W ORSHIN

D5.3

Intra-device and inter-device secure
communication prototypes

Project number 101070008

Project acronym ORSHIN

Open-source resilient Hardware and software for
Internet of things

Project title

Start date of the project 1t October, 2022

Duration 36 months

Call HORIZON-CL3-2021-CS-01

Deliverable type DEM — Demonstrator, pilot, prototype

Deliverable reference number CL3-2021-CS-01/ D5.3/1.0

Work package contributing to the

deliverable WPS

Due date Jun 2025 — M33

Actual submission date 30t June 2025

Responsible organisation SEC

Editor SEC

Dissemination level PU - public

Revision 1.0

This document represents the user guide needed to
setup and test the intra- and inter-devices
communication prototypes.

The intra-devices communication prototype is aimed
at showcasing the NSCP protocol, an improved
version of the SCPO03 protocol, used to allow a
secure communication between a client and a
Secure Element.

The inter-devices communication prototype is aimed
at showcasing the BlueBrothers, two novel protocols
replacing the standard Bluetooth pairing and session
establishment, wused to allow a secure
communication between two devices via Bluetooth
(Classic and Low Energy).

Abstract

Demonstrator, intra-devices communication, inter-

Keywords . - .
devices communication, user guide

Funded by the European Union under grant agreement no. 101070008. Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority can be held responsible for them.

D5.3 — Intra-device secure communication prototypes

W ORSHIN

Editor
SEC

Contributors (ordered according to beneficiary numbers)
Sacchetti, Tommaso (ECM)

Gorla, Federico (SEC)

Battistello, Alberto (SEC)

Molteni, Maria Chiara (SEC)

Reviewers
Volodymyr Bezsmertnyi (NXP)
Olivier Thomas (TXP)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author's view — the European
Commission is not responsible for any use that may be made of the information it contains. The users use the

information at their sole risk and liability.

ORSHIN D5.3 Public

Page |

D5.3 — Intra-device secure communication prototypes * ORSHIN

Executive Summary
The ORSHIN project aims to develop secure, open-source hardware with secure connectivity.

In Task 5.4 we designed an original and practical protocol that ensures security and privacy (S&P)
for intra-device communication. To achieve this, we leveraged open-source hardware,
implementing the prototype on both an ARM-based STM32 microcontroller and a RISC-V
microcontroller.

The prototype uses the New Secure Channel Protocol (NSCP) to enable secure communication
between a client and a Secure Element. NSCP is a novel protocol specifically designed for industrial
loT environments, aiming to strengthen the security of connections between microcontrollers and
Secure Elements while offering improved efficiency over SCP03, the current industry standard. By
utilizing the Xoodyak cryptographic primitive, NSCP provides strong security with significantly
reduced computational overhead, making it well-suited for resource-constrained devices.

In Task 5.2 we designed an original and practical protocol that ensures security and privacy (S&P)
for inter-device communication. To achieve this, we implemented the prototype on both an ARM-
based nRF52 microcontroller and a Raspberry Pi.

The prototype uses the BlueBrothers protocols to enable secure communication between two
devices via Bluetooth (Classic and Low Energy). BlueBrothers are two novel protocols replacing the
standard Bluetooth pairing and session establishment. They rely on strong and performant
cryptographic primitives such as ASCON and C25519, enabling stronger security guarantees with
reduced or minimal computational overhead, making them suitable for resource-constrained
devices.

This document serves as a user guide for setting up and testing these prototypes, developed by
exploiting the capabilities of open-source hardware.

