Conclusion  

This work presents part of the outcomes of the ORSHIN open-source resilient hardware and software 
solutions for Internet of Things (IoT) security project, and in particular the successful results of Task 
5.3 “Essential s&p guarantees for intra-device communication” and Task 5.4 “Beyond essential s&p 
guarantees for intra-device communication”. 

In the second chapter of this document, we present the research done within the ORSHIN project 
about the state of the art in secure communication protocols within a device. We started by describing 
the different phases of a secure communication protocol (Provisioning, Handshake, and Data 
exchange) then detailed them for each protocol under examination. 

Our analysis began with an examination of the widely used Secure Channel Protocol (SCP) family, 
in particular the SCP-03 protocol used for securing the communication on the i2c channel with a 
secure element. Then we presented the Replay Protected Memory Block (RPMB) protocol. 
Subsequently, the proprietary protocols employed in Infineon’s Optiga products, Microchip's ATECC, 
and Ublox products, were scrutinised for their characteristics, performances, and security properties.  

The exploration further extended to the protocol frameworks, where we delved into details about 
different scientific publications, which provide foundational structures and building blocks for creating 
“customised” secure channel protocols. These frameworks, known for prioritising usability and 
abstraction, are widely adopted in many different commercial products. 

Finally, we introduced emerging constructions such as that of JWT and Deck functions, underscoring 
evolving methodologies in building and deploying security. The exploration undertaken here sets the 
stage for the subsequent chapters. 

In the third chapter we present the ORSHIN contribution of a new vulnerability discovered in an 
open-source protocol for the Internet of Things security. During the study of JWTs, in particular, we 
found a weakness in the protocol that allows an attacker to gain access to sensitive resources 
months after the attack was perpetrated. 

Chapter four details the ORSHIN project's contribution to developing a secure protocol for IoT intra-
device communication. We specify and implement our newly developed protocol, called NSCP, 
which employs lightweight primitives to supersede the existing SCP03 protocol for secure 
communication. This result was published at DATE25 conference [Date25]. 

The NSPC protocol, as well as the classical SCP03, are implemented in the ORSHIN demonstrators 
reported in D5.3. 

 

 

 



D5.2 Report about essential and beyond-essential s&p guarantees for 
intra-device communication in restricted environments 

ORSHIN D5.2  Public Page 63 

Chapter 6 List of Abbreviations  

Abbreviation Translation 

AES Advanced Encryption Standard 

AEAD Authenticated Encryption with Associated Data 

AKE Authenticated Key Exchange 

API Application Programming Interface 

AT ("AT" meaning 'attention') a set of instructions to control a modem 

C2C Chip to Chip 

CA Certificate Authority 

CBC Cipher Block Chaining 

C-MAC Command MAC 

DES Data Encryption Standard 

DH Diffie-Hellman 

DNS Domain Name System 

ECC Elliptic Curve Cryptography 

ECDH Elliptic Curve Diffie-Hellman 

ECDSA Elliptic Curve Digital Signature Algorithm 

EdDSA Edwards-curve Digital Signature Algorithm 

EEPROM Electrically Erasable Programmable Read-Only Memory 

eMMC embedded MultiMediaCard 

ES Ephemeral Static 

FPGA Field Programmable Gate Array 

GCM Galois Counter Mode 

HMAC Hash-Based Message Authentication Code 

HTTP Hypertext Transfer Protocol  

I2C Inter Integrated Circuit 

IV Initialization Vector 

ISO International Organization for Standardization 

JSON JavaScript Object Notation 

JWA JSON Web Algorithm 

JWE JSON Web Algorithm 
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Abbreviation Translation 

JWS JSON Web Signature 

JWT JSON Web Token 

KDF Key Derivation Function 

MAC Message Authentication Code 

MCU Microcontroller Unit 

mEAC Modular Extended Access Control 

MSEQ Master Sequence Number 

NaCl Networking and Cryptography Library 

NVM Non-Volatile Memory 

NVMe Non-Volatile Memory express 

OAEP Optimal Asymmetric Encryption Padding 

OEM Original Equipment Manufacturer 

OTP One-Time Programmable 

PACE Password Authentication Connection Establishment 

PreSSec Pre-Shared Secret 

PRF Pseudo Random Function 

PRNG Pseudo Random Number Generator 

PKI Public Key Infrastructure 

RFC Request For Comments 

RISC-V Reduced Instruction Set computer (RISC) Five 

RoT Root of Trust 

RPMB Replay Protected Memory Block 

RSA Rivest–Shamir–Adleman 

RSASSA RSA Signature Scheme with Appendix - Probabilistic Signature Scheme 

SCP Secure Channel Protocol 

SHA Secure Hash Algorithm 

SSEQ Slave Sequence Number 

TLS Transport Layer Security 

TLV Tag, Length, and Value 

UFS Universal Flash Storage 

XOF Extendable Output Function 

XOR Exclusive-OR 
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