ORSHIN D5.3 Public Page Il

D5.3 — Intra-device secure communication prototypes * ORSHIN

Table of Content

Chapter 1 INtroducCtion ... s e 1
Chapter 2 User guide for secure intra-device communication prototype................. 2
2 S T (| o 2
A e (= (=T o [U1 (= P 2
P2 T O o o1 o T=T o3 1 3
2.4 Secure Elementimplementationccoooiiiiiiiiii 4
2.5 Master implementation......... .o 5
Chapter 3 User guide for secure inter-devices communication prototype............... 7
X Nt O =Y (U o 7
3.1.1 = TU =Y (o] {0 T F= T o 7
3.1.2 1 1UT=) doTo 1 0 I o 1V =t =T (o Y 2P 7
3.2 INSTAllAtION ... 7
3.2.1 = TU =Y (o] {0 IO F= T o 7
3.2.2 =1 TUT=] doTo] 1 o I o 1V = =] e U 8
[0 0 T- T L= G SR 0o o Lo ¥ 1= 1o Y o 1 OO 9
Chapter 5 List of abbreviationsooo i 10
Chapter 6 Bibliography ... e 1

ORSHIN D5.3 Public Page llI

D5.3 — Intra-device secure communication prototypes * ORSHIN

List of Figures

Figure 1 Raspberry Pi4 CONNECLIONS ..o 3
FIGUrE 2 PINS ON NEXYS AT ...ttt e e e e e e e et e e e e e e e e e e e ettt e e e e aaeeeesaaaaanns 3
Figure 3 Connection of the debUgger. ..o e 4
Figure 4 Complete SEIUP.o e e e e et a e e e e e s 4
1o UL YT oo =T 0] | 5
Figure 6 Output of the program ... 6
Figure 7 BLE tested SEtUP........oooi i 8

ORSHIN D5.3 Public Page IV

file://///Users/MC/Documents/SVN%20-%20ORSHIN/05-WPs/WP5/D5.3/ORSHIN-deliverable%20D5.3intradevicecomm.docx%23_Toc201826783

D5.3 — Intra-device secure communication prototypes * ORSHIN

Chapter 1 Introduction

The ORSHIN project studies resilient, open-source hardware and software solutions for the Internet
of Things (loT).

Within embedded devices, components typically communicate via low-level buses such as 12C and
SPI. These intra-device communications are often left unprotected or rely on ad-hoc, frequently
proprietary, security mechanisms. The rise of open hardware offers increased transparency into
these internal interactions, presenting a valuable opportunity to enhance security and privacy.

To enhance the security and privacy of intra-device communication in embedded systems, we
developed a robust and practical protocol called New Secure Communication Protocol (NSCP), by
leveraging the capabilities of open-source technologies. it is an alternative to SCP03 consisting of a
lightweight secure channel protocol that utilizes Xoodyak [1], a cryptographic primitive known for its
efficiency and minimal resource requirements. The new protocol aims to simplify the operational
framework to provide adequate security while maximizing throughput. For detailed formal definitions,
please refer to the ORSHIN deliverable D5.2.

In Chapter 2 we report a user guide needed to setup and test the intra-devices communication
prototype. The prototype is aimed at showcasing the NSCP protocol. This work was done by
exploiting the potential of open-source hardware.

Device-to-device communication in constrained environments, such as those found in loT and lloT
systems, often lacks adequate security and privacy guarantees for various reasons. However, the
rise of open-source hardware is changing this landscape by giving access to more advanced and
transparent hardware components, enabling the integration of essential security features directly into
embedded device designs.

To improve the security and privacy of inter-device communication in embedded systems, we
developed two novel protocols, the BlueBrothers, as alternatives to standard Bluetooth pairing and
session establishment. These protocols leverage efficient and robust cryptographic primitives,
including ASCON and C25519, providing enhanced security guarantees while maintaining low
computational overhead, making them well-suited for resource-constrained devices.

In Chapter 3 we report a user guide needed to setup and test the inter-devices communication
prototype. The prototype is aimed at showcasing the BlueBrothers protocols. This work was done
by exploiting the potential of open-source hardware.

In Chapter 4 we report our conclusion on the work; Chapter 5 and 6 are respectively the List of
abbreviations and the Bibliography.

ORSHIN D5.3 Public Page 1

D5.3 — Intra-device secure communication prototypes * ORSHIN

Chapter 2 User guide for secure intra-device

communication prototype

2.1 Setup

The setup is split between two components that will communicate over the 12C channel: the Nexys
A7 FPGA, the secure element used as a slave, and a Raspberry Pi 4B+ functioning as a master.

Both of these boards will run the code responsible for the implementation of the NSCP protocol over
I12C for the slave and master part, respectively.

The setup consists of the following main Hardware components:

e Nexys A7 FPGA Board [2]
o JTAG-HS2 Debugger [3]
e Raspberry Pi 4B+ [4] [5]

Furthermore, the complete sources needed to test the system are given in the following repos:

e orshin-rpi_scp03
NSCP and SCP03 Master (running on the RPI4) — [6]
o The repo contains two branches
* “main” has the SCP03 implementation
* “nscp” has the NSCP implementation

e orshin-corev-secure-element
NSCP and SCPO03 Slave (running on the Nexys FPGA) — [7]
o The repo contains two branches
* “main” has the SCP03 implementation

= “nscp” has the NSCP implementation

2.2 Prerequisites

The Nexys A7 needs to be configured following the official instructions [8].

The process involves loading a bitstream implementing the CoreV architecture through the board
USB port (Step 1, Option 1 in [8]). The bitstream used in this project can be found in [9].
The document also explains how to set up and use the HS2 debugger.

After programming the FPGA, it is useful to check if everything is working correctly by running the
example program described at Step 2 in [8].

Finally, to compile and run the sources found in the NSCP repos, it is necessary to configure an
installation of Eclipse as described in [10]. The guide explains how to set up the IDE with the right
compiler for the CoreV architecture with which it is possible to compile and run the test program from
sources. With Eclipse configured this way, it will be possible to import the orshin-corev-secure-
element which contains the implementation of the Secure Element and SCP03/NSCP. How to use
the repos is described in sections 2 and 3.

The bistream implements the CoreV-MCU architecture. A user manual describing its inner workings
can be found in [11].

ORSHIN D5.3 Public Page 2

D5.3 — Intra-device secure communication prototypes * ORSHIN

2.3 Connections

The Raspberry Pi 4 exposes a [2C master over GPIO 3 (SCL), GPIO 2 (SDA) and PIN 9 (Ground).

‘

Figure 1 Raspberry Pi 4 connections

In Figure 1, the cable colors represent the various lines as described below:

e Brown: Ground
e Yellow: Clock
e Green: Data

The relevant pins on the Nexys A7 are shown in Figure 2.

Figure 2 Pins on Nexys A7

The pins are connected to the JC Pmod expansion that can be found in the lower left corner of the
board.

ORSHIN D5.3 Public Page 3

D5.3 — Intra-device secure communication prototypes * ORSHIN

Finally, the debugger is connected to the lower row of the JB Pmod expansion as in shown
inFigure 3.

Figure 3 Connection of the debugger.

It is important to note that the last switch (J15) needs to be in the upper position for the debugger
to correctly work.

In Figure 4is shown a scheme of the complete setup.

L
!

Raspberry Pi 4 sda Nexys A7

scl

debug

Figure 4 Complete setup.

2.4 Secure Element implementation

The code for the Secure Element can be found in report in the Github repository [7].

The repository consists of two branches: “main” contains the implementation of the SCP03 protocol
whereas “nscp” contains the implementation for NSCP.

To test the project, it is necessary to import it into a correctly configured Eclipse IDE and
subsequently build the “cli_test” subproject. With a debugger connected, it will be possible to stop
and examine the execution as one normally would in an Eclipse based IDE (eg. ST Cube IDE).

ORSHIN D5.3 Public Page 4

D5.3 — Intra-device secure communication prototypes * ORSHIN

The main.c file contains the code that creates the only FreeRTOS task present, namely
“secpat_i2c_receive”, which leverages the 12C channel to send and receive data to and from a
master. In i2c_secpat/secpat.c there’s the code that loops over the received bytes, one by one, and
populates a RX buffer named “rx_packet”’. When the parsing is complete, the code populates a
“tx_packet” buffer with the computed answer to be sent to the master.

By checking out the main or nscp branch, it will be possible to choose which implementation of the
protocol to run. The master repo will have the same organization and the same branch needs to be
checked out on both ends in order to have a working system.

The program prints its output on the serial port exposed by the USB connected to the Nexys board.
When correctly loaded, the program will print the strings in Figure 5before waiting for data to be sent
over 12C.

Hi####HF##HE SecPat Recelve #########H#IHH

Queue cleaned, reading input...

Figure 5 Program print

2.5 Master implementation

The code for the master will run onto a Raspberry Pi4 and can be found in the Github repository in
[6].

The repository consists of two branches: “main” contains the implementation of the SCP03 protocol
whereas “nscp” contains the implementation for NSCP.

After choosing the appropriate branch to checkout, to compile and run the program, the following
steps need to be followed:

1. Enter the test program directory

cd nano-package-xoodyak/examples/se@5x_crypto/linux/

2. Create the build directory:

mkdir build && cd build

3. Configure the project

cmake ../ -DPLUGANDTRUST_SCP@3=0ON -DPLUGANDTRUST_DEBUG_LOGS=0N

4. Compile

make

5. Run the executable

./ex_seB5x_crypto

If everything worked as expected, the output should be similar to the one in Figure 6.

ORSHIN D5.3 Public Page 5

D5.3 — Intra-device secure communication prototypes * ORSHIN

./build/ex_se05x_crypto
starting program!

Figure 6 Output of the program

From Figure 6it is possible to see the output of the test program as it establishes a secure channel

and then proceeds to send encrypted messages of increasing sizes. The protocol implements the
ECHO command which sends and expects to receive the same unencrypted data.

ORSHIN D5.3 Public Page 6

D5.3 — Intra-device secure communication prototypes * ORSHIN

Chapter 3 User guide for secure inter-devices

communication prototype

3.1 Setup

The resources needed to test the communication are in the bb-protocols repository, whose
README files extensively cover installation and usage.

3.1.1 Bluetooth Classic

The Bluetooth Classic (BC) [12] setup involves two Raspberry Pi 4B+ that will communicate over
BC. One of the two devices is the Central, which initiates the connection, and the other is the
Peripheral.

The BC implementation comes in the form of a C library used by two applications, one for the Central
and one for the Peripheral. It is located in the bb-portable folder of the repository.

3.1.2 Bluetooth Low Energy

The Bluetooth Low Energy (BLE) [12] setup involves two nRF52 [14] devices that will communicate
over BLE; the roles are the same, i.e., Central and Peripheral. The BLE implementation comes in
the form of a patch file for NimBLE [13], an open-source BLE stack developed by Apache. Patch is
contained in the bb-nimble folder and is specific to NimBLE 1.8.0. Our BLE implementation replaces
the existing Bluetooth security and stack. The two devices can interact using BLE as usual.

3.2 Installation
3.2.1 Bluetooth Classic

To use the BB protocols over BC, one needs to compile the central.c and peripheral.c sources and
run them on two separate devices. This can be achieved by running the following commands:

git clone https://github.com/sacca97/bb-protocols.git
cd bb-protocols/bb-portable

cmake .

make central && make peripheral

The compiled binaries can then be executed, one in the Central and one in the Peripheral, by
running, in the following order:

peripheral
./central --address AA:BB:CC:DD:EE:FF

Where AA:BB:CC:DD:EE:FF must be replaced by the actual Bluetooth address of the Peripheral
device.

ORSHIN D5.3 Public Page 7

D5.3 — Intra-device secure communication prototypes * ORSHIN

This demo relies on hardcoded pre-shared keys to run the BB-Session protocol, hence assuming
that the devices have previously performed BB-pairing to share such keys.

3.2.2 Bluetooth Low Energy

To use the BB protocols over BLE, one needs to patch an existing NimBLE stack code and install it
in two separate nRF52 devices. To set up and install NimBLE, we point to the official repository of
mynewt OS (https://github.com/apache/mynewt-core). The only requirement is to apply the “bb-
protocols.patch” using the “git apply” command before flashing the devices.

One should flash the btshell (Central) and bleprph (Peripheral) applications on the two devices,
respectively. The BLE implementation is a fully functional implementation of BlueBrothers. Devices
can run BB-pairing to pair and BB-session to establish a secure session if they have already paired.
The device with btshell offers a CLI to control the devices and perform various actions such as
connect, disconnect, pair, and unpair. These commands are further explained in the application itself
via the help command.

Figure 7 shows our BLE testbed with two nRF52. One of them is connected to the Nordic Power
Profiler Kit, which enables monitoring the power consumption of the device.

Figure 7 BLE tested setup

ORSHIN D5.3 Public Page 8

https://github.com/apache/mynewt-core

D5.3 — Intra-device secure communication prototypes * ORSHIN

Chapter 4 Conclusion

This deliverable provides a brief overview of the prototypes implementing secure intra- and inter-
devices communication.

Specifically, considering the intra-device communication, it presents the implementation of two
secure communication protocols: the standard SCP03 and the newly developed NSCP, which is
better suited for resource-constrained environments due to its use of the Xoodyak cryptographic
algorithm. The communication setup involves a Nexys A7 FPGA, serving as the Secure Element
(slave), and a Raspberry Pi 4B+ acting as the master. The Nexys A7 FPGA runs the open-source
CoreV architecture.

Regarding inter-device communication, this deliverable presents two implementations of the
BlueBrothers protocols. The Bluetooth Classic (BC) setup involves two Raspberry Pi 4B+ devices
communicating over BC, with one acting as the Central (initiator) and the other as the Peripheral. In
the Bluetooth Low Energy (BLE) setup, two nRF52 devices are used to communicate over BLE,
following the same role distribution: one as Central and the other as Peripheral.

All implementation code is publicly available under permissive open-source licenses. For more
information, refer to Deliverables D5.1 and D5.2.

ORSHIN D5.3 Public Page 9

D5.3 — Intra-device secure communication prototypes * ORSHIN

Chapter 5 List of abbreviations

Abbreviation Translation

BB BlueBrothers

BC Bluetooth Classic

BLE Bluetooth Low Energy

FPGA Field Programmable Gate Array
GPIO General Purpose Input/Output

12C Inter-Integrated Circuit

IDE integrated development environment
loT Internet of Things

MCU Microcontroller unit

NSCP New Secure Communication Protocol
RPI14 Raspberry Pi 4

S&P Security and Privacy

SCP03 Secure Communication protocol 03
SPI Serial Peripheral Interface

uSB Universal Serial Bus

ORSHIN D5.3 Public Page 10

D5.3 — Intra-device secure communication prototypes * ORSHIN

Chapter 6 Bibliography

[1] Xoodyak

J. Daemen, Joan, Seth Hoffert, Michael Peeters, Gilles Assche, and Ronny Keer. 2020. “Xoodyak,
a Lightweight Cryptographic Scheme.” IACR Transactions on Symmetric Cryptology, June, 60-87.

Available: https://doi.org/10.46586/tosc.v2020.iS1.60-87

[2] Nexys A7: FPGA Trainer Board recommended for ECE curriculum,
https://digilent.com/shop/nexys-a7-fpga-trainer-board-recommended-for-ece-
curriculum/?srsltid=AfmBOop9dZRsS3GIkK ul8c1C-sR-FNdCMQqfXUdcOByjJcHgEracL6K

[3] JTAG-HS2 Programming cable, https://digilent.com/shop/jtag-hs2-programming-
cable/?srsltid=AfmBO0oqO6kvqoStdckTw-mflzllgdr39xfoc x-XdBGNgQvhMY8z70-Z

[4] Raspberry Pi 4, https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

[5] Raspberry Pi 4: pinout I12C, https://pinout.xyz/pinout/i2¢c

[6] NSCP and SCPO03 Master, Github repository: https://github.com/securitypattern/orshin-
rpi_scp03

[7] NSCP and SCPO03 Slave, Github repository: https://github.com/securitypattern/orshin-corev-
secure-element/tree/main

[8] CORE-V-MCU Quick Start Guide: https://github.com/openhwgroup/core-v-
mcu/blob/master/emulation/quickstart/README.md

[9] CORE-V-MCU Nexys, Github repository: https://github.com/openhwgroup/core-v-
mcu/blob/master/emulation/quickstart/core v_mcu_nexys.bit

[10] Command-Line-Interface test routines for the CORE-V MCU, Github repository:
https://github.com/openhwgroup/core-v-mcu-cli-test

[11] CORE-V-MCU user manual: https://docs.openhwgroup.org/projects/core-v-mcu/

[12] Bluetooth Core Specification 6.1: https://www.bluetooth.com/specifications/specs/core-
specification-6-1/

[13] Apache NimBLE:_https://github.com/apache/mynewt-nimble

[14] Nordic nRF52: https://www.nordicsemi.com/Products/Development-hardware/nRF52-DK

ORSHIN D5.3 Public Page 11

https://doi.org/10.46586/tosc.v2020.iS1.60-87
https://digilent.com/shop/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/?srsltid=AfmBOop9dZRsS3GlkK_ul8c1C-sR-FNdCMQqfXUdcOByjJcHqEracL6K
https://digilent.com/shop/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/?srsltid=AfmBOop9dZRsS3GlkK_ul8c1C-sR-FNdCMQqfXUdcOByjJcHqEracL6K
https://digilent.com/shop/jtag-hs2-programming-cable/?srsltid=AfmBOoqO6kvqoStJckTw-mflzllgdr39xf9c_x-XdBGNgQvhMY8z70-Z
https://digilent.com/shop/jtag-hs2-programming-cable/?srsltid=AfmBOoqO6kvqoStJckTw-mflzllgdr39xf9c_x-XdBGNgQvhMY8z70-Z
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://pinout.xyz/pinout/i2c
https://github.com/securitypattern/orshin-rpi_scp03
https://github.com/securitypattern/orshin-rpi_scp03
https://github.com/securitypattern/orshin-corev-secure-element/tree/main
https://github.com/securitypattern/orshin-corev-secure-element/tree/main
https://github.com/openhwgroup/core-v-mcu/blob/master/emulation/quickstart/README.md
https://github.com/openhwgroup/core-v-mcu/blob/master/emulation/quickstart/README.md
https://github.com/openhwgroup/core-v-mcu/blob/master/emulation/quickstart/core_v_mcu_nexys.bit
https://github.com/openhwgroup/core-v-mcu/blob/master/emulation/quickstart/core_v_mcu_nexys.bit
https://github.com/openhwgroup/core-v-mcu-cli-test
https://docs.openhwgroup.org/projects/core-v-mcu/
https://www.bluetooth.com/specifications/specs/core-specification-6-1/
https://www.bluetooth.com/specifications/specs/core-specification-6-1/
https://github.com/apache/mynewt-nimble

	Chapter 1 Introduction
	Chapter 2 User guide for secure intra-device communication prototype
	2.1 Setup
	2.2 Prerequisites
	2.3 Connections
	2.4 Secure Element implementation
	2.5 Master implementation

	Chapter 3 User guide for secure inter-devices communication prototype
	3.1 Setup
	3.1.1 Bluetooth Classic
	3.1.2 Bluetooth Low Energy

	3.2 Installation
	3.2.1 Bluetooth Classic
	3.2.2 Bluetooth Low Energy

	Chapter 4 Conclusion
	Chapter 5 List of abbreviations
	Chapter 6 Bibliography